A CLASS OF SYMMETRIC DIFFERENTIAL OPERATORS WITH DEFICIENCY INDICES (1, 1)

ARNOLD LEWIS VILLONE
A CLASS OF SYMMETRIC DIFFERENTIAL OPERATORS WITH DEFICIENCY INDICES (1, 1)

A. Villone

Let \( \mathcal{H} \) denote the Hilbert space of analytic functions on the unit disk which are square summable with respect to the usual area measure. In this paper we show that every symmetric differential operator of order two or more having the form 
\[
L = \sum_{i=0}^n (a_{i+1}(i)z^{i+1} + a_{i-1}(i)z^{i-1})D^i, \quad a_{-1}(0) = 0,
\]
has defect indices (1, 1) and hence has self-adjoint extensions in \( \mathcal{H} \). We are also able to show that \( L + M \) has defect indices (1, 1) where \( M = \sum_{i=1}^n b_i z^i D^i \), provided that \( |b_{n-1}| < (n - 1) |a_{n+1}(n)| \).

In what follows \( \mathcal{H} \) denotes the square summable analytic functions in \( |z| < 1 \), with inner product \( (f, g) = \iint_{|z| < 1} f(z)\overline{g(z)} \, dx \, dy \). A complete orthonormal set for \( \mathcal{H} \) is provided by the functions 
\[
\phi_n(z) = \left(\frac{n + 1}{\pi}\right)!^{1/2} z^n, \quad n = 0, 1, \ldots,
\]
from which it follows that \( \sum_{n=0}^\infty a_n z^n \) represents an element of \( \mathcal{H} \) if and only if \( \sum_{n=0}^\infty |a_n|^2/(n+1) \) converges. The formal differential operator 
\[
L = \sum_{i=0}^n p_i D^i, \quad p_i \in \mathcal{H},
\]
is said to be formally symmetric if \( L\phi_n \in \mathcal{H} \) for all \( n \) and \( (L\phi_n, \phi_m) = (\phi_n, L\phi_m) \). Let \( T_0 f = Lf \) for \( f \) in the span of the \( \phi_n \). Then the closure of \( T_0 \), \( S \), is a symmetric operator and its defect indices \( m^+(m^-) \) are just the number of linearly independent solutions of 
\[
L\phi = \lambda^+\phi (L\phi = \lambda^-\phi) \text{ in } \mathcal{H}, \quad \text{where } \text{Im} (\lambda^+) > 0 (\text{Im} (\lambda^-) < 0). \quad [2]
\]
It is known, [1], that if \( L \) is an \( n \)th order formally symmetric operator then the \( p_i \) are polynomials of degree at most \( n + i \), \( p_i(z) = \sum_{k-i}^n a_k(i)z^k \), where the \( a_k(i) \) satisfy the following linear systems for \( p = 0, 1, \ldots, n \)
\[
S_p: \sum_{k=0}^n a_{k+p}(k)B(i, k) = \sum_{k=p}^n \bar{a}_{k-p}(k)B(i + p, k)A^i(i + p, i), \quad i = 0, 1, 2, \ldots \cdot
\]
Where,
\[
A(i, j) = [(i + 1)/(j + 1)]^{1/2}
\]
\[
B(i, j) = \frac{i!}{(i - j)!} \quad i \geq j
\]
\[
= 0 \quad i < j.
\]
Setting \( a_{k+p}(k) = a_{k-p}(k) = 0 \) for \( p \neq 1 \), \( L \) has the form
\[
\sum_{i=0}^n (a_{i+1}(i)z^{i+1} + a_{i-1}(i)z^{i-1})D^i, \quad a_{-1}(0) = 0.
\]
In this paper we show that such L's give rise to operators with
defect indices (1, 1). Before doing so it is necessary to determine
the nature of the relationships among the \( a_{i\pm 1}(i) \) implied by \( S_i \).

**Lemma.** The \( a_{i\pm 1}(i) \) satisfy \( S_i \) if and only if
\[
\begin{align*}
a_{i+1}(i) &= (i + 2)a_i(i + 1) + a_{i-1}(i) \quad i = 0, 1, \ldots, n, \\
a_{-1}(0) &= a_n(n + 1) = 0.
\end{align*}
\]

**Proof.** The proof hinges on the algorithm provided by Theorem
2.3 of [1] which states that the system \( S_p \) is satisfied if and only if
\[
\begin{align*}
j! \ a_{i+p}(j) &= R^j_i \quad j = 0, 1, \ldots, n,
\end{align*}
\]
where \( R^j_i = \sum_{k=0}^a a_{h-p}(k)B(i + p, k)A^2(i + p, i) \), and the \( R^j_i \) are defined
recursively by
\[
\begin{align*}
R^j_i &= R^j_{i+1} - R^{j-1}_i.
\end{align*}
\]
For \( p = 1, R^0_i = \sum_{k=1}^a a_{h-1}(k)B(i + 2)(i + 1 - k)/(i + 1 - k)! \), where we agree
to set the terms involving \( i + 1 - k < 0 \) equal to 0. Setting \( i = 0, \)
(5) becomes
\[
\begin{align*}
a_i(0) &= \sum_{k=1}^a a_{h-1}(k)2/(1 - k)! = 2a_i(1).
\end{align*}
\]
We now show that for \( j \geq 1 \) \( R^j_i \) is given by
\[
\begin{align*}
R^j_i &= \sum_{k=1}^a a_{h-1}(k)[i!/(i + j + 1 - k)!](ik + 2k - j)P_j(k),
\end{align*}
\]
where
\[
\begin{align*}
P_j(k) &= 1 \quad \text{and} \quad P_j(k) = (k - 1) \cdots (k - j + 1), \quad j > 1,
\end{align*}
\]
and
\[
\begin{align*}
[i!/(i + j + 1 - k)!] = 0, \quad i + j + 1 - k < 0.
\end{align*}
\]
A simple calculation yields
\[
\begin{align*}
R^j_i &= R^0_i + \sum_{k=1}^a a_{h-1}(k)[i!/(i + 2 - k)!](ik + 2k - 1),
\end{align*}
\]
so that (7) holds for \( j = 1 \). Assuming that (7) holds for \( j \) we
obtain
\[
\begin{align*}
R^{j+1}_i &= \sum_{k=1}^a a_{h-1}(k)[i!/(i + j + 2 - k)!]P_j(k)Q,
\end{align*}
\]
where
\[ Q = (i + 1)(ik + 3k - j) - (i + j + 2 - k)(ik + 2k - j) \\
= (ik + 2k - j - 1)(k - j) . \]

Hence we have \( R_{n+1} = \sum_{k=1}^{n} \bar{a}_{k-1}(k)[i/(i + j + 2 - k)](ik + 2k - j - 1)P_{j+1}(k) \). For \( j = n \), (5) and (7) yield

\[ n! a_{n+1}(n) = \sum_{k=1}^{n} \bar{a}_{k-1}(k)(2k - n)P_{n}(k)/(n + 1 - k)! \]

Since \( P_{n}(k) = 0 \) for \( k = 1, \ldots, n - 1 \), the series reduces to \( \bar{a}_{n-1}(n)[n(n - 1) \cdots 1] \), from which it follows that \( a_{n+1}(n) = \bar{a}_{n-1}(n) \).

For \( 1 \leq j < n \), (5) and (7) yield

\[ j! a_{j+1}(j) = \sum_{k=j}^{n} \bar{a}_{k-1}(k)(2k - j)P_{j}(k)/(j + 1 - k)! \]

\[ = \sum_{k=j}^{n} \bar{a}_{k-1}(k)(2k - j)P_{j}(k)/(j + 1 - k)! , \]

since \( P_{j}(k) = 0 \) for \( k = 1, \ldots, j - 1 \). On the other hand, the terms for \( j + 1 - k < 0 \) vanish leaving us with

\[ j! a_{j+1}(j) = \bar{a}_{j-1}(j)jP_{j}(j) + \bar{a}_{j}(j + 1)(j + 2)P_{j}(j + 1) \]

Since \( P_{j}(j) = (j - 1)! \) and \( P_{j}(j + 1) = j! \), we have

\[ a_{j+1}(j) = \bar{a}_{j-1}(j) + (j + 2)\bar{a}_{j}(j + 1) . \]

**Theorem.** Let \( L \) be the operator of (3) then \( S \) has defect indices \( m^+ = m^- = 1 \).

**Proof.** The idea of the proof is to show that the equation \( L \phi = \lambda \phi \) \((\Im \lambda \neq 0)\) has exactly one power series solution \( \phi(z) = \sum_{j=0}^{\infty} \alpha_{j}z^{j} \) and that \( |\alpha_{j}| \) is \( O(j^{-p}) \) for some positive integer \( p \). This implies that \( \sum_{j=0}^{\infty} |\alpha_{j}|^{j}/(j + 1) \) converges and \( \phi \in \mathcal{A}_{\zeta} \), thus \( m^+ = m^- = 1 \).

Let \( \phi(z) = \sum_{j=0}^{\infty} \alpha_{j}z^{j} \) be a formal power series solution of \( L \phi = \lambda \phi \). Substituting this series into \( L \phi = \lambda \phi \) we obtain

\[ L \phi(z) = \sum_{j=0}^{\infty} [\alpha_{j}C_{j}z^{j+1} + \alpha_{j}D_{j}z^{j-1}] = \sum_{j=0}^{\infty} \lambda \alpha_{j}z^{j} , \]

where

\[ C_{j} = \sum_{i=0}^{n} a_{i+j}(i)\pi_{i}(j) \]

\[ D_{j} = \sum_{i=1}^{n} a_{i+j}(i)\pi_{i}(j) , \]

and

\[ \pi_{0}(x) = 1 \]

\[ \pi_{i}(x) = x(x - 1) \cdots (x - i + 1) \quad i = 1, 2, \ldots, n . \]
Since $D_0$ vanishes, we have

$$\alpha_i D_1 + \sum_{j=1}^\infty (\alpha_{j+1} D_{j+1} + \alpha_{j-1} C_{j-1}) z^j = \sum_{j=0}^\infty \lambda \alpha_j z^j,$$

whence

$$\alpha_i D_1 = \lambda \alpha_0 \quad (\text{Im} \lambda \neq 0)$$

$$\alpha_{j+1} D_{j+1} + \alpha_{j-1} C_{j-1} = \lambda \alpha_j \quad j = 1, 2, \ldots.$$

If $D_1 \neq 0$ we have $\alpha_1 = \lambda \alpha_0 / D_1$ and (10) can be solved recursively for $\alpha_2, \alpha_3, \ldots$, in terms of $\alpha_0$, provided that $D_j$ never vanishes for $j = 2, 3, \ldots$. Thus we have the single formal power series solution $\phi(z) = 1 + \alpha_1 z + \alpha_2 z^2 + \cdots$. If $D_1 = 0$, let $\rho$ be the smallest positive integer for which $D_{\rho} \neq 0$, then $\alpha_j = 0$ for $j < \rho - 1$ and $\alpha_j = \lambda \alpha_{\rho-1} / D_\rho$, and (10) can be solved recursively for $\alpha_{\rho+1}, \alpha_{\rho+2}, \ldots$, in terms of $\alpha_{\rho-1}$, provided that $D_j$ never vanishes for $j > \rho$. In this case we have the single formal power series solution $\phi(z) = z^{\rho-1} + \alpha_\rho z^\rho + \cdots$. The case when $D_j$ vanishes for some $j > \rho$ presents some complications and will be considered later in the proof.

It is not difficult to see that $D_1$ thru $D_n$ are not all zero. From (8) we have

$$D_1 = a_0(1)$$
$$D_2 = a_0(1) \pi_1(2) + a_1(2) \pi_2(2)$$
$$\vdots$$
$$D_n = a_0(1) \pi_1(n) + \cdots + a_{n-1}(n) \pi_n(n).$$

Since the $\pi_i(j) \neq 0$ for $i \leq j = 1, 2, \cdots, n$, it follows that $D_1 = \cdots = D_n = 0$ implies $a_0(1) = a_1(2) = \cdots = a_{n-1}(n) = 0$. But $a_{n+1}(n) = a_{n-1}(n) = 0$, (4), contradicting the fact that $L$ is of order $n$.

Suppose then that $D_{\rho}$, $1 \leq \rho \leq n$, is the first nonvanishing $D_j$ and that $D_j \neq 0$ for $j > \rho$. We then have at most one analytic solution of the form $\phi(z) = z^{\rho-1} + \alpha_\rho z^\rho + \cdots$.

Solving (10) for $\alpha_{j+1}$ and estimating we obtain

$$|\alpha_{j+1}| \leq \left| \frac{\lambda}{D_{j+1}} \right| |\alpha_j| + \left| \frac{C_{j-1}}{D_{j+1}} \right| |\alpha_{j-1}|.$$

We now estimate the coefficients of $|\alpha_j|$ and $|\alpha_{j-1}|$ for large $j$. To do this we first investigate the nature of $C_{j-1}$ and $D_{j+1}$ as polynomials in $j$.

From (8) and the fact that $\pi_n(x) = x^n - k/2(k-1)x^{k-1} + \cdots$, it follows that $D_{j+1}$ is a polynomial in $j$ of degree $n$,

$$D_{j+1} = a_{n-1}(n) j^n + [a_{n-1}(n)(n - (n - 1)n/2) + a_{n-2}(n - 1)] j^{n-1} + \text{lower powers of } j.$$
Similarly,

\[(13) \quad C_{j-1} = a_{n+1}(n)j^n + [a_{n+1}(n)\{-n - (n - 1)n/2\} + a_n(n - 1)]j^{n-1} + \text{lower powers of } j.\]

From the lemma we know that \(\bar{a}_{n-1}(n) = a_{n+1}(n)\) and that

\[a_n(n - 1) = \bar{a}_{n-2}(n - 1) + (n + 1)\bar{a}_{n-1}(n)\]

\[= \bar{a}_{n-2}(n - 1) + (n + 1)a_{n+1}(n).\]

Hence, (12) and (13) become

\[(14) \quad D_{j+1} = \bar{a}_{n+1}(n)j^n + [\bar{a}_{n+1}(n)\{n - (n - 1)n/2\} + a_n(n - 1)]j^{n-1} + \cdots\]

\[(15) \quad C_{j-1} = a_{n+1}(n)j^n + [a_{n+1}(n)\{1 - (n - 1)n/2\} + \bar{a}_{n-2}(n - 1)]j^{n-1} + \cdots.\]

Thus we obtain, for \(j > \rho\),

\[(16) \quad \frac{C_{j+1}}{D_{j+1}} = \omega \theta(j) = \omega \cdot j^n + \frac{[(\omega + 1) + \theta]j^{n-1} + \cdots}{j^n + [(\omega + n) + \theta]j^{n-1} + \cdots},\]

where \(|\omega| = 1, \omega = -(n - 1)n/2 < 0, \theta = \bar{a}_{n-2}(n - 1)/a_{n+1}(n)\).

Concerning \(|\theta(j)|\) we obtain, upon dividing,

\[\theta(j) = 1 - \frac{n - 1}{j} + \frac{2\text{Im}(\theta)}{j} + O(j^{-2})\]

Thus \(|\theta(j)|^2 = 1 - (2(n - 1))/j + O(j^{-2})\), from which it follows that

\[|C_{j-1}/D_{j+1}| = 1 - \frac{(n - 1)}{j} + O(j^{-2}).\]

For \(\xi > 0\) we note that \(|C_{j-1}/D_{j+1}| \leq 1 - \xi j^{-1}\) for \(j\) sufficiently large if and only if \(-(n - 1) < -\xi, \) or \(\xi < n - 1.\) Hence we have

\[(17) \quad |C_{j-1}/D_{j+1}| \leq 1 - \frac{\xi}{j}, \quad \text{for } j \text{ sufficiently large and}\]

\[0 < \xi < n - 1.\]

Using (11), (17) and the fact that \(|D_{j+1}^*|\) is \(O(j^{-n})\) we have, for \(j\) sufficiently large,

\[(18) \quad |\alpha_{j+1}| \leq (1 - \gamma j^{-1}) \max \{||\alpha_j|, |\alpha_{j-1}|\},\]

where \(0 < \gamma < \xi < n - 1.\)

Using the arguments given in [3], p 3-4 it follows from (18), that there exists a \(K > 0\) and a positive integer \(p\) such that \(|\alpha_j| \leq\)
for \( j \) sufficiently large. Hence \( \sum_{j=0}^{\infty} |\alpha_j|^j (j + 1) \) converges and \( \phi \in H \). To complete the proof we have only to deal with the case where \( D_j \) vanishes for some \( j > \rho \).

Suppose \( D_k = 0 \) for some integer \( k > \rho \). Since \( D_j \) is a polynomial in \( j \) of degree \( n \), there is a largest integer \( k \) such that \( D_k = 0 \). The power series solution \( \hat{\phi} \) obtained from (10) by taking \( \alpha_j = 0, \ j = 0, 1, \ldots, k - 1 \), and solving recursively for \( \alpha_j, \ j > k \), in terms of \( \alpha_k \) as, we have seen, in \( H \). If there are other power series solutions for which all the \( \alpha_j, \ j = 0, \ldots, k - 1 \), are not zero, these solutions would be in \( H \) as well, hence \( m_\gamma (m_\gamma) \geq 2 \). We now show that this is not the case by demonstrating the existence of \( \lambda \), \( \text{Im} (\lambda) \neq 0 \), for which \( \hat{\phi} \) is the only power series solution possible.

If \( D_k = 0 \), we obtain the following homogeneous system of equations in \( \alpha_0, \alpha_1, \ldots, \alpha_{k-1} \).

\[
\begin{align*}
-\lambda \alpha_0 - D_\lambda \alpha_1 &= 0 \\
C_{j-1} \alpha_{j-1} - \lambda \alpha_j + D_j \alpha_j + 1 &= 0 \quad j = 1, 2, \ldots, k - 2 \\
C_{k-2} \alpha_{k-2} - \lambda \alpha_{k-1} &= 0
\end{align*}
\]

For the system determinant we have \( \Delta_k (\lambda) = (-1)^k \lambda^k + \cdots \), and hence \( \Delta_k (\lambda) \) vanishes at only a finite number of points in the complex plane. Thus we can find \( \lambda \), \( \text{Im} (\lambda) \neq 0 \), for which \( \Delta_k (\lambda) \neq 0 \), which implies that \( \alpha_0 = \cdots = \alpha_{k-1} = 0 \). Hence there is only one analytic solution of \( L \phi = \lambda \phi \), namely \( \hat{\phi} \).

The defect indices of \( S \) are not changed if we add to \( L \) the formally symmetric Euler operator \( M \) of order \( n - 1 \), provided the leading coefficient of \( M \) is not too large. The proof of this follows directly from the proof of the theorem. Let \( M = \sum_{j=0}^{n-1} b_j z^j D_j^j \), \( b_j \) real, and take \( L_t = L + M \). Since \( M(z^j) = p(j) z^j \), where \( p(j) = b_o + b_1 j + \cdots + b_{n-1} j(j - 1) \cdots (j - n + 2) \), equation (9) becomes

\[
\begin{align*}
\alpha_1 D_1 + \sum_{j=1}^{\infty} (\alpha_j + 1) D_{j+1} + \alpha_j C_{j-1} &= \sum_{j=0}^{\infty} (\lambda - p(j)) \alpha_j z^j \\
&= \sum_{j=0}^{\infty} \lambda_j \alpha_j z^j, \quad \lambda_j = \lambda - p(j),
\end{align*}
\]

where \( \text{Im} (\lambda_j) \neq 0 \). \( j = 0, 1, \cdots \), since \( p(j) \) is always real. Hence,

\[
\begin{align*}
\alpha_1 D_1 &= \lambda_0 \alpha_0 \\
\alpha_j D_{j+1} + \alpha_j C_{j-1} &= \lambda_j \alpha_j \quad j = 1, 2, \cdots.
\end{align*}
\]

Just as in the proof of the theorem, we have the single power series solution \( \phi(z) = z^{x_j-1} + \alpha_p z^p + \cdots \), where \( D_p \) is the first nonvanishing \( D_j \) and \( D_j \neq 0, j > \rho \). Moreover, for \( j \) sufficiently large,

\[
|\alpha_{j+1}| \leq \left| \frac{\lambda_j}{D_{j+1}} \right| |\alpha_j| + \left( 1 - \frac{\xi}{j} \right) |\alpha_{j-1}|,
\]
where $0 < \xi < n - 1$.

The estimates on the growth of the $|\alpha_j|$, [3], will go through if we can show that

\[(22) \quad |\alpha_{j+1}| \leq (1 - \gamma j^{-1}) \max \{|\alpha_j|, |\alpha_{j-1}|\}, \]

for $j$ sufficiently large and $\gamma > 0$. Using (4), (12), and the fact that $\lambda_j = b_{n-1} j^{n-1} + \cdots$, we have

\[(23) \quad |\lambda_j/D_j| = \varepsilon j^{-1} + O(j^{-2}), \]

where
\[ \varepsilon = |b_{n-1}/a_{n+1}(n)|. \]

From (21) and (23) it follows that (22) holds provided $\xi - \varepsilon > \gamma > 0$ or $\xi > \varepsilon$. But $\xi < n - 1$, so we must have $|b_{n-1}| < (n - 1)|a_{n+1}(n)|$.

The case when $D_j = 0$ for $j > p$ is handled in the same manner as before, by showing that there exist $\lambda$, Im$(\lambda) \neq 0$, such that $\hat{\phi}$ is the only power series solution of $L \phi = \lambda \phi$.

**References**


Received April 1, 1975.

San Diego State University
Shashi Prabha Arya and M. K. Singal, More sum theorems for topological spaces .......................................................... 1
Goro Azumaya, F. Mbuntum and Kalathoor Varadarajan, On M-projective and M-injective modules .................................................. 9
Kong Ming Chong, Spectral inequalities involving the infima and suprema of functions .......................................................... 17
Alan Hetherington Durfee, The characteristic polynomial of the monodromy .............. 21
Emilio Gagliardo and Clifford Alfons Kottman, Fixed points for orientation preserving homeomorphisms of the plane which interchange two points ............ 27
Raymond F. Gittings, Finite-to-one open maps of generalized metric spaces ............ 33
Andrew M. W. Glass, W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary, $a^*$-closures of completely distributive lattice-ordered groups .................................................. 43
Matthew Gould, Endomorphism and automorphism structure of direct squares of universal algebras .................................................. 69
R. E. Harrell and Les Andrew Karlovitz, On tree structures in Banach spaces .......... 85
Julien O. Hennefeld, Finding a maximal subalgebra on which the two Arens products agree .......................................................... 93
William Francis Keigher, Adjunctions and comonads in differential algebra ............ 99
Robert Bernard Kelman, A Dirichlet-Jordan theorem for dual trigonometric series .................................................. 113
Allan Morton Krall, Stieltjes differential-boundary operators. III. Multivalued operators–linear relations .................................................. 125
Hui-Hsiung Kuo, On Gross differentiation on Banach spaces ................................ 135
Tom Louton, A theorem on simultaneous observability .......................................... 147
Kenneth Mandelberg, Amitsur cohomology for certain extensions of rings of algebraic integers .................................................. 161
Coy Lewis May, Automorphisms of compact Klein surfaces with boundary .......... 199
Peter A. McCoy, Generalized axisymmetric elliptic functions ................................ 211
Muril Lynn Robertson, Concerning Siu's method for solving $y'(t) = F(t, y(g(t)))$ .................................................. 223
Richard Lewis Roth, On restricting irreducible characters to normal subgroups .................................................. 229
Albert Oscar Shar, $P$-primary decomposition of maps into an $H$-space ................. 237
Kenneth Barry Stolarsky, The sum of the distances to certain pointsets on the unit circle .................................................. 241
Bert Alan Taylor, Components of zero sets of analytic functions in $C^2$ in the unit ball or polydisc .................................................. 253
Michel Valadier, Convex integrands on Souslin locally convex spaces .................... 267
Januario Varela, Fields of automorphisms and derivations of $C^*$-algebras ............ 277
Arnold Lewis Villone, A class of symmetric differential operators with deficiency indices $(1, 1)$ .................................................. 295
Manfred Wollenberg, The invariance principle for wave operators ......................... 303