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Let 2 denote either the unit ball or unit polydise in C2
Let f be a function analytic on a neighborhood of the closure
of 2, and let V be an irreducible component of {f =0} N 2.
Then there is a bounded analytic function on £ whose zero
get is V.

1. Introduction. Let V, be the zero set of a polynomial in C*.
H. Alexander has posed the question of determining if an irreduci-
ble component of V, in U*= {(z, w)e C* |z| <1, |w| <1}, the unit
polydisc, can be defined by a bounded holomorphic function in U*
([4] p. 233; see also [8], p. 90). We show here that this is the case
for both U? and the unit ball {(z, w)eC* |2[* + |w|* <1}. For the
proof an explicit local construction is first made and then the patching

theorems of Stout [9], [10], or Range and Siu [7] are used to prove
the theorem.

2. Statement of theorem and outline of proof.

THEOREM. Let f be holomorphic on a meighborhood of 2, where
either

(i) 2=0U={@zweC||z|<L|w|<1) or

(ii) 2 is a strongly convex bounded open set in C* with (real)
analytic boundary.

Let V be an irreducible component of {ze 2: f(z) = 0}, the variety
of fin 2. Then there exists a bounded holomorphic function F on
2 such that

V={:ecQ|Fz)=0}.

According to theorems of Stout [9], [10], or Range and Siu [7],
it suffices to prove the following local version of the theorem.

PROPOSITION 1. Let 2, V be as in the theorem. For each e @,
there is an open set U, in C* and a bounded holomorphic function
foon U.N Q2 such that for {, ne @2,

(i) CeU;

(ii) VnU, ={zeUn 2: f(z) =0}

(i) of h= f/f then h and 1/h are holomorphic and bounded
on U.NnU,NQ.
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254 B. A. TAYLOR

The only difficulty in finding the functions f, of Proposition 1
occurs when { €02 and f({) = 0. The most obvious candidates to try
are pieces of the Weierstrass polynomial occuring in the local factori-
zation of f. This procedure works, and an outline of the steps is
as follows.

Step 1. Choose local coordinates (z, w) at (€02 so that near
{, f may be factored as a Weierstrass polynomial P in w times a
unit U,

f(zy w) = U(z’ ’LU) : P(Z, ’I/U)
= Uz, w)[w™ + ap(R)w™™ + -+ + ay?)]

UGz, w)[ [T (0 — wie) |

i=t

fl

The {w,(z)} are not analytic functions, but may be thought of as
multivalued analytic functions (see e.g. [2], p. 69, equation (2), or
[1], Chapter 1, § 4, especially p. 20). For an appropriate choice of
local coordinates (z, w), it is possible to choose branches of the
multivalued functions w;(z) so that the functions

hi(z, w) = w — w;(z)

are single-valued analytic functions on the part on £ near .

Step 2. Show that the restriction of each of the functions h;
to 2 is irreducible (or a unit). Thus, any irreducible component of
V' N 2 must locally be the union of the zero sets of some of the h;.
A function f, which works is then the product of these h;.

We have encountered several problems in carrying through this
program. These have required us to consider only n = 2. It may
be that similar methods will work for » > 2, but the appropriate
choice of local coordinates is not so evident. In case the boundary
of 2 is only C~ instead of analytic (or piecewise analytic), there
seems to be little hope that these methods will work, since the varieties
{h; = 0} N 2 can have infinitely many components.

Proposition 1 is a consequence of the following lemma.

LeMMA 1. Let 2, V,f be as in Theorem 1. For each {ecof
withf ({) = 0, there exists open sets U, W, in C?% and a holomorphic
function fo on W.N 2 such that (i) and (ii) of Proposition 1 hold
and, further,

(iv) (e U,cU,c W,

(v) fc is continuous on W,NR2, and VN W, N2 ={ze W,N
Q: fo(2) = O}
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Also, condition (ili) of Proposition 1 holds when (,7€d2 and
FQ = rf(m)=0.

It is easy to deduce Proposition 1 from Lemma 1. In the rest
of the paper we prove Lemma 1.

Proof of Proposition 1 from Lemma 1. Choose an analytic
funetion g on 2 so that V is the variety of g and, further, that g
defines the ideal of V locally (see e.g. [2, p. 251]). If (e @ choose
e smaller than the distance from { to 02 and set

V. = ball of radius ¢ about { = B(C, ¢)
fe=9.

Next, if {eoR, but f({) = 0, choose ¢ > 0 so small that f is holo-
morphic on B((, 2¢) and B(, 2¢) does not meet the zero set of f.
Then let U, = B(,¢), f; =1. Finally, if (o2 and f() =0, let
U, f. be as given by Lemma 1. It is now easy to check that (i)-(iii)
of Proposition 1 are satisfied.

3. Structure of V at 2. In this section we prove Lemma 1
in case (ii) of Theorem 1. That is, we assume that locally 2 is
defined as {0 < 0} where o is a real analytic, convex function with
Vo +#0 on p=0. We may also assume that f is irreducible on a
neighborhood of @2, since if not, a preliminary factorization can first
be made. We may also assume that for any choice of affine coordi-
nates on C? f is regular in w. That is, f vanishes on no open subset
of a complex hyperplane in C*. For, if this is the case, then f(z, w) =
[a + bz + cw] - h(z, w), where h is holomorphic on a neighborhood of
Q2. Since f is irreducible, we either have a + bz + c¢w = 0 on 2, in
which case we can replace f by h, or h = 0 on 2, in which case we
take F = a + bz + cw and the Theorem is trivial.

Thus, let {€dQ. Choose orthonormal coordinates with origin at
¢ so that for small values of z and w,

3.1) oz, w) = 2Re vz + Q(z, w) + 2Re P(z, w) + &(z, w)
where 7 > 0(7 = 1/2| Vo) ]) and

Qty t) = 3 200, 0)t,7, = k(L. [ + |£.]), k> 0
47=1 02,0%;

3.2 Pt t)= 3 f;’ 0, 0)t:t;

©,§=1 0%,0%;

&(z, w) = 0|z + [w]) .
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Thus, the direction of Re z is the direction of the outward normal

to 2 at ¢.
In this coordinate system, factor f as a Weierstrass polynomial
in w times a nonvanishing function,

(33 S w) = Pl wUw) =[] - w@) [Fe ),
m = m() .

on a neighborhood of {. Since f is irreducible on a neighborhood
of 2, the variety of common zeroes of f and Ff is discrete, since
it must have codimension of at least 2. Thus, for sufficiently small
z # 0, the roots w;(2) of f given by (8.8) are all distinct. Further,
on any simply connected open subset of a small punctured disc0 <
[2] < 0 such as

{2]0 < |z| <5, Rez < 0}

the w;(z) may be chosen as single valued analytic functions of 2z, and
each of them w(z) = w;(z) has a Puiseux expansion

(3-4) w(z) = 3} 2"

as a series of fractional powers of 2z (see e.g. [3], p. 346, or [1], pp.
7.22).
We want to study each of the “pieces” of the variety of f near

&
(3.5) hiz, w)=0
where

hi(z, w) = w — w;(z) .

In particular, we want to prove that the h; are irreducible analytic
functions on the part of 2 near {; that is, the part of the zero set
of k; lying inside 2 is connected. Since 2 is defined by the inequality
© < 0, this means we have to study when the function

(3.6) u(z) = o(z, w(z)) ,

where w(z) = w;(z) for some j, can be negative. The necessary facts
are in the next two lemmas.

LEMMA 3.1. There exists 6, > 0 such that either

(i) w(re?)=0,7/2<60<3m/2,0<r <0, or

(ii) for every r,0 < r < d, there exists 6 = 0(r) with w/2 <
0 < 3m/2, such that
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u(re*) < 0.

REMARK. If p is only C” instead of real analytic, this lemma
is false. A counterexample may be obtained as follows. Choose a
C~ function y of one real variable » with an infinite order zero at
r = 0, and such that X(r) changes sign infinitely often as r—0. For
example, x(r) = ¢"*sin (1/r). Then set

e(z, w) = [:——|4w £y |u2)|2x<|%;]2>:|¢(z, w)

where ¢ is a C~ function with ¢ = 1 on a neighborhood of (0, 0),
0=¢ <1, and ¢ = 0 outside a slightly larger neighborhood of (0, 0).
We can do this keeping &(z, w) small in the C* norm. Then define

oz, w)= —2Rez + |z* + |w| + &(z, w)
={{1—-z2P+[wl—1}+ ez w),

and set 2 = {0 < 0}. Since &(z, w) is small in the C? norm, 2 is
strictly pseudoconvex and is, of course, a small perturbation of the
ball with center at (1,0) and radius 1. Then set f(z, w) = w*—2z
and V = {(z, w): f(z, w) = 0}. It is not hard to verify that V' N 2 has
infinitely many components, and also, all the sets P;(6) have infinitely
many components. Thus, Lemma 3.1 fails. However, an extra
argument will show that the Theorem is still correct for this ex-
ample,

Proof. Set z=t", v(t) = u(t") where n = 1 is chosen so that
w(t™), given by (3.4) is an analytic function of ¢ near ¢ = 0. Let

S; = {t———'re"“’:—g-gngvgs—zﬂ-, u(t) <0, 'r<3}.
If the lemma is false, then there exists sequences {r;}, {r}}, {¢;} such
that », > r¥ > r,>rf e, r;—0,7/2 < np; < 37/2, and v(r;e*) = 0
for all 7/2 < nep < 37/2, and v(r}e'i) < 0.

We can assume that for @ = 37/2n or @ = 7/2n we have v(re*) = 0
for all sufficiently small » > 0. Otherwise, since r-— v(re¢*) is real
analytic, we have v(re¢*) < 0 on an interval (0, 6) and the lemma is
true. Consequently the assumption that the lemma is false leads to
the conclusion that for any neighborhood U of ¢ = 0, the points r}es
all belong to different components of O = U\{t: v(¢) = 0}. However,
gince v(¢t) is real analytic, the set O can have only finitely many
components ([5], p. 96, Lemma 1), which is a contradiction.

LEMMA 3.2. There exists 8, = 6((C) > 0 so small that if S(©) =
{z:Rez <0, |z] < &) then
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(1) for each j the set
P;(0) = {z: 2€ S(9), o(z, wy(2)) < 0}

is either empty for all 0 <o < d,, or else P;0) ts nonempty and
connected for every 0 < d < d,;

(ii) <f P;(0) ts mot empdty for some (and hence all) 0 < d < 4,
then its closure in S(0) is equal to {z:z¢€ S(0), p(z, wi(z)) < 0};

(iii) <¢f C'eoQ and the length of the z coordinate of ' is less
then 0,, and if the function z— 0(z, w;(z)) vanishes at ' for some
J for which P;(0) is mot empty, then m({') =1, where m({') is as
defined in (3.3).

Proof. We, of course, choose 6 so small that all the points
with coordinates (z, w;(z)) are in the domain of p. From the expansion
(3.4), we see that if w(z) is one of the roots of f(z, w) = 0, then

(3.7) w(z) = az® + h(z)

where @ # 0, 8 > 0, and %(z) is a power series in fractional powers
of z higher than B which converges on some neighborhood of z = 0.
Writing z = r¢”?, we have, in particular, that

[h(z)] = 0(r*) for some a > 3.

Let u(z) = p(z, w(z)), so we wish to study the set u < 0.
We will distinguish the three cases 8 < 1/2, g =1/2, 8 > 1/2.

Case 1. B < 1/2.
With 2z = 7%, 7/2 < 6 < 87/2, we claim that

u(z) = r**[|a|* + 2] c]| cos (286 — 8,)] + o(r**)
(3.8) 3—?(@ = —4B|c| 1 sin (280 — 65) + o(r*)

%Z_;(z) = 86| ¢| 1™ cos (286 — 64) + o(r*)
for some real number 6, and complex numbers ¢ = 0 and ¢. The
number a # 0 is a constant multiple of the number a of (3.7) while
¢ is a multiple of the coefficient of w? in the Taylor series expansion
of o(z, w) about (z, w) = (0, 0). The equations (3.8) follow from direct
substitution of the formula (8.7) for w(z) into the Taylor series
expansion of p given by (8.1), and standard estimates for the re-
mainder in Taylor’s formula. We omit the calculations.

Next note that if ¢ = 0, then u(z) > 0 for small r > 0, so P;9)
is empty for all small 6. We can therefore assume ¢ = 0. We claim
that
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I, = {6:7/2 < 0 < 3/2, u(re?’) < 0}

is an (possibly empty) open interval. This follows from a (slightly)
tedious analysis of (3.8). For, from the last two equations of (3.8)
we see that for sufficiently small #, on any interval of length 7/28 > =,
the function 6 — wu(re’’) either

(A) decreases to a minimum and increases thereafter; or

(B) increases to a maximum and decreases thereafter.
Thus, the only way I, can fail to be an interval is to have u(ir) <0,
u(—1r) < 0 and u(re?) = 0 for some 6, 7/2 < 6 < 3x/2. This implies

laf

cos (B — 0,) < —m+o(l)<0

cos (3T — 0) < — laf +0(1) <0
2¢

when # is small. Then, since the interval gr — 4, < 2 < 387 — 0,
has length 287 < z= and the cosine function is negative at both end
points, it follows that it is negative on the entire interval, and in
fact, smaller than the largest of the endpoint values. In this case,
we then have wu(re) < 0 on the entire interval, for sufficiently small
. Thus, I,, must be an interval.

It then follows from Lemma 3.1 that the set P(d) = P,(d) of (i)
of the Lemma is either empty or has the property that it is an open
set which meets every circle |z]| =7 < in an arc. In this latter
case, it is clear that P(0) is connected.

Part (ii) of the lemma follows from (3.8) in much the same way.
The equations show that for sufficiently small » > 0, near any point
0c(n/2, 3r/2) the function u is either strictly increasing, strictly
decreasing, strietly concave, or strictly convex. Thus, near any
point where w(re*’) = 0, there are either points with u < 0 or else u
has a striet relative maximum or minimum. The case of a relative
maximum cannot occur, since then I, would not be an interval. In
the case of a relative minimum, we see from (3.8) that it must be
an absolute minimum, so I, is empty. Thus, (ii) follows. Note also
that when I, is not empty, we also have that

%u(re”) = ( at points ¢ with u(re?) = 0.
o

We now prove part (iii). Let { = 'e€02 be a point near ¢ with
coordinates (a, b), @ = 0. Assume that P(J) is not empty and that
u(e) = 0. As noted at the end of the last paragraph, (0u)/(d6)(a) = 0.
Consider the factorization of f in the (2, w') coordinate system near

“r
L)
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£, w) = [T @ - wi@) | e, w).

Suppose by way of contradiction that m({’) = 2. Then of/ow’' =0
at the point {'. However, since the zeroes {w;(z)} are all distinct,
offow #=0 at &', so Vf =0 and 0f/0z' =0 at . By the implicit
function theorem, we can write the zeroes of f near {' as 2’ = h(w') =
const. (w')? + higher order terms. If p = 2, the manifold (k(w’), w’)
is tangent to 02 at ', and so the restriction of o to this manifold
must have a vanishing gradient. However, this restriction is just
what we are calling #(z), and we have already seen that ou/08 = 0,
hence Fu # 0. Thus, p =2 does not occur, so, locally, w' is an
analytic function of 2’ on f = 0. Thus, m({’) = 1, as asserted. This
completes the discussion of Case 1.

Case 2. B =1/2.
Exactly as in Case 1, we find, with a = 0,
u(z) = r[ja* + 2|b]|cos (6 — 8,)] + o(r)
(3.9) %%(z) — —2|b|rsin(@ — 6) + o(r)

Uy —
W(z)_ 2|b|rcos (@ — 6,) + o(r) .

The proofs of (i)-(iii) are then the same as in Case 1.

Case 3. B> 1/2.
Exactly as in Case 1, we find

u(z) = 27r cos 0 + o(r)

(3.10) Z—Z(z) — —2vrsind + o(r)

%%%(z) = —27rcosd + o(r)

and we can again proceed as in the earlier cases.

REMARK. In this last case, which is always the one if m({) = 1,
we definitely have that P(¢’) is not empty. The first two cases only
occur when {f = 0} is tangent to 02 at {.

Proof of Lemma 1. Let {ecof, f({)=0. Choose ¢ =4d() >0
so small that the conclusions of Lemma 3.2 all hold. Then let U,
be the collection of all points with (z, w) coordinate satisfying |z ]| <
1/29(¢). By an abuse of notation, we will write
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(8.11) U = {& wy: 2] < 2o@p}

Similarly, let
(3.12) W, = {(z, w): | 2| <)} .
For ¢ < 6(0), let
X;(0) = {(z, wi(2)) e 2: Rez < 0, |2] < 0} .

From (i) of Lemma (3.1), each X,(0) is empty or a connected variety
in 2n{#z| <9, Rez < 0}. Thus, if we let S(©) = {(z, w): Rez < 0,
|z] < d}, and V, = {f = 0), then

V.n 20 86) = U X0)

and the latter union is the decomposition of V, into irreducible com-
ponents in 2N S(0). Since V is an irreducible component of V, N 2,
ifweput J=JQ) =1{5:1=7=m, X;0)c V, X(0) # ¢}. Then

VN SE) = UX6).

Thus, with h;(z, w) = w — w;(z), we define

(3.13) Fo= 11 hy.
JEJ(Q)

Now, conditions (i), (ii), (iv) and (v) of Lemma 1 hold by con-
struction. We only have to check condition (iii). Thus, assume
,'edQ, f() = f() =0, and there is a point pec U, N U, N 2. We
have to prove that w = f/f., is holomorphic, nonvanishing, and ||
is bounded above and away from zero on U, N U, N 2. Actually,
we will see that % is analytic and nonvanishing on the closure of
UnU.nA.

Now, on the set W, N 2, the function f, satisfies Vf, #+ 0 on f; = 0.
Thus, since f; and f,, have the same zero set on W, N W, N K2, it
follows that u is analytic and nonzero on W, N W, N 2. To prove
# and 1/u are bounded on U,n U, N 2, we only have to prove u
is bounded near each point ¢ in the boundary of U,n U, N Q. If
g ¢ 02, this is clear since then ge W.Nn W, N 2, and u is analytic
and nonvanishing at ¢. Thus, assume ¢cdf2. We consider three
cases.

Case 1. qedR, g+ (.
In this case % is again analytic and nonzero on a neighborhood
of ¢q. For if, for example, fi(q) = 0, then %,(¢9) = 0 for a unique
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je J(), because all the {w;(z)} are distinct. Then by (ii) of Lemma
8.2, we have that ge V. Thus, if f., = [Tscscn b, We have hi(q) = 0
for a unique k€ J({'). Because all the {w;(z)}, {wi(z')} are distinct,
and because Fh;(q) #= 0, Fhi(q) # 0, we must have that %;/h; is analytic
and nonvanishing at ¢, and therefore also u since none of the other
h;, ki can vanish at gq.

Case 2. q=C,qeUnN U.N L.

Since f({') =0, there is a unique j such that A;{)=0. If
jed©), then C'¢ V, so f,, =1 and f({') # 0. Also, f; is analytic on
a neighborhood of (', so we are done. Thus, we may assume j € J({).
Then by (iii) of Lemma 3.2 we have m({') = 1, so near (',

F=w - we)-F

where w'(z'), F' are analytic and F’ # 0. Since only one of the A;
vanishes at (', we have for that j

by =[w — w'(z)]- G
where G is a nonvanishing analytic function near {’. Therefore also,
fo=w —w@)-H=f.-H

where H is analytic and nonvanishing at {’, which proves this case.

Case 3. ¢=C qeUnU,.NK.
Same as Case 2.

This completes the proof of Theorem 1 for case (ii).

4. The case 2 = U? This case is much the same as the earlier
case, so we will not give many details. There is one new difficulty,
however, which we will show how to avoid.

We assume that f is analytic and irreducible on a neighborhood
of the closed unit polydisc and that f does not vanish on any line
z=a, or w=>0. Near a point (2, w,) with f(z, w,) =0, we have,
as in (3.4), the Puiseux expansions for the (multiple valued) solutions
of f(z, w) = 0 near (z,, w,),

(4.1) B %= jzzlai(w - wO)j/p = F((w — wo)l/p)

= a(w — w,)* + higher order terms, a,# 0 .

and
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@2 w— w, = g bz — 2o)!" = G((z — z,)"%)

= by(z — 2,)* + higher order terms, b; = 0 .

For later reference, note that
(4.3) ag =1

since
de=al Ly 120, L=l 5020,

| w — w,)* |z — 2,1?

If {= (2, w)edlU? f({) =0, we want to show how to define the
functions f; of Lemma 1. If { is not in the distinguished boundary,
then there is no problem. To be specific, suppose | z,] < 1. We have
near (2, w,) the factorization of f as in (3.3),

flz, w) = I:in hi(z, w):l Uz, w)
where Uz, w) # 0 and %; has the form
hi(z, w) = (2 — 2)) — Fi((w — wo)'") .
The zero set of (k; N U?) is connected, so near (z, w,), we can define

fo= H h;
jed)
where J({) is the set of all 7 for which the zero set of %; in U* is
a subset of V.
When £ = (2, w,) has |z,] = | w,| = 1, there is again some difficulty
in determining if {h; = 0} N U* is connected. If

hi(z, w) = (2 — 2)) — Fi((w — wo)"'")
= (2 — %) — QW — W)* — -~

then it is not hard to check, as in Lemma 3.2, that for small ¢ > 0,
the set

Pi0) = {w: |w — wo| <0, [w| <1, ky(z, w) = 0}

is connected provided that @ < 2. From equation (4.3), we see that
a-B =1. Thus, at least one of &, B is less than 2 (even 1). There-
fore, to find f, in this case we proceed as follows. First, factor f
into irreducible factors near (,

f:ﬁfi

=1
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We then have the Puiseux expansions (4.1), (4.2) for the zeroes of
each f; near {. Further, the «a, 8 are the same for all zeroes of f;
(1], p. 22) although they could possibly be different for different
factors f;. The functions f; can then be factored in the form

where U, # 0 and
hii = (& — 2) — Fy j((w — w)'?) if @ <2
or, if @ = 2, take the factorization in the w-variable so that
hi; = (w — wo)) — Gi (2 — 2)"") .
The functions 4, ;|2 are then irreducible so f; can be defined as

c=1I1CII hij)
% Jedi)
where Ji({) = {j: zero set of h, ;N U*< V}. It can then be verified
that these functions f; will work for Lemma 1.

5. Remarks. It is possible to obtain a better conclusion in the
Theorem than the result that Vis defined by bounded functions. In
fact, since the functions f, which define V locally are Lipshitz con-
tinuous of some small order ¢ (i.e. | fi(p) — f(@)| =< C|p — q|°, some
¢ > 0), we should be able to conclude that the function which defines
V is also Lipshitz continuous of the same order. It is possible to
show this is the case. In fact, in §§3 and 4, we actually showed
that the quotients f;/f, are nonvanishing and analytic on the closure
of U,Nn U,N 2 for appropriate choices of the U,. Thus, instead of
using the Theorem of Stout or Range and Siu to carry out the
patching arguments, one can explicitely carry out the patching argu-
ments by taking logarithms and using the result that there are
solutions of du = f smooth up to the boundary if f itself is smooth
up to the boundary and df = 0. (See [6] for this theorem in the
case of the polydise.)

We also note that the Theorem remains valid for strictly pseudo-
convex sets 2 in C* with real analytic boundaries and H*(2, Z) = 0;
since the only difficulties in the proof arise locally and, locally, a
holomorphic change of coordinates can be made so that 2 is convex
in the new coordinate.

Finally, it is a consequence of the patching arguments that the
function F of the Theorem has the property that it locally generates
the ideal of V, since it has the form F = f.e*: where a, is an analytic
function.
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