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THE INVARIANCE PRINCIPLE FOR WAVE
OPERATORS

MANFRED WOLLENBERG

The invariance principle for wave operators is proved.
It is shown that the existence of wave operators W.(B, A)
does not imply the existence of W.(g9(B), g(4)), in general.

1. Introduction. Let A and B be two selfadjoint operators on
a separable Hilbert space 57 and let P, and Pz be the orthogonal
projections on the spaces of absolute continuity for A and B, respec-
tively. The wave operators W.(B, A) are defined by the strong limits
(1.1) Wu(B, A) = s-lim ¢**fe~ 4P,

t—zkoo

when they exist (cf. [2, Chapter X]). The invariance principle of
M. S. Birman and T. Kato says: If the wave operators W.(B, 4)
and W.(9(B), g(4)) exist and g(\) is real-valued and piecewise monotone
increasing, with a certain mild smoothness, then

(1.2) W.(9(B), 9(A)) = W(B, 4) .

As stated by T. Kato and S. T. Kuroda in [3]: “It would be
nice if the existence of W.(B, A) implied the existence of W.(9(B),
9(A)) and the invariance principle.

However, this has not been shown in general”.

For example, the existence of W.(g(B), 9(4)) and the invariance
principle have been proved under the condition that B — A or (B —
&)t — (A — &)7Y(¢ a nonreal number) is a trace-class operator (see for
instance [2, Chapter X]).

The aim of this paper is

1. the proof of the invariance principle for wave operators,

2. the proof, that the existence of W.(B, A) does not imply the
existence of W.(g(B), g(4)), in general.

In the present work we restrict our considerations to real-valued
functions g(A) on (— oo, ) with the following properties (cf. [2, p.
543]): The whole interval (— o, ) can be divided into a countable
number of subintervals 4, with lengths 7, in such a way that min
I, > 0 and in each open subinterval g(\) is differentiable with g’(»)
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continuous, locally of bounded variation, and positive. A function
with these properties is called an allowable function. Furthermore,
we shall consider only the wave operators W, because the theorems
and proofs for the wave operators W_ are entirely similar. In §2
we prove

THEOREM 1 (invariance principle). Let A and B be two selfadjoint
operators on a separable Hilbert space 52 and let g(\) be an allowable
Sunction. If W (B, A) and W, (9(B), 9(4)) exist and tf W (B, A) is
complete, then W (g(B), g(4)) = W.(B, A).

From Theorem 1 we also see that the existence of W.(B, A),
W.(g9(B), g(4)) and the completeness of W, (B, A)imply the completeness
of W.((g, B), 9(4)). The next two theorems concern the existence of
the wave operator W, (g9(B), g(4)). They will be proved in §§2 and
3, respectively.

THEOREM 2. Let A and B be two selfadjoint operators on a
separable Hilbert space 57 with the absolutely continous spectrum A
and let g(\) be an allowable function. If the wave operator W (B, A)
exists, is complete and if g(\) ts piecewise linear on A, then
W.(9(B), g(A)) exists.

THEOREM 3. Let A be a selfadjoint operator on a separable
Hilbert space 57 with the absolutely continuous spectrum A + 0.
Let g(\) be an allowable function for which a finite interval 4 < (— oo,
o) with |4 N 4] # 0 (Lebesgue measure) exists such that on 4 g'(\)
exists and 1s a continuous strictly monotone function. Then there
is a selfadjoint operator B such that W, (B, A) exists, is complete,
however, W.(9(B), 9(A)) does not exist.

It is easily seen, for instance, that all allowable functions g(\)
which are piecewise twice continuously differentiable satisfy the assump-
tions either of Theorem 2 or of Theorem 3 for fixed 4.

For the proofs of the theorems we use the following result of
H. Baumgartel [1, Theorem 3]:

(NS) Let W be a partial isometry with

W*W = P,, WW* = Py, WAP,W* 2 BP; .
Then W.(B, A) exists and W = W, (B, 4) if and only if
(1.3) W=P,+C,
1.4) s-lim ¢*4Ce™*4P, = 0 .

t—oo
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By Theorem 1 we obtain from (NS) that the existence and com-
pleteness of W.(B, A) imply the existence of W.(g(B), g(4)) if and
only if for the operator C defined by (1.3) the strong limit

(1.5) s-lim e  Ce 0t P, = ()

00
exists. Here it was used that P, = P, for allowable functions
g(x) (see §2).

Hence we know that the proof of Theorem 3 leads to the con-
struction of an operator C for which s-lim,.  e*4Ce *4P, =0 and
s-lim,_,,, '@ Ce " P, does not exist for the function g(\) defined by
Theorem 3. To prove Theorem 2 we shall show that the equation

s-lim ¢**4Ce™ 4P, = 0
t—oo
implies s-lim,_., e**“Ce" P, = 0 for piecewise linear functions g()).
The invariance principle will be proved by means of

LEMMA 1. Let T be a nonnegative bounded selfadjoint operator
and g(\) an allowable function. If the strong limits

s-lim ¢4 Te 4P, = 0, s-lim ¢#74 To~i0 @ P,

t—oo t—ooo

exist, then they are equal.

In §5 we prove Lemma 1 and formulate and prove two other
lemmas which concern the behavior of the funection e *#? for large t.

2. Proof of Theorem 1. First we introduce several notations
and simple relations which are needed for the proof. As in §1 let
H be a selfadjoint operator on a separable Hilbert space 5# and Py
be the orthogonal projection on the space of absolute continuity.
We note that for every allowable function g(\)

(2-1) Py(H) = PH .

(2.1) has been proved in [2, p. 545] for a class of functions slightly
more restrictive than the allowable functions. The proof can easily
be generalized for all allowable functions. Furthermore, we introduce
the notations {H} for the commutant of H and
2.2) Vi(X) = s-lim e 7 Xe 2P, ,
t—oo

whenever for the bounded operator X the strong limit exists. If

#X) for the bounded operator X exists, then we have the unam-
biguous decomposition (cf. [1])
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(2.3) X=X +X,
where

(2.4) X, =P, X, = X,P,c{H},
(2.5) Vi(X,) = 0.

For continuous functions f(\) and a selfadjoint operator X one
eagily verifies that

(2.6) F(VX)) = Vi(f(X)) .

Now we prove Theorem 1. By (NS), we find that W.(B, 4) =
P, + C with V{(C) = 0. Further we also have

(2.7) Vi(c*) =0,
since
Vi(C*) = Vi(C* + P,) — P, = VI(WX(B, A)) — P4
= s;ljgx ¢4 WH(B, A)e 4P, — P,
= s;ljf.p Wi(B, A)é'*Pe 4P, — P,
= Wi(B, A)W.(B,A) — P, =0

with the intertwining relation W.(B, A)e*4 = ¢** W, (B, A). We define

(2.8) W, = Wi(B, A)W.(9(B), 9(4)) .

From this definition we obtain that Vi, ,(W*(B, A)) exists and
(2.9) Viw(Wi(B, 4)) = W,

since

Vi (W3(B, 4)) = s:lim ¢ O WH(B, A)e 4P,
= s-lim Wi(B’ A)eith)e—itg(A)PA =W,.

t—oo

By (2.3) and (2.5) then we have

(2.10) Wi(B, A) = W, + C,
with

(2.11) Vi(C) =0

(2.12) W,= P,W, = W.P,e{g(A) .

From the Definition (2.8) and the completeness of W.(B, A) one
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easily verifies that W, is a partially isometrie with

(2.13) Wiw,=P,, WWf¢=P <P,.

Further we have
(2.14) Vin(CEP) =0 .
This follows from
Viw(CIP) = 0 —— V7, (Wi(B, A)C*P)
= Vio(Wi(B, A)CtP,+ C,W¥ + P) — P,

= Viu(Wi(B, A)(Cr + WI)P) — P,
= Vin(Wi(B, A)W.(B, A)P) — P, =0

with Vi, (C.W* + P) = P, by W, P,c {g(4))'. Combining (2.10) with
W*(B, A) = P, + C* and (2.13) we obtain

CPC* = (W,+ C, — P)*P(W,+ C, — P))
= (Wx— Px)*(VV1" P1) + (W1”‘ Pl)*Cl+ C;kP1(m"P1)
+CikP101= (VV1—‘P1)*(VVx_P1)+Cz-

By (2.11), (2.14) and (W, — P,), (W, — P)* € {9(A)} we have V},(C,) =
0 and therefore,

(2.15) Vin(CPC*) = (W, — P)*(W,— P).
Furthermore, it follows from (2.7) that
(2.16) Vi(CPC*)=0.

The operator CP,C* satisfies the assumptions of Lemma 1. Hence,
we have (W, — P)*(W, — P,) = 0 and also (W, — P) = 0. With (2.13)
and (2.8), we finally obtain W, = P, and

W.(9(B), 9(A)) = W.(B, 4) .

3. Proof of Theorem 2. We shall use the same notations as in
§2. By Theorem 1 and (NS) it is necessary and sufficient for the
existence of W.,(9(B), g(4)) that

3.1) V(€)= 0.

Let pe P,57#, ¢ > 0 and P,(4) be the spectral measure of A. Then
there is a finite interval 4’ such that

' £ .
3.2) llp — P(d)pll = 37 C]
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From the definition of the functions g(\) in Theorem 2 we see that
there exists a finite number of disjoint intervals 4, c 4/(»n=1,2, ...,
N) such that

(3.3) 9(A)P,P(4,) = q,AP,P(4,),

(3.4) l

N
P(d)p — 3 Pd)p|l < —5—
()9~ 5P| s o
with 0 < ¢, < «. By (3.2), (3.3), and (38.4) we find
(3.5) |Ce s Pp|| < Ze + 53] Co P ()0

C satisfies the relation (see (NS))
|Ce™*“Pp||—> 0 as ¢—> oo

for every + e 5~ Hence, for the functions @, = P,4,)p there are
numbers T, such that

(8.6) || Ce—itmig, || < % forall ¢t> T,.

By (3.5), (3.9) we obtain

||Ce P p||<e for t>T=maxT,
and (3.1) is proved.

4. Proof of Theorem 3. For simplicity we shall assume that
4c A and 4=[0,27]. Let we P,(4)P,5# with P,(4)u # 0 for all
4" 4,4 #0. A restricted on the subspace 57 = sp {P«(d)u, 4' < 4
Borel set} is an operator with simple absolutely continuous spectrum
4. Hence we may identify 57 with #%4) and @ restricted on 5]
with the multiplication operator by A on .&*(4) denoted by H.

Therefore it follows that for the proof of Theorem 3 it is sufficient
to show that for H such an operator B defined by Theorem 3 exists.
At first we construct a projector P such that Vi(P) = 0 and V},,(P)
do not exist. We consider the function

1 —4tg () — m 1
Vet 2N

By Lemma 2 for ¢ = 1/2 we can find sequences of natural numbers
S., N, with S,, N, — « as »— « such that

eim e PNd) .

Np+1—1

(41) S lvnli=azloc=—.

m=N,
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Now we define P by

(4.2) Pzgfn('yfn)’
_ a1 m_ 1 im
(4.3) fald) = m;‘l,,, '—an“/fsn_l/Te .

Next we prove Vi(P) = 0, i.e.,
(4.4) lim || Pe™##4|| = 0 for every + € .F%4d).
t—rco

As is easily shown, for the proof of (4.4) it is sufficient to consider
the sequence || Pe~*"#+,|| with % — oo (% & natural number) and ¥, =
1V 2x.

We have

| P [ = 55 [(fuy € ) P

(4.5) = ,,,:1 1737 S:*fn(h)e"“dx‘z

A

Az (py

]ergx(m ‘2 ’

where 2(p) = r if pe(N, N, +1, ..., N,,, — 1).

It is clear that x(p)— « as p-— . Since g(\) satisfies the
agssumptions of Lemma 3 we find |¥3,,,°—0 as p—~ and also
|| Pe™#*Hqpy||*—0 as p—oo. This proves (4.4). To prove that V;,(P)
does not exist by Lemma 1 it is sufficient to show that there are a
@€ F*d), a sequence of real numbers t,—  as n-— o and an
X > 0 such that

(4.6) || Pe=éta's®ap || > X for all £, .

We set v = 4, = 1/V/21 and ¢, = S, (see (4.1)). Then by (4.1), (4.2)

| Patswsmap | = 35 (o, €0

N

TR 1 n 1 SZ# o . » 2
> Sy g (H) 2 m Sy g(R) p—im2
N L L R P P
1 Nyp1—1

2
Vo mzz;.,n e = a, = -%— for all S, .

This proves that U}, (P) does not exist.
Now we define by U=1 — 2P a unitary operator and we set

+1—1
=N,
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B =UHU. From the definitions of U, B, and (NS) it immediately
follows that W, (B, H) exists and U = W,(B, H). Since, however,
Via(—2P) does not exist, it follows from Theorem 1 and (NS) that
also W.(g(B), g(H)) does not exist.

5. Proofs of the Lemmas. Proof of Lemma 1: We shall prove
Lemma 1 indirectly. Thus we suppose that for a nonnegative bounded
selfadjoint operator T and an allowable function g(\) the strong limits

(5.1) VAT) = s-lime#4Te"#4P, = 0,

(5.2) Viao(T) = s:lim ¢t T~ p — §

exist with S # 0, and from these assumptions we construct a con-
tradiction. It is obvious that Sis also a nonnegative bounded selfadjoint
operator with S = SP, = P,Se{g(4)} by (2.3) to (2.5). By S0 it
exists a u € P,57 with Su = 0. From the definition of the allowable
functions g(\) it follows that there is a finite interval 4 C(— o, =)
such that P,(4)u =0, SP,(4)u +0 and ¢’(\) is continuous, positive and
of bounded variation on 4. For a nonnegative operator S it follows
from Sv = 0 that also (v, Sv) = 0. Hence we have (P (4)u, SP(d)u) +
0 and then QSQ #* 0 where @ is the orthogonal projection on the
subspace 57, = sp {P(4)u, 4 < 4}. It is Qe {A} and therefore Q¢
{9(4)Y. By Se{9(A4)} we obtain QSQ € {9(A)). Since g(\) is strictly
increasing on 4 it is clear that {QAQ} = {Qg(A)Q). From this identity
and QSQ € {g(A)} we finally obtain QSQ € {A}'. Furthermore, we have
E(4)e{AY, where E(4) is the spectral measure of @SQ. We choose
a >0 such that E(0,®) < Q. With R =1{(Q — E(0, a)) e {A} and
(56.1), (5.2) we find

(5.3) Vi(RTR) = 0, V*,.(RTR) = RSR # 0 .

RSR is a nonnegative selfadjoint operator with the spectrum &€ 0 U
[a, 8](0 < @ < b < ). Now we congider continuous functions f(\)
which are 1 on [a, b] and 0 in a neighborhood of 0.

By (2.6) and (5.3) we find

(5.4) Vi(f(RTR)) = 0, Vi, (f(RTR)) = f(RSE)= R .

From the independence of the right sides of these f(\) it can easily
be shown that (5.4) is also true for the step-function

lon[a,bl(0<a <a<b<b < x)

=1, N [ay, b .

Hence we have
(5.5) VilP) =0, V;u(P)= R
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where P = f(RTR) is an orthogonal projection with P< R. 5%
reduces A, P, R and P, R are distinct from 0 only on 5%. Thus
it is sufficient to consider (5.5) in S5#.. A restricted on &% is an
operator with a simple absolutely continuous spectrum o < 4. Then
we may identify 57 with &°%(0) and a restricted on 2# with the
multiplication operator by A and regard 5£ = .&%c) as a subspace
of the large Hilbert space #*(4). In &%(4) we may identify R with
the multiplication operator by yz(:\), where y7(\) is the characteristic
function on p C o with |p| # 0. H denotes the multiplication operator
by » in .&*(4). Then we obtain from (5.5)

(5.6) lim || Pei#tp|| = 0 for every qre . F%4),
t—o0
5.7) lim || Pe= ™ty || = || 9] -

For the sake of simplicity, we shall assume that 4 = {0, 27]. We
can write g(\) = a-g(\) + B, where §(0) = 0, §(27) = 2x, and «, B are
real numbers with « > 0. Then we put

Pu(N) = 1/%—7%—6"“”, P (\) = _‘%T/W—)e‘iﬁm .

It is easy to verify that both ¢, and +, form a complete ortho-
normal family in ~*(4). Furthermore, we have ||yz+v,[>= C > 0.
With these notations we easily obtain from (5, 6), (5.7)

(5.8) |Pp,l|P=¢,—0 as n—> co
(5.9) [Py, |-~ C=a,—0 as n—> oo .

We set ¥, (A) = > ar®,. (). Now we consider the functions
4r,(A) for which

(5.10) H“/’ - Z= arP,

<€
2

with fixed N > 0. For the functions +,(A) = (V'g'(\)) v.(\) by Lemma
2 we have

Lsgol--p

Fom 5 dfgnmugs

m=[sq;]—p

where ¢,, ¢, are positive real numbers independent of s, < and p is a
natural number independent of s. It is clear that then also

( [sqol+p’ 2 C
(5'11) ”F‘/fs - Z a:”@m = 5
i m=[5q;)—p’ 2

with an appropriate »’ independent of s. An elementary computation
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shows that for all +, with

(L) (B (22
. JL ¢ L g

the inequality (5.10) is true.

Hence there are natural numbers N,, s, and an @ > 0 such that
for every fixed N with N> N, and se(s, s, + 1, ---, [N] + 5,) b,
satisfies (5.10). Now we consider the sum

[aN]+

=3 2@ vl

n=1

and introduce the orthogonal projection P =1 — P. Then

S = é‘l [N; Y (@Pa, ) + (@, BI)
< 3 S 10 4+ (@, B+ 21020, )| (P )}
<3S (1 wpn, )1 + (@0 B
(6.12) oo

_|_

2V(3 Y 10eur )2 R (enumvl)

nlssl

< SllIPp.IF + % 1Py
ey (g pear)(E IPM)
By (5.9) we have || Py,|* = 1 — C — a, and with (5.8), (5.12)
vES e +laNil -0 - Y a,

§=8;

(5.13)

24/ (= & )(1—C— 58 a,).

8§=5y

On the other hand, by (5.10) we find

(5.14) S, = [aN](l - qu) .

Combining (5.13), (5.14) we obtain

%é[?;lzv_]{ifr[igf“}*z*/ D Vi-o- i 2

Since ¢,, a, are zero sequences, also

04 1 ﬁ 0 1 [“ﬁ“ 14
F = T €n» N = = 3
T [aN] = T [aN] S
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are zero sequences. Hence for sufficiently large N the last inequality
which we have got from the assumption S = 0 is not true, which
proves Lemma 1.

LEMMA 2. Let g(\) be a real-valued function and g'(\) a con-
tinuous positive function on J = |0, 2x). Then the functions ¥, (\) €
£U4) defined by

- 1 VT o 1
5. R A) = 1sy(4) E‘ ;n PAm
(6.15) M) V'2n ¢ w0 2r

possess the following properties: For every ¢ with 0 <e <1 and
every natural mnmber s > 0 there exist two real positive numbers
4., 0. independent of s, ¢ and a natural number p independent of s
such that

{sq514p

(5.16) 2 larfzl-—e.

m=[s91]1—»

Proof. Let @, = min,., g’'(\), a, = max,.,9'(A). Let s be a fixed
natural number. We consider integral numbers m with m > s.a, or
s.a, > m. For these m we have [s.¢g’(\) — m]| >0 and we can
write

d;n — _1__ Smdke“iswu)eiwd — Lxrd}\l 1 (igwi(sy(h»m-i))
27 Jo 2 Jo —i(sg’(N) — m) \Ndx

Integrating by parts and an elementary computation shows that

[ 1 g ) *m,z):|2“‘
7L iy () = m) 0
+ SZT _.i(sy(;‘q_mx)d( 1 >

[ 1((],()\’)8 — m) l

o

(5.17) <

1y 2 S
on \sa — m| = Jo
1
2

- ( 2 M.s 1
- Msa—m[+ st — mP)
S P
2r|sa — m ’a—ﬂ
S

where M is the total variation of g'(A) on 4 and a = a, if m <s-a,
or « =a, if m > s.a,. Let p’ be a positive integral number, then
by (5.17) we have
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= —m 1 < M\ d 1
arps (242
mz[“%ﬂ”“ ] (2r)? m=[s2%"+p'+1 m — [sa,] — 1

(5.18)

and entirely analogous

S arp <L <2 + 2M>2 5 1
(5 19) m=[s(1/2)a1]—p’ —1 L= (271')2 a, m=[s(1/2)e;]—p’—1 IS(Iq - mlz
' 1 (o, 2M > = 1
2 -—
Syt e ).

where [a] is the smallest integer » > a — 1.
For sufficiently large p’ from (5.18), (5.19) we find

las* + by lay* <e
m=[s2ag]-+p’+1 m=[s(1/2)a]—p’—1

for all positive integral numbers s and every ¢ > 0. With ¢, = (1/2)a,,
¢ = 2.a, and by |¥,[*= .. |a@"* = 1 we finally obtain (5.16).

LEMMA 3. Let g(\), v{\) be defined as in Lemma 2 and let
g’'(\) be continuous, strictly monotone on 4d. Then the functions
Js(\) possess the following properties: For every & with 0 <e <1
there exists an N such that for all integral numbers m, s with s > N

(5.20) lar| <e.

Proof. From the continuity and strict monotony of the positive
function ¢’(\) on 4 it follows that for every real number « and ¢ > 0
there is an interval 4, & 4 of the length I, = e.7 such that

(5.21) a(e) = min (min |g'(N) + z)
zeRy Aed—4d,
exists and a(¢) > 0. Hence with x = —m/s we have

_ 1 2T . .
T
7T 0

22
-22) e, 1

S an e—isw(l)—wl) .
2 2 | Ja-1z

The domain of integration (4 — 4,) consists of one or two intervals
in dependence on % and e. Let 4’ = [a, b]] & 4 be such an interval.

Then

Sb ax [ d n—ism(l)——ﬂ))

b
AR —is(g()—zd) — e
S ¢ e Zis(g' (M) — @) Vdn

a
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1 —is -2z ]b Sb —is8(g(A)—z 1 l
< g-isto—sn | 4 W= g
- l[ —is(g'(\) — @) A <i8(g’(7~) - w))
(5.23) =<-2_ + Sb d

CrEr

s
< 2 M
s s

where « is defined by (5.21) and M = |g’(b) — ¢g'(a)|. From (5.22)
and (5.23) we have

arj< S L2+ M

2 s l44
If we put N = (2/e-7).2 ; M iven this implies (5.20).
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