THE INVARIANCE PRINCIPLE FOR WAVE OPERATORS

MANFRED WOLLENBERG
THE INVARIANCE PRINCIPLE FOR WAVE OPERATORS

MANFRED WOLLENBERG

The invariance principle for wave operators is proved.
It is shown that the existence of wave operators $W_{\pm}(B, A)$
does not imply the existence of $W_{\pm}(g(B), g(A))$, in general.

1. Introduction. Let A and B be two selfadjoint operators on
a separable Hilbert space S and let P_A and P_B be the orthogonal
projections on the spaces of absolute continuity for A and B, respectively. The wave operators $W_{\pm}(B, A)$ are defined by the strong limits

$$W_{\pm}(B, A) = \lim_{t \to \pm \infty} e^{itB} e^{-itA} P_A$$

when they exist (cf. [2, Chapter X]). The invariance principle of
M. S. Birman and T. Kato says: If the wave operators $W_{\pm}(B, A)$
and $W_{\pm}(g(B), g(A))$ exist and $g(\lambda)$ is real-valued and piecewise monotone
increasing, with a certain mild smoothness, then

$$W_{\pm}(g(B), g(A)) = W_{\pm}(B, A).$$

As stated by T. Kato and S. T. Kuroda in [3]: "It would be
nice if the existence of $W_{\pm}(B, A)$ implied the existence of $W_{\pm}(g(B),
g(A))$ and the invariance principle.

However, this has not been shown in general".

For example, the existence of $W_{\pm}(g(B), g(A))$ and the invariance
principle have been proved under the condition that $B - A$ or $(B - \xi)^{-1} - (A - \xi)^{-1} (\xi$ a nonreal number) is a trace-class operator (see for instance [2, Chapter X]).

The aim of this paper is

1. the proof of the invariance principle for wave operators,

2. the proof, that the existence of $W_{\pm}(B, A)$ does not imply the
existence of $W_{\pm}(g(B), g(A))$, in general.

In the present work we restrict our considerations to real-valued
functions $g(\lambda)$ on $(-\infty, \infty)$ with the following properties (cf. [2, p. 543]): The whole interval $(-\infty, \infty)$ can be divided into a countable
number of subintervals Δ_n with lengths l_n in such a way that $\min l_n > 0$ and in each open subinterval $g(\lambda)$ is differentiable with $g'(\lambda)$
continuous, locally of bounded variation, and positive. A function
with these properties is called an allowable function. Furthermore,
we shall consider only the wave operators W_+ because the theorems
and proofs for the wave operators W_- are entirely similar. In §2
we prove

THEOREM 1 (invariance principle). Let A and B be two selfadjoint
operators on a separable Hilbert space \mathcal{H} and let $g(\lambda)$ be an allowable
function. If $W_+(B, A)$ and $W_+(g(B), g(A))$ exist and if $W_+(B, A)$ is
complete, then $W_+(g(B), g(A)) = W_+(B, A)$.

From Theorem 1 we also see that the existence of $W_+(B, A)$,
$W_+(g(B), g(A))$ and the completeness of $W_+(B, A)$ imply the completeness
of $W_+((g, B), g(A))$. The next two theorems concern the existence of
the wave operator $W_+(g(B), g(A))$. They will be proved in §§2 and
3, respectively.

THEOREM 2. Let A and B be two selfadjoint operators on a
separable Hilbert space \mathcal{H} with the absolutely continuous spectrum Λ
and let $g(\lambda)$ be an allowable function. If the wave operator $W_+(B, A)$
exists, is complete and if $g(\lambda)$ is piecewise linear on Λ, then
$W_+(g(B), g(A))$ exists.

THEOREM 3. Let A be a selfadjoint operator on a separable
Hilbert space \mathcal{H} with the absolutely continuous spectrum $\Lambda \neq 0$.
Let $g(\lambda)$ be an allowable function for which a finite interval $\Delta \subset (-\infty,\infty)$
with $|\Delta \cap \Lambda| \neq 0$ (Lebesgue measure) exists such that on $\Delta g'(\lambda)$
equals continuous strictly monotone function. Then there
is a selfadjoint operator B such that $W_+(B, A)$ exists, is complete,
however, $W_+(g(B), g(A))$ does not exist.

It is easily seen, for instance, that all allowable functions $g(\lambda)$
which are piecewise twice continuously differentiable satisfy the assump-
tions either of Theorem 2 or of Theorem 3 for fixed Λ.

For the proofs of the theorems we use the following result of
H. Baumgärtel [1, Theorem 3]:

(NS) Let W be a partial isometry with

$$ W^*W = P_A, \quad WW^* = P_B, \quad WAP_AW^* \supseteq BP_B. $$

Then $W_+(B, A)$ exists and $W = W_+(B, A)$ if and only if

$$ W = P_A + C, $$

$$ s\text{-}\lim_{t \to \infty} e^{-itA}Ce^{-itA}P_A = 0. $$
By Theorem 1 we obtain from (NS) that the existence and completeness of $W_+(B, A)$ imply the existence of $W_+(g(B), g(A))$ if and only if for the operator C defined by (1.3) the strong limit

$$s-lim_{t \to \infty} e^{itg(A)}Ce^{-itg(A)}P_A = 0$$

exists. Here it was used that $P_{g(A)} = P_A$ for allowable functions $g(\lambda)$ (see §2).

Hence we know that the proof of Theorem 3 leads to the construction of an operator C for which $s-lim_{t \to \infty} e^{itA}Ce^{-itA}P_A = 0$ and $s-lim_{t \to \infty} e^{itg(A)}Ce^{-itg(A)}P_A$ does not exist for the function $g(\lambda)$ defined by Theorem 3. To prove Theorem 2 we shall show that the equation

$$s-lim_{t \to \infty} e^{itA}Ce^{-itA}P_A = 0$$

implies $s-lim_{t \to \infty} e^{itg(A)}Ce^{-itg(A)}P_A = 0$ for piecewise linear functions $g(\lambda)$. The invariance principle will be proved by means of

Lemma 1. Let T be a nonnegative bounded selfadjoint operator and $g(X)$ an allowable function. If the strong limits

$$s-lim_{t \to \infty} e^{itA}Te^{-itA}P_A = 0, s-lim_{t \to \infty} e^{itg(A)}Te^{-itg(A)}P_A$$

exist, then they are equal.

In §5 we prove Lemma 1 and formulate and prove two other lemmas which concern the behavior of the function $e^{-itg(\lambda)}$ for large t.

2. **Proof of Theorem 1.** First we introduce several notations and simple relations which are needed for the proof. As in §1 let H be a selfadjoint operator on a separable Hilbert space \mathcal{H} and P_H the orthogonal projection on the space of absolute continuity. We note that for every allowable function $g(\lambda)$

$$P_{g(H)} = P_H.$$

(2.1) has been proved in [2, p. 545] for a class of functions slightly more restrictive than the allowable functions. The proof can easily be generalized for all allowable functions. Furthermore, we introduce the notations $\{H\}'$ for the commutant of H and

$$V_H(X) \equiv s-lim_{t \to \infty} e^{itH}Xe^{-itH}P_H,$$

whenever for the bounded operator X the strong limit exists. If $V_H(X)$ for the bounded operator X exists, then we have the unambiguous decomposition (cf. [1])
(2.3) \[X = X_1 + X_2 , \]
where
(2.4) \[X_1 = P_H X_1 = X_1 P_H \in \{ H \}' , \]
(2.5) \[V_H(X_2) = 0 . \]

For continuous functions \(f(\lambda) \) and a selfadjoint operator \(X \) one easily verifies that
(2.6) \[f(V_H(X)) = V_H(f(X)) . \]

Now we prove Theorem 1. By (NS), we find that \(W_+(B, A) = P_A + C \) with \(V_+(C) = 0 \). Further we also have
(2.7) \[V_+(C^*) = 0 , \]
since
\[
V_+(C^*) = V_+(C^* + P_A) - P_A = V_+(W_+(B, A)) - P_A \\
= \lim_{t \to \infty} e^{itA} W_+(B, A) e^{-itA} P_A - P_A \\
= \lim_{t \to \infty} W_+(B, A) e^{itB} e^{-itA} P_A - P_A \\
= W_+(B, A) P_A - P_A = 0
\]
with the intertwining relation \(W_+(B, A) e^{itA} = e^{itB} W_+(B, A) \). We define
(2.8) \[W_1 = W_+(B, A) W_+(g(B), g(A)) . \]
From this definition we obtain that \(V_{\varphi \{ A \}}(W_+(B, A)) \) exists and
(2.9) \[V_{\varphi \{ A \}}(W_+(B, A)) = W_1 \ , \]
since
\[
V_{\varphi \{ A \}}(W_+(B, A)) = \lim_{t \to \infty} e^{it\varphi(A)} W_+(B, A) e^{-it\varphi(A)} P_A \\
= \lim_{t \to \infty} W_+(B, A) e^{it\varphi(B)} e^{-it\varphi(A)} P_A = W_1 .
\]
By (2.3) and (2.5) then we have
(2.10) \[W_+(B, A) = W_1 + C_1 \]
with
(2.11) \[V_{\varphi \{ A \}}(C_1) = 0 \]
(2.12) \[W_1 = P_A W_1 = W_1 P_A \in \{ g(A) \}' . \]

From the Definition (2.8) and the completeness of \(W_+(B, A) \) one
easily verifies that W_1 is a partially isometrie with
\begin{equation}
W_1^* W_1 = P_A, \quad W_1 W_1^* = P_1 \leq P_A .
\end{equation}
Further we have
\begin{equation}
V_{\tilde{\xi}(A)}((C^*_1 P_1) = 0 .
\end{equation}
This follows from
\begin{align*}
V_{\tilde{\xi}(A)}((C^*_1 P_1) &= 0 \iff V_{\tilde{\xi}(A)}(W_1^*(B, A) C^*_1 P_1) \\
&= V_{\tilde{\xi}(A)}(W_1^*(B, A) C^*_1 P_1 + C_1 W_1^* + P_1) - P_1 \\
&= V_{\tilde{\xi}(A)}(W_1^*(B, A) (C^*_1 + W_1^*) P_1) - P_1 \\
&= V_{\tilde{\xi}(A)}(W_1^*(B, A) W_1(B, A) P_1) - P_1 = 0
\end{align*}
with $V_{\tilde{\xi}(A)}((C^*_1 W_1^* + P_1) = P_1$ by $W_1^*, P_1 \in \{ g(A) \}'$. Combining (2.10) with $W_1^*(B, A) = P_A + C^*$ and (2.13) we obtain
\begin{align*}
CP_1 C^* &= (W_1 + C_1 - P_A)^* P_1 (W_1 + C_1 - P_A) \\
&= (W_1 - P_1)^* (W_1 - P_1) + (W_1 - P_1)^* C_1 + C_1^* P_1 (W_1 - P_1) \\
&\quad + C_1^* P_1 C_1 = (W_1 - P_1)^* (W_1 - P_1) + C_1
\end{align*}
By (2.11), (2.14) and $(W_1 - P_1), (W_1 - P_1)^* \in \{ g(A) \}'$ we have $V_{\tilde{\xi}(A)}((C_1) = 0$ and therefore,
\begin{equation}
V_{\tilde{\xi}(A)}(CP_1 C^*) = (W_1 - P_1)^* (W_1 - P_1) .
\end{equation}
Furthermore, it follows from (2.7) that
\begin{equation}
V_1(CP_1 C^*) = 0 .
\end{equation}
The operator $CP_1 C^*$ satisfies the assumptions of Lemma 1. Hence, we have $(W_1 - P_1)^* (W_1 - P_1) = 0$ and also $(W_1 - P_1) = 0$. With (2.13) and (2.8), we finally obtain $W_1 = P_A$ and
\begin{align*}
W_+(g(B), g(A)) &= W_+(B, A) .
\end{align*}

3. Proof of Theorem 2. We shall use the same notations as in §2. By Theorem 1 and (NS) it is necessary and sufficient for the existence of $W_+(g(B), g(A))$ that
\begin{equation}
V_{\tilde{\xi}(A)}((C) = 0 .
\end{equation}
Let $\varphi \in P_A \mathcal{H}, \varepsilon > 0$ and $P_A(A)$ be the spectral measure of A. Then there is a finite interval A' such that
\begin{equation}
\| \varphi - P_A(A') \varphi \| \leq \frac{\varepsilon}{3\| C\|} .
\end{equation}
From the definition of the functions \(g(\lambda) \) in Theorem 2 we see that there exists a finite number of disjoint intervals \(\Delta_n \subset \mathcal{A} (n = 1, 2, \ldots, N) \) such that

\[
(3.3) \quad g(A) P_d P_d(\Delta_n) = q_n A P_d P_d(\Delta_n) ,
\]

\[
(3.4) \quad \left\| P_d(\Delta') \varphi - \sum_{n=1}^{N} P_d(\Delta_n) \varphi \right\| \leq \frac{\varepsilon}{3 \| C \|}
\]

with \(0 < q_n < \infty \). By (3.2), (3.3), and (3.4) we find

\[
(3.5) \quad \left\| C e^{-itg(A)} P_d \varphi \right\| \leq \frac{2}{3} \varepsilon + \sum_{n=1}^{N} \left\| C e^{-itg_n \lambda} P_d(\Delta_n) \varphi \right\|.
\]

\(C \) satisfies the relation (see (NS))

\[
\left\| C e^{-itg \lambda} P_d \psi \right\| \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty
\]

for every \(\psi \in \mathcal{H} \). Hence, for the functions \(\varphi_n = P_d(\Delta_n) \varphi \) there are numbers \(T_n \) such that

\[
(3.6) \quad \left\| C e^{-itg_n \lambda} \varphi_n \right\| \leq \frac{\varepsilon}{3N} \quad \text{for all} \quad t > T_n .
\]

By (3.5), (3.9) we obtain

\[
\left\| C e^{-itg(A)} P_d \varphi \right\| \leq \varepsilon \quad \text{for} \quad t > T = \max_{n} T_n
\]

and (3.1) is proved.

4. Proof of Theorem 3. For simplicity we shall assume that \(\Delta \subset \mathcal{A} \) and \(\mathcal{A} = [0, 2\pi] \). Let \(u \in P_d(A) P_d \mathcal{H} \) with \(P_d(\Delta') u \neq 0 \) for all \(\Delta' \subset \mathcal{A} \), \(\| \Delta' \| \neq 0 \). A restricted on the subspace \(\mathcal{H}_i = \overline{\text{sp} \{ P_d(\Delta') u, \Delta' \subset \Delta \}} \) Borel set) is an operator with simple absolutely continuous spectrum \(\Delta \). Hence we may identify \(\mathcal{H}_i \) with \(L^2(\Delta) \) and \(\lambda \) restricted on \(\mathcal{H}_i \) with the multiplication operator by \(\lambda \) on \(L^2(\Delta) \) denoted by \(H \).

Therefore it follows that for the proof of Theorem 3 it is sufficient to show that for \(H \) such an operator \(B \) defined by Theorem 3 exists. At first we construct a projector \(P \) such that \(V^+_H(P) = 0 \) and \(V^+_H(P) \) do not exist. We consider the function

\[
\frac{1}{\sqrt{2\pi}} e^{-itg(\lambda)} = \sum_{m} \psi_{m}^\lambda \frac{1}{\sqrt{2\pi}} e^{-it\lambda m} \in \mathcal{L}^2(\Delta) .
\]

By Lemma 2 for \(\varepsilon = 1/2 \) we can find sequences of natural numbers \(S_n, N_n \) with \(S_n, N_n \rightarrow \infty \) as \(n \rightarrow \infty \) such that

\[
(4.1) \quad \sum_{m=S_n}^{N_n} | \psi_{s}^m |^2 = a_n \geq 1 - \varepsilon = \frac{1}{2} .
\]
Now we define P by
\begin{equation}
P = \sum_{n=1}^{\infty} f_n(\cdot, f_n),
\end{equation}
\begin{equation}
f_n(\lambda) = \sum_{m=\sigma_n}^{N_n+1-1} \frac{1}{\sqrt{a_n}} \psi_{S_n}^m \frac{1}{\sqrt{2\pi}} e^{-im\xi}.
\end{equation}

Next we prove $V^+_H(P) = 0$, i.e.,
\begin{equation}
\lim_{t \to \infty} \|P e^{-itH} \psi\| = 0 \quad \text{for every } \psi \in L^2(\mathcal{D}).
\end{equation}
As is easily shown, for the proof of (4.4) it is sufficient to consider the sequence $\|P e^{-itH} \psi_0\|$ with $n \to \infty$ (n a natural number) and $\psi_0 = 1/\sqrt{2\pi}$.

We have
\begin{equation}
\|P e^{-itH} \psi_0\|^2 = \sum_{n=1}^{\infty} |(f_n, e^{-itH} \psi_0)|^2
= \sum_{n=1}^{\infty} \left| \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f_n(\lambda) e^{ip\lambda} d\lambda \right|^2
= \sum_{n=1}^{\infty} \left| \sum_{m=\sigma_n}^{N_n+1-1} \psi_{S_n}^m \frac{1}{\sqrt{a_n}} \delta_{m, p} \right|^2
= \frac{A}{a_{x(p)}} |\psi_{S_n(p)}|^2,
\end{equation}
where $x(p) = r$ if $p \in (N_r, N_r + 1, \ldots, N_{r+1} - 1)$.

It is clear that $x(p) \to \infty$ as $p \to \infty$. Since $g(\lambda)$ satisfies the assumptions of Lemma 3 we find $|\psi_{S_n(p)}|^2 \to 0$ as $p \to \infty$ and also $\|P e^{-itH} \psi_0\|^2 \to 0$ as $p \to \infty$. This proves (4.4). To prove that $V^+_H(P)$ does not exist by Lemma 1 it is sufficient to show that there are a $\psi \in L^2(\mathcal{D})$, a sequence of real numbers $t_n \to \infty$ as $n \to \infty$ and an $X > 0$ such that
\begin{equation}
\|P e^{-it_n H} \psi\| > X \quad \text{for all } t_n.
\end{equation}
We set $\psi = \psi_0 = 1/\sqrt{2\pi}$ and $t_n = S_n$ (see (4.1)). Then by (4.1), (4.2)
\begin{align*}
\|P e^{-iS_n H} \psi_0\|^2 &= \sum_{n=1}^{\infty} |(f_n, e^{-iS_n H} \psi_0)|^2 \\
&\leq \|P e^{-iS_n H} \psi_0\|^2 = \left| \frac{1}{\sqrt{a_n}} \sum_{m=N_n}^{N_n+1-1} \psi_{S_n}^m \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} d\lambda e^{iS_n H \psi_0} e^{-im\xi} \right|^2 \\
&= \left| \frac{1}{\sqrt{a_n}} \sum_{m=N_n}^{N_n+1-1} |\psi_{S_n}^m|^2 \right|^2 = a_n \geq \frac{1}{2} \quad \text{for all } S_n.
\end{align*}

This proves that $U^+_H(P)$ does not exist.
Now we define by $U = 1 - 2P$ a unitary operator and we set
From the definitions of U, B, and (NS) it immediately follows that $W_{+}(B, H)$ exists and $U = W_{+}(B, H)$. Since, however, $V^+_{g,H}(-2P)$ does not exist, it follows from Theorem 1 and (NS) that also $W_{+}(g(B), g(H))$ does not exist.

5. **Proofs of the Lemmas.** Proof of Lemma 1: We shall prove Lemma 1 indirectly. Thus we suppose that for a nonnegative bounded selfadjoint operator T and an allowable function $g(\lambda)$ the strong limits

\[V^+_{\lambda}(T) = \operatorname{s-lim}_{t \to \infty} e^{itA} Te^{-itA} P \lambda = 0, \]

\[V^+_{g(\lambda)}(T) = \operatorname{s-lim}_{t \to \infty} e^{itg(\lambda)A} Te^{-itg(\lambda)A} P \lambda = S \]

exist with $S \neq 0$, and from these assumptions we construct a contradiction. It is obvious that S is also a nonnegative bounded selfadjoint operator with $S = SP\lambda = P\lambda SP\lambda \in [g(\lambda)]'$ by (2.3) to (2.5). By $S \neq 0$ it exists a $u \in P\lambda \mathbb{H}$ with $Su \neq 0$. From the definition of the allowable functions $g(\lambda)$ it follows that there is a finite interval $\Delta \subset (- \infty, \infty)$ such that $P\lambda(\Delta)u \neq 0$, $SP\lambda(\Delta)u \neq 0$ and $g(\lambda)$ is continuous, positive and of bounded variation on Δ. For a nonnegative operator S it follows from $Su \neq 0$ that also $(u, Su) \neq 0$. Hence we have $(P\lambda(\Delta)u, SP\lambda(\Delta)u) \neq 0$ and then $QSQ \neq 0$ where Q is the orthogonal projection on the subspace $\mathbb{H}_1 = \overline{\text{sp}\{P\lambda(\Delta)u, \Delta' \subset \Delta\}}$. It is $Q \in \{A\}'$ and therefore $Q \in [g(\lambda)]'$. By $S \in [g(\lambda)]'$ we obtain $QSQ \in [g(\lambda)]'$. Since $g(\lambda)$ is strictly increasing on Δ it is clear that $(QAQ)' = (Qg(\lambda)Q)'$. From this identity and $QSQ \in [g(\lambda)]'$ we finally obtain $QSQ \in [A]'$. Furthermore, we have $E(\Delta) \in [A]'$, where $E(\Delta)$ is the spectral measure of QSQ. We choose a $\alpha > 0$ such that $E(0, \alpha) < Q$. With $R \equiv (Q - E(0, \alpha)) \in \{A\}'$ and (5.1), (5.2) we find

\[V^+_{\lambda}(RTR) = 0, \quad V^+_{g(\lambda)}(RTR) = RSR \neq 0. \]

RSR is a nonnegative selfadjoint operator with the spectrum $\delta \in 0 \cup [a, b](0 < a < b < \infty)$. Now we consider continuous functions $f(\lambda)$ which are 1 on $[a, b]$ and 0 in a neighborhood of 0.

By (2.6) and (5.3) we find

\[V^+_{\lambda}(f(RTR)) = 0, \quad V^+_{g(\lambda)}(f(RTR)) = f(RSR) = R. \]

From the independence of the right sides of these $f(\lambda)$ it can easily be shown that (5.4) is also true for the step-function

\[f(\lambda) = \begin{cases}
1 & \text{on } [a_i, b_i] \ (0 < a_i < a < b < b_i < \infty) \\
0 & \lambda \in [a_i, b_i] \end{cases}. \]

Hence we have

\[V^+_{\lambda}(P) = 0, \quad V^+_{g(\lambda)}(P) = R. \]
where $P = f(RTR)$ is an orthogonal projection with $P < R$. \mathcal{H}_1 reduces A, P, R and P, R are distinct from 0 only on \mathcal{H}_1. Thus it is sufficient to consider (5.5) in \mathcal{H}_1. A restricted on \mathcal{H}_1 is an operator with a simple absolutely continuous spectrum $\sigma \subset \Delta$. Then we may identify \mathcal{H}_1 with $L^2(\sigma)$ and a restricted on \mathcal{H}_1 with the multiplication operator by λ and regard $\mathcal{H}_1 \equiv L^2(\sigma)$ as a subspace of the large Hilbert space $L^2(\Delta)$. In $L^2(\Delta)$ we may identify R with the multiplication operator by $\chi_\sigma(\lambda)$, where $\chi_\sigma(\lambda)$ is the characteristic function on $\bar{\sigma} \subset \sigma$ with $|\bar{\sigma}| \neq 0$. H denotes the multiplication operator by λ in $L^2(\Delta)$. Then we obtain from (5.5)

\[(5.6) \quad \lim_{t \to \infty} \|P e^{-iHt} \psi\| = 0 \quad \text{for every } \psi \in L^2(\Delta),\]

\[(5.7) \quad \lim_{t \to \infty} \|P e^{-i\psi H^{-1} \psi} \| = \|\chi_\sigma \psi\| .\]

For the sake of simplicity, we shall assume that $\Delta = [0, 2\pi]$. We can write $g(\lambda) = \alpha \cdot \tilde{g}(\lambda) + \beta$, where $\tilde{g}(0) = 0$, $\tilde{g}(2\pi) = 2\pi$, and α, β are real numbers with $\alpha > 0$. Then we put

\[\varphi_n(\lambda) = 1/\sqrt{2\pi}e^{-i\lambda n}, \psi_n(\lambda) = 1/\sqrt{2\pi}\tilde{g}'(\lambda)e^{-i\lambda n}.\]

It is easy to verify that both φ_n and ψ_n form a complete orthonormal family in $L^2(\Delta)$. Furthermore, we have $\|\chi_\sigma \psi_n\|^2 = C > 0$. With these notations we easily obtain from (5.6), (5.7)

\[(5.8) \quad \|P \varphi_n\|^2 = \varepsilon_n \to 0 \quad \text{as } n \to \infty , \quad \|P \psi_n\|^2 = C = \alpha_n \to 0 \quad \text{as } n \to \infty .\]

We set $\psi_n(\lambda) = \sum_m a_m^* \varphi_m(\lambda)$. Now we consider the functions $\psi_n(\lambda)$ for which

\[(5.10) \quad \left\| \psi_n \right\|^2 = \frac{1}{\sqrt{2\pi}} \tilde{g}'(\lambda) e^{-i\lambda n} \leq \frac{C}{2} \]

with fixed $N > 0$. For the functions $\psi_n(\lambda) = (\tilde{g}'(\lambda))^{-1} \psi_n(\lambda)$ by Lemma 2 we have

\[\left\| \psi_n - \sum_{m=[q_1]}^{N} a_m^\ast \varphi_m \right\| \leq \varepsilon ,\]

where q_1, q_2 are positive real numbers independent of s, ε and p is a natural number independent of s. It is clear that then also

\[(5.11) \quad \left\| \psi_n - \sum_{m=[q_1]}^{N} a_m^\ast \varphi_m \right\|^2 \leq \frac{C}{2} ,\]

with an appropriate p' independent of s. An elementary computation
shows that for all \(\psi_s \) with
\[
s \in \left(\left[\frac{1 + p'}{q_1}, \frac{1 + p'}{q_1} \right], \left[\frac{1 + p'}{q_1}, \frac{N - p'}{q_2} \right] \right)
\]
the inequality (5.10) is true.

Hence there are natural numbers \(N, s_i \) and an \(\alpha > 0 \) such that for every fixed \(N \) with \(N > N_i \) and \(s \in (s_i, s_i + 1, \ldots, [\alpha N] + s_i) \) \(\psi_s \) satisfies (5.10). Now we consider the sum
\[
S_N = \sum_{n=1}^{N} \sum_{s=s_1}^{[\alpha N] + s_i} |(\varphi_n, \psi_s)|^2
\]
and introduce the orthogonal projection \(\bar{P} = 1 - P \). Then
\[
S_N = \sum_{n=1}^{N} \sum_{s=s_1}^{[\alpha N] + s_i} |(p\varphi_n, \psi_s) + (\varphi_n, \bar{P}\psi_s)|^2
\]
\[
\leq \sum_{n=1}^{N} \sum_{s=s_1}^{[\alpha N] + s_i} \left| (p\varphi_n, \psi_s) \right|^2 + \left| (\varphi_n, \bar{P}\psi_s) \right|^2 + 2\left| (p\varphi_n, \psi_s) \cdot (\varphi_n, \bar{P}\psi_s) \right|
\]
\[
\leq \sum_{n=1}^{N} \sum_{s=s_1}^{[\alpha N] + s_i} \left| (p\varphi_n, \psi_s) \right|^2 + \left| (\varphi_n, \bar{P}\psi_s) \right|^2
\]
\[
+ 2\sqrt{\left(\sum_{n=1}^{N} \sum_{s=s_1}^{[\alpha N] + s_i} \left| (p\varphi_n, \psi_s) \right|^2 \right) \left(\sum_{n=1}^{N} \sum_{s=s_1}^{[\alpha N] + s_i} \left| (\varphi_n, \bar{P}\psi_s) \right|^2 \right)}
\]
(5.12)
\[
\leq \sum_{n=1}^{N} ||p\varphi_n||^2 + \sum_{s=s_1}^{[\alpha N] + s_i} ||\bar{P}\psi_s||^2
\]
\[
+ 2\sqrt{\left(\sum_{n=1}^{N} ||p\varphi_n||^2 \right) \left(\sum_{s=s_1}^{[\alpha N] + s_i} ||\bar{P}\psi_s||^2 \right)}
\].

By (5.9) we have \(||\bar{P}\psi_s||^2 = 1 - C - \alpha_s \) and with (5.8), (5.12)

\[
S_N \leq \sum_{n=1}^{N} \varepsilon_n + [\alpha N](1 - C) \sum_{s=s_1}^{[\alpha N] + s_i} \alpha_s
\]
(5.13)
\[
+ 2\sqrt{\left(\sum_{n=1}^{N} \varepsilon_n \right) \left(1 - C - \sum_{s=s_1}^{[\alpha N] + s_i} \alpha_s \right)}
\].

On the other hand, by (5.10) we find

\[
S_N \geq [\alpha N] \left(1 - \frac{C}{2} \right)
\]
(5.14)

Combining (5.13), (5.14) we obtain
\[
\frac{C}{2} \leq \frac{1}{[\alpha N]} \left(\sum_{n=1}^{N} \varepsilon_n - \sum_{s=s_1}^{[\alpha N] + s_i} \alpha_s \right) + 2\sqrt{\frac{1}{[\alpha N]} \sum_{n=1}^{N} \varepsilon_n} \sqrt{1 - C} \frac{1}{[\alpha N]} \sum_{s=s_1}^{[\alpha N] + s_i} \alpha_s
\].

Since \(\varepsilon_n, \alpha_s \) are zero sequences, also
\[
\gamma_N = \frac{1}{[\alpha N]} \sum_{n=1}^{N} \varepsilon_n , \quad \delta_N = \frac{1}{[\alpha N]} \sum_{s=s_1}^{[\alpha N] + s_i} \alpha_s
\]
are zero sequences. Hence for sufficiently large N the last inequality which we have got from the assumption $S \neq 0$ is not true, which proves Lemma 1.

Lemma 2. Let $g(\lambda)$ be a real-valued function and $g'(\lambda)$ a continuous positive function on $\mathcal{J} = [0, 2\pi]$. Then the functions $\tilde{\psi}_s(\lambda) \in L^2(\mathcal{J})$ defined by

$$
\tilde{\psi}_s(\lambda) = \frac{1}{\sqrt{2\pi}} e^{-is\lambda} = \sum_{m=-\infty}^{\infty} \tilde{a}_m^s \frac{1}{\sqrt{2\pi}} e^{-im\lambda}
$$

possess the following properties: For every ε with $0 < \varepsilon < 1$ and every natural number $s > 0$ there exist two real positive numbers q_1, q_2 independent of s, ε and a natural number p independent of s such that

$$
\sum_{m=\lfloor s\varepsilon \rfloor - p}^{\lfloor s\varepsilon \rfloor + p} |\tilde{a}_m^s|^2 \geq 1 - \varepsilon.
$$

Proof. Let $a_1 = \min_{\lambda \in \mathcal{J}} g'(\lambda), a_2 = \max_{\lambda \in \mathcal{J}} g'(\lambda)$. Let s be a fixed natural number. We consider integral numbers m with $m > s \cdot a_2$ or $s \cdot a_1 > m$. For these m we have $|s \cdot g'(\lambda) - m| > 0$ and we can write

$$
\tilde{a}_m^s = \frac{1}{2\pi} \int_0^{2\pi} d\lambda e^{-is\lambda} g'(\lambda) e^{im\lambda} = \frac{1}{2\pi} \int_0^{2\pi} d\lambda \frac{1}{-i(sg'(\lambda) - m)} \left(\frac{d}{d\lambda} e^{-is\lambda} \right)
$$

Integrating by parts and an elementary computation shows that

$$
|\tilde{a}_m^s| \leq \frac{1}{2\pi} \left[\frac{1}{-i(sg'(\lambda) - m)} \right]_0^{2\pi} + \int_0^{2\pi} e^{-is\lambda} g'(\lambda) d\left(\frac{1}{i(g'(\lambda)s - m)} \right)\left(\frac{1}{s\alpha - m} \right) + \frac{2}{\alpha - m^2}+

\left(\frac{M}{s\alpha - m} \right) + \frac{2}{\alpha - m^2}+\frac{M}{s\alpha - m^2}+\frac{M}{s\alpha - m^2},
$$

where M is the total variation of $g'(\lambda)$ on \mathcal{J} and $\alpha = a_1$ if $m < s \cdot a_1$, or $\alpha = a_2$ if $m > s \cdot a_2$. Let p' be a positive integral number, then by (5.17) we have
\[\sum_{m = \lceil s/2a_1 \rceil - p' - 1}^{\infty} |\bar{\alpha}_m^s|^2 \leq \frac{1}{(2\pi)^2} \left(2 + \frac{M}{a_2} \right)^2 \sum_{m = \lceil s/2a_1 \rceil - p' - 1}^{\infty} \frac{1}{|m - [sa_2] - 1|^2} \]

and entirely analogous

\[\sum_{m = \lceil s/2a_1 \rceil - p' - 1}^{\infty} |\bar{\alpha}_m^s|^2 \leq \frac{1}{(2\pi)^2} \left(2 + \frac{2M}{a_1} \right)^2 \sum_{m = \lceil s/2a_1 \rceil - p' - 1}^{\infty} \frac{1}{|sa_1 - m|^2} \]

where \([\alpha]\) is the smallest integer \(r > a - 1\).

For sufficiently large \(p'\) from (5.18), (5.19) we find

\[\sum_{m = \lceil s/2a_2 \rceil + p' + 1}^{\infty} |\bar{\alpha}_m^s|^2 + \sum_{m = \lceil s/2a_1 \rceil - p' - 1}^{\infty} |\bar{\alpha}_m^s|^2 < \varepsilon \]

for all positive integral numbers \(s\) and every \(\varepsilon > 0\). With \(q_1 = (1/2)a_1\), \(q_2 = 2a_2\) and by \(|\gamma_s|^2 = \sum_m |\bar{\alpha}_m^s|^2 = 1\) we finally obtain (5.16).

Lemma 3. Let \(g(\lambda), \bar{\gamma}_s(\lambda)\) be defined as in Lemma 2 and let \(g'(\lambda)\) be continuous, strictly monotone on \(A\). Then the functions \(\bar{\gamma}_s(\lambda)\) possess the following properties: For every \(\varepsilon\) with \(0 < \varepsilon < 1\) there exists an \(N\) such that for all integral numbers \(m, s\) with \(s > N\)

\[|\bar{\alpha}_m^s| < \varepsilon \]

Proof. From the continuity and strict monotony of the positive function \(g'(\lambda)\) on \(A\) it follows that for every real number \(x\) and \(\varepsilon > 0\) there is an interval \(A_x \subseteq A\) of the length \(l_x \leq \varepsilon\) such that

\[\alpha(\varepsilon) = \min (\min_{x \in A_x} |g'(\lambda) + x|) \]

exists and \(\alpha(\varepsilon) > 0\). Hence with \(x = -m/s\) we have

\[|\bar{\alpha}_m^s| = \frac{1}{2\pi} \int_{0}^{2\pi} d\lambda e^{-i\lambda(x - \frac{1}{2})} e^{im\lambda} \leq \frac{\varepsilon}{2} + \frac{1}{2\pi} \left| \int_{A_x} d\lambda e^{-i\lambda(x - \frac{1}{2})} \right| \]

The domain of integration \((A - A_x)\) consists of one or two intervals in dependence on \(x\) and \(\varepsilon\). Let \(A' = [a, b] \subseteq A\) be such an interval. Then

\[\left| \int_{A'} d\lambda e^{-i\lambda(x - \frac{1}{2})} \right| = \left| \int_{A'} \frac{d\lambda}{-i\lambda(x - \frac{1}{2})} \left(\frac{d}{d\lambda} e^{-i\lambda(x - \frac{1}{2})} \right) \right| \]
\[\leq \left| \int_{s}^{1} e^{-i\theta(g'(\lambda) - x)} \right| \]

\[\leq \frac{2}{s \cdot \alpha} + \int_{s}^{1} \left| \frac{1}{\theta(g'(\lambda) - x)} \right| \]

\[\leq \frac{2}{s \cdot \alpha} + \frac{M}{s \cdot \alpha} \]

where \(\alpha \) is defined by (5.21) and \(M = |g'(b) - g'(a)| \). From (5.22) and (5.23) we have

\[|a_{\epsilon}| \leq \epsilon + \frac{1}{\pi \epsilon} \cdot \frac{2 + M}{\alpha} . \]

If we put \(N = \frac{2 + M}{\alpha} \), then this implies (5.20).

ACKNOWLEDGMENT. It is a pleasure to thank Dr. H. Baumärtel for suggesting this problem and for many stimulating discussions.

REFERENCES

Received August 27, 1974.

AKADEMIE DER WISSENSCHAFTEN DER DDR
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shashi Prabha Arya and M. K. Singal, More sum theorems for topological spaces</td>
<td>1</td>
</tr>
<tr>
<td>Kong Ming Chong, Spectral inequalities involving the infima and suprema of functions</td>
<td>17</td>
</tr>
<tr>
<td>Alan Hetherington Durfee, The characteristic polynomial of the monodromy</td>
<td>21</td>
</tr>
<tr>
<td>Emilio Gagliardo and Clifford Alfons Kottman, Fixed points for orientation preserving homeomorphisms of the plane which interchange two points</td>
<td>27</td>
</tr>
<tr>
<td>Raymond F. Gittings, Finite-to-one open maps of generalized metric spaces</td>
<td>33</td>
</tr>
<tr>
<td>Andrew M. W. Glass, W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary, a-closures of completely distributive lattice-ordered groups</td>
<td>43</td>
</tr>
<tr>
<td>Matthew Gould, Endomorphism and automorphism structure of direct squares of universal algebras</td>
<td>69</td>
</tr>
<tr>
<td>R. E. Harrell and Les Andrew Karlovitz, On tree structures in Banach spaces</td>
<td>85</td>
</tr>
<tr>
<td>Julien O. Hennefeld, Finding a maximal subalgebra on which the two Arens products agree</td>
<td>93</td>
</tr>
<tr>
<td>William Francis Keigher, Adjunctions and comonads in differential algebra</td>
<td>99</td>
</tr>
<tr>
<td>Robert Bernard Kelman, A Dirichlet-Jordan theorem for dual trigonometric series</td>
<td>113</td>
</tr>
<tr>
<td>Allan Morton Krall, Stieltjes differential-boundary operators. III. Multivalued operators–linear relations</td>
<td>125</td>
</tr>
<tr>
<td>Hui-Hsiung Kuo, On Gross differentiation on Banach spaces</td>
<td>135</td>
</tr>
<tr>
<td>Tom Louton, A theorem on simultaneous observability</td>
<td>147</td>
</tr>
<tr>
<td>Kenneth Mandelberg, Amitsur cohomology for certain extensions of rings of algebraic integers</td>
<td>161</td>
</tr>
<tr>
<td>Coy Lewis May, Automorphisms of compact Klein surfaces with boundary</td>
<td>199</td>
</tr>
<tr>
<td>Peter A. McCoy, Generalized axisymmetric elliptic functions</td>
<td>211</td>
</tr>
<tr>
<td>Muril Lynn Robertson, Concerning Siu's method for solving (y'(t) = F(t, y(g(t))))</td>
<td>223</td>
</tr>
<tr>
<td>Richard Lewis Roth, On restricting irreducible characters to normal subgroups</td>
<td>229</td>
</tr>
<tr>
<td>Albert Oscar Shar, P-primary decomposition of maps into an H-space</td>
<td>237</td>
</tr>
<tr>
<td>Kenneth Barry Stolarsky, The sum of the distances to certain pointsets on the unit circle</td>
<td>241</td>
</tr>
<tr>
<td>Bert Alan Taylor, Components of zero sets of analytic functions in (C^2) in the unit ball or polydisc</td>
<td>253</td>
</tr>
<tr>
<td>Michel Valadier, Convex integrands on Souslin locally convex spaces</td>
<td>267</td>
</tr>
<tr>
<td>Januario Varela, Fields of automorphisms and derivations of (C^-)algebras*</td>
<td>277</td>
</tr>
<tr>
<td>Arnold Lewis Villone, A class of symmetric differential operators with deficiency indices ((1, 1))</td>
<td>295</td>
</tr>
<tr>
<td>Manfred Wollenberg, The invariance principle for wave operators</td>
<td>303</td>
</tr>
</tbody>
</table>