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M. VALADIER

R. T. Rockafellar has proved a formula for the conjugates
of convex integral functionals on vector spaces of measurable
vector-valued functions. This formula is extended to the case
where the spaces of values of the measurable functions is a
Souslin locally convex space. Rockafellar’s definition of
decomposable space of measurable vector-valued functions
is extended to other than normed spaces. In the first section
technical results on measurable set-valued functions are given.

Introduction. Let (7, &, ) denote a measure space with a
positive o-finite measure ¢t and & complete. Let E be a real locally
convex space and E’ its dual. Let & (resp. ') be a vector space
of functions from 7T to B (resp. E’). Hypotheses will be made which
ensure that for each u ¢ & and each ve &', the funection ¢ (v(f),

u(t)> is integrable. The pairing S(v(t), u(t)>p(dt) will be denoted by
{v, u).

A function f: T x E— R(= [— o, c]) will be called an integrand.
Under certain hypotheses ¢ +— f(¢, u(t)) is measurable for each ue £
We shall consider the functional on &~ defined by I:(u) = 3 F(t, u(®))p(dt)
(with the convention that the integral is + oo if the positive part of
f(t, u(t)) is nonintegrable). Denote by f*(¢, -) the conjugate function
of f(t, -) this is

FH@, 2") =sup &', ) — f(t, z) |xc K} for 2’ € K’ .

As above I;. denotes the functional on &’ defined by I.(v) =
ERCROZCO)

Then roughly speaking the result proved by Rockafellar is the
following: if & contains sufficiently many functions (see below the
definition of decomposable spaces) then I;. is the conjugate functional
of I, with respect to the duality <~ .&°'.

More precisely, for each ve &/,

I;(v) = (Lp)*(v)(= sup {<v, up — Is(u) [ue £}

Rockafellar first proved this formula for £ = R ([11] Th. 2 p. 532),
then for separable Banach spaces ([13] Th. 2 p. 225). The inequality
I.(v) = (I)*(v) is obvious. The converse inequality is proved using
measurable selection theorems (and the fact that & contains suf-
ficiently many functions). Standard measurable selection theorems
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require Polish spaces. But if F is a separable Banach space its dual
may fail to be Polish, and then it is difficult to prove ([;)* = I u.

In [5] (Theorem 5) Castaing proved the two formulas (I,)* = I
and (I;.)* = I;. for E separable Fréchet but T metrizable compact.
In [6] he succeeds to prove the same formulas for abstract T and
E separable Banach space, using the fact that E' endowed with
o(E’, E) is a Lusin space.

Here we shall extend the formulas to a Souslin locally convex
space E whose dual E’ is also a Souslin space for at least one locally
convex topology compatible with duality. That is the case if E is
a separable Fréchet space, and many locally convex spaces deduced
from separable Fréchet spaces (for example most of the spaces
encountered in the theory of distributions) have that property. Some
new results on measurable functions and measurable set-valued
functions with values in a Souslin space are given in a preliminary
section. In particular Lemma 2 extends Bourbaki ([2] Ch. IV §5).
For applications and further references see Ioffe-Levin [7], Ioffe-
Tikhomirov [8], Rockafellar [12].

1. Functions and set-valued functions with values in a Souslin
space. We shall denote by <Z(E) the Borel o-field of a topological
space E. A Souslin space is a Hausdorff topological space S such
that there exists a Polish space P and a continuous map 4 from P
onto S.

LemMMA 1. Let S be a Souslin space, P a Polish space and h
a continuous map from P onto S. Let I' be a set-valued function
from T to the closed nonempty subsets of S, whose graph belongs to
&R H(S). Then

(a) I' admits a sequence of selections (u,), such that, for every
t the wu,(t) are dense in I'(t), and such that there exist measurable
maps 0,. T— P with w, = hoo,.

(b) Moreover u, has the following properties:

1. wu, is (&, & (S)) measurable (that is VA e Z(S), u.'(4) € &)

2. u, is the limit of a sequence of Z-measurable functions
assuming a finite number of values.

3. Moreover if T is o Hausdorff topological space, and t a
Radon measure, then w, is Lusin p-measurable.

Proof. (a) Let G denote the graph of I" and pr; denote the
map (¢, x)—t from T x Sto T. Put ¢(¢t) = A (I'(t)). It is a closed
nonempty subset of P. Recall that if U is a subset of P, ¢~ (U)
denotes the set {te T|¢(t) N U= O}.

Then if Ue < (P) one has
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g (U)={t|s@)N U= @}
={| ') NMU) = @}
= I (7))
=pr(GN (T X K(U)).

It is easy to see that G N (T x W(U)) belongs to & Q (M U)). But
h(U) is a Souslin space (because U is Borel hence Souslin). Thus by
the projection theorem (Aumann [1], Sainte Beuve [14]; for com-
pleteness we sketch a short proof in the Remark 2 below) ¢ (U)
belongs to &. Thus we can apply standard theorems on measurable
selections: Castaing ([4] Th. 5.2) and for abstract measurability
Valadier ([16] Th. 0.3). The conclusion is: ¢ has a sequence of
measurable selections (g,) such that for every ¢ the o,(t) are dense
in ¢(¢). Put u,(t) = hoo,(t). Then the u,(t) are dense in I'(t).

(b) 1. As o0, is (&, <#(P)) measurable and h is continuous
(hence (<#(P), <Z(S)) measurable), u, is (&, <(S)) measurable.

2. The function o, is the limit of a sequence of &Zmeasurable
functions assuming a finite number of values. Hence u, has the
same property.

3. Finally if T is a Hausdorff topological space and ¢ a Radon
measure (see Bourbaki [3] Schwartz [15] for measures on Hausdorff
spaces), it is well known that, as P is Polish, o, is Lusin measurable.
That is for each compact K< T and & > 0, there exists a compact
K, < K such that #(K — K,) < ¢ and o, is continuous on K,. Obviously
%, has the same property.

REMARKS.

(1) Existence of one measurable selection has been proved by
Sainte-Beuve [14] under a weaker hypothesis: I" is not supposed
closed-valued. She extends Aumann’s theorem, which was stated
for a Lusin space.

(2) We sketch now a short proof of the projection theorem.
The statement is the following: if S is Souslin and Ge &R £Z(S),
the projection of G onto T belongs to & When S is compact metri-
zable, this theorem is well known (Meyer [9], Neveu [10]): Gis analytic
and its projection is analytic, hence belongs to & which has been
supposed complete.

If S is Polish, S is G, (countable intersection of open sets) in a
compact metrizable space E. Then it is obvious that & < (S)C
& Q #(F) and the projection theorem is true for S Polish. Finally
if S is Souslin: let P be a Polish space and h: P— S continuous and
onto. Then if Ge ¥R <&(S), (1; X h)"(G) belongs to Z# X Z(P)
and
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pr; G = pry [(1; X h)H(G)] .

Here 1, X h is the map (¢, x) — (¢, h(z)) from T x P to T x S, and
pr; denotes either the projection from T x S onto T or the projection
from T x P onto T.

COROLLARY. If S is a Souslin space and u: T— S is a function
whose graph belongs to & Q) £&8(S), then u has the following properties:

(1) u is (&, <Z(S)) measurable

(2) u is the limit of a sequence of E-measurable functions
assuming a finite number of values

(3) Moreover if T is a Hausdorfl topological space, and tt a
Radon measure, then w is Lusin p-measurable.

Proof. Apply Lemma 1(b) to I'(¢) = {u(?)}.

LEMMA 2. Let E be a Souslin real locally convexr vector space,
and w: T— E a function.

(a) Then the four following properties are equivalent:

(1) u is (&, <Z(F)) measurable

(2) u is the limit of a sequence of Z-measurable functions
assuming a finite number of values

(3) wu s scalarly measurable (that is for each 2’ € E', (&, u(.))
is measurable)

(4) the graph of w belongs to &R & (K).

(b) Moreover if T is a Hausdorff topological space, and p o
Radon measure, consider the property

(5) wu ts Lusin p-measurable.
Then the five properties (1), «--, (5) are equivalent.

Proof. (a) The corollary to Lemma 1 yields the implications
4—=1 and 4=2. 1=3 and 2= 3 are obvious. We prove now
3=4. By Lemma 3 below, there exists a sequence (¢,) in E’ which
separates points of E. Thus the graph of u is

N{¢ xe T x E|e, x) = {e, u®)}.

n

Hence if u is scalarly measurable, the graph of % belongs to
B(K).

(b) Suppose that T is a Hausdorff topological space and that
¢ is Radon. Then 5=3 is obvious and 4 =25 is the corollary of
Lemma 1.

LEMMA 3. Let S be a Souslin space and (f);er o family of
real-valued continuous functions which separates points of S (that
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is if x # v, there exists 7 such that f,(z) # fi(v)), then there exists a
countable subset D of I such that the subfamily (f.);ep separates
points of S.

Proof. The fact that (f;);.; separates points of S is equivalent
to

S? — ds = yz(fl X fz‘)_l(Rz — AR) .

In this formula f; X f; denotes the map (z, ¥) — (fi(x), fi(¥)), and 4z
denotes the diagonal in E x E. As S*is Souslin, there exists a Polish
space @ and a continuous onto map k: @ — S% Put

Ui = (fi X fi)_l(Rz - AR) .

It is an open set. It is well known that there exists a countable
subset D of I such that
U k(U) = YU -

ieD
As k is onto, that implies

Uu.=UVU.

ieD iel

Hence the countable subfamily (f;);.» separates points of S.

REMARK. This result has been proved by Schwartz [15] in a
more general form.

LEMMA 4. Let E be a Souslin locally convex space and w: T— E
scalarly measurable. Then the function (t, ') (', u(t)) defined on
T x B, is €L B(E') measuradle.

Proof. This follows from property (2) of Lemma 2.
Indeed let w = lim %, where the u, are Z*measurable functions
assuming a finite number of values. Then w,(t) = z2 if te T?, and

&, u,(t)y =<a, a2y if teTpP.

Thus (¢, ") — (&', u,(t)) is €Q (E’) measurable on T? x E’, hence
on all Tx E'. Finally <&, u(f)) = lim (&', u,(f)) is a ZQ F(H)
measurable function of (¢, «).

LEMMA 5. Let E be a Souslin locally convex space and uw: T—E
scalarly measurable. Then there exists a sequence (T,) in & such
that u(T,) is compact, and T — U T, is p-negligible.
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Proof. As p is o-finite it is sufficient to prove the result when
¢ is bounded. By property (1) of Lemma 2 one may consider the
measure Y = gou™" on (E, & (E)). As FE is Souslin, v is a Radon
measure (Bourbaki [3] Prop. 3 p. 49). Therefore there exists a
sequence of compact sets (K,) in K, such that v(UK,) = v(&). The
sets T, = u™*(K,) have the required properties.

2. Decomposable vector spaces of functions. Integrands.
From now on E is a Souslin real locally convex vector space and
its dual E’ is supposed to be Souslin for at least one topology com-
patible with duality (we remark that this is equivalent to supposing
that E' is Souslin for the weak topology o(&’, E)).

We denote by &~ (resp. &’) a vector space of scalarly measurable
functions from T to E (resp. E’), and by L (resp. L’) the space of
equivalence classes for equality almost everywhere. Note that by
property (2) of Lemma 2 for each u € &, and each ve &', ti (w(t),
#(t)> is measurable. We make the hypothesis that for each uwe &
and each ve &, t— {w(t), u(t)) is integrable. We denote by (v, u)

the number S(v(t), u(t)>p(dt). We denote by ;" (resp. ;) the
space of scalarly measurable functions from T to E (resp. E’) such

that f(T) is compact (here it is important to choose a Souslin topology
on E’).

DEFINITION 1. The space & s said to be decomposable if
ue L fe 4t Ac € and (A) < « imply

Xaf + Yr-su € F

(x4 denotes the characteristic function of A).

ReEmMARkK. If E is a separable reflexive Banach space, then E
and E’ are Polish for the norm topology, hence Souslin for all
topologies compatible with duality. Our definition is equivalent to
Rockafellar’s (where &% is taken in place of _;%).

ExXAMPLE. Let E be a separable Fréchet space. Then its dual
E; with the topology o(E’, E) is Souslin. We may take &¥= &7}
and ¥'= ;. Indeed, & is obviously decomposable. And
= A, because for a closed subset of E; compactness is equivalent
to equicontinuity. Thus &; is decomposable.

LEMMA 6.
(1) If <2 is decomposable and ve &', then Yue & (v, u) =0,
implies v =0 a.e,
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(2) If & and &' are decomposable, the bilinear map (u, v)—
{v, uy defines a separated duality between L and L’.

Proof. (1) Let Ae ¥ with u(4) < «. If xeE and @ is a
real valued bounded measurable function, then @z belongs to .Z;*.
Hence y,pxc & This entails S u(t), zye(t)u(dt) = 0, for each x and
each . Hence <(v(:), ) =0 al;nost everywhere on A, hence on T.
As E is the dual of E’, it contains a sequence (¢,) which separates

points of E’ (Lemma 3). Therefore v =0 a.e.
(2) The second part is obvious from the first.

DEFINITION 2. A function f: T X E— R(= [— o0, ]) is said to
be o normal integrand on T X E if for every t, f(t, -) is lower semzi-
continuous and fis € Z(E) measurable. It is said to be a convex
normal integrand if it is a normal integrand and for every t, f(t, -)
18 convez.

In the following lemma epi f(¢, -) denotes

{(@,r)e EX R[rz f(¢ 2)}.

LEMMA 7. The function f is a mormal integrand iff the set-
valued function ti— epi f(t, ) is closed valued and its graph belongs
to R A (E) x Z(R).

Proof. First note that the closure of epi f(t, -) is equivalent to
lower semi-continuity of f(¢, -).

(1) Suppose fis a normal integrand. The graph G of ¢+ epi f(¢, +)
is given by the formula

G ={{t z )| r=f(t x)}

and hence belongs to &R FZ(E) ¥ F(R).

(2) Suppose that the graph G belongs to ZQ F(K)R Z(R).
Therefore, for each re R, {(¢, ) | (¢, z, ) € G} belongs to € F(E)
(Neveu [10] Prop. III-1-2). But

& 2) (¢ 2 reG ={¢2)]| fE )<}

Thus f is QR & (E) measurable.

REMARK. It is easy to see (using the fact that R has a countable
basis of open sets) that Z(F)Q Z(R) = Z(E x R).

LEMMA 8. If f is a mormal integrand on T X E, then the func-
tion defined by
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F*(@, ') = sup {<&', ) — f(¢, ) |we B}
18 a convexr mormal integrand on T X E'.
Proof. By Lemma 7 (and the remark) the set-valued function
t epi f(t, -) has a measurable graph. By Lemma 1 there exists a
sequence of measurable selections (u,, 7,) such that for every ¢ the

(u,(t), r.(t)) are dense in epi f(¢, +).
Thus by Lemma 4

f*(t; x’) = S}nlp [<x,r un(t)> - ’rn(t)]

is a measurable function of (¢, z').

3. Conjugate integral functionals,

DEFINITION 3. Let f be a normal integrand on T X E. An
wntegral functional is defined on & by

I:(u) = ST S, u(@t)(dt), with the comvention (+ ) + (—o) =
-+ oo, that is the integral is + oo if positive and negative parts of
F(t, u(t)) are nonintegrable.

THEOREM. If ¥ is decomposable, if there exists u,€ & such
that I(u,) < oo, them I;., is the polar functional of I, that is, for
every ve ¥’

I;.(v) = sup v, u) — Iy(u) |ue £} .

If in addition f is convex, &' decomposable and I;(v)) < o for at
least one v,€ &', then I, and I;. are mutually convexr lower semi-
continuous polar functional on & and F'.

Proof. The proof follows Rockafellar [13].
We can rewrite the formula

| sup (Cott), > — £(t, ) | 2 Bhu@)
= sup {{ ), weppan) — | £, uppan|ue =} .
(If we rewrite the second member
sup {{ [0, w(®) — £, wMp@) ue =}

we have to use the opposite convention, that —c prevails over
-+ c0.) Thus the inequality = is obvious. To prove <, let 8¢ R such
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that 8 < I;(v) and let us find u such that (v, u)> — I(u) = .

(1) As If(u,) <co there exists a,e & such that (v(t), u(t)) —
S, ul(t)) = ay(t) a.e. (for example one can take a,(t) = (v(t), us(t)) —
ST, us(t))). Remark that f*(¢, v(t)) = at).

(2) Now we prove that there exists a,e &' such that
Sal(t)y(dt) > g and a(t) < f*(t, v(t)) a.e. Indeed let he &' have

strictly positive finite values (we recall that g is o-finite). If I;{v) <o
put a,(t) = f*(, v(t)) — eh(t) with € > 0 sufficiently small.
If I:u(v) = + put

inf (nh(t),% R v@®)) i £ v(E) > 0
G, (D) — WE) if R @) <0 .

Then &, € <, (£,) is increasing, and &,(t) —(1/2) f* (¢, v(2)) if f*(t,v((¢)> 0.
By the monotone convergence theorem | &, ¢t — . Choose n large
enough such that SE,, @ > B and put «, = &,. In each of the three
cases f*(t, v(t)) = + o, finite > 0 or < 0, one has a,(t) < f*(¢, v(¢)).
(3) Let I'(t) = {xe E | {v(t), x> — f(¢, x) = a(t)}.

It is a closed almost everywhere nonempty set. The graph of
I is

@, 2) [ <v(®), ) — F(t, ) = a(t)}

and therefore belongs to & #(F). Then (Lemma 1) I' has a
measurable selection u,. By Lemma 5 there exists an increasing
sequence (T,) in & such that

—T — U T, is negligible
—u,(T,) is compact .

For » large enough one has

[ apr+| anzs.
Ty T,

Put
u(t) if te T,

u(®) = {uo(t) if teT—T,.

Then u <€ &~ because &° is decomposable.
On T, one has

o(t), w(t)) — f(&, w(®) = a(?)
andon T— T,
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(D), w(t)) — F(t, u(t)) = a?) .

Hence

[, o0, utpuay — | s uomanz| ap+|  anzp.

-7

(Note that f*(¢, u(t)) is integrable so that S S, u(t))u(dt) is not + c.)

That proves the inequality <. The remainder of the theorem is
obvious.
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