LUSIN AREA FUNCTIONS ON LOCAL FIELDS

Jia-Arng Chao
LUSIN AREA FUNCTIONS ON LOCAL FIELDS

JIA-ARNG CHAO

We show that over a local field, Lusin area functions and nontangential maximal functions of a regular function are equivalent in the L^p "norm" for $0 < p < \infty$. As a consequence, we have that "nice" singular integral transforms preserve H^p-spaces for $0 < p < \infty$.

1. By a local field, we mean a locally compact, nondiscrete, totally disconnected, (complete) field. Various aspects of harmonic analysis on local fields have been studied. A list of references can be found in [4]. We also refer to [4] for notation and preliminaries.

Let K be a fixed local field with the ring of integers \mathcal{O}. $\mathcal{O}/\mathfrak{P} \cong GF(q)$ where \mathfrak{P} is the maximal ideal in \mathcal{O} and q is a prime power. For $k \in \mathbb{Z}$, let $\mathfrak{S}^{-k} = \{x \in K : |x| \leq q^k\}$, $(\mathcal{O} = \mathfrak{P}^0)$. $\mathfrak{P}^{-k} = q + \mathfrak{P}^{-k}$ are spheres. The Haar measure on K has been normalized so that $|\mathcal{O}| = \int dx = 1$ and $|\mathfrak{P}^{-k}| = q^k$ for all k. The theory of regular functions which are the local field analogue of harmonic functions is studied in [10] and [4]. In particular, distributions on K have been identified with regular functions on $K \times \mathbb{Z}$ and the regularization kernel $R_k(x) = q^{-k}\Phi_{-k}(x)$, where Φ_{-k} is the characteristic function of \mathfrak{P}^{-k}, serves as the Poisson kernel.

Write $(\mathfrak{S}_y^{-1}, k) = \{(x, k) \in K \times \mathbb{Z} : x \in \mathfrak{S}_y^{-1}\}$. For a nonnegative integer l and $z \in K$, let $\Gamma_l(z) = \{(x, k) \in K \times \mathbb{Z} : |x - z| \leq q^{k+l}\} = \bigcup_k (\mathfrak{S}_y^{-1(k+l+1)}, k)$. For a distribution f on K or a regular function $f(x, k)$ on $K \times \mathbb{Z}$, denote $d_kf(x) = f(x, k) - f(x, k + 1)$. The Lusin area function of f with respect to Γ_l is given by

$$S^{(l)}f(z) = \left(\sum |d_kf(x)|^p\right)^{1/p}$$

where the sum runs over distinct $(\mathfrak{S}_y^{-k}, k) \subset \Gamma_l(z)$. Write $Sf(z) = S^{(0)}f(z) = \left(\sum |d_kf(x)|^p\right)^{1/p}$. The nontangential maximal function of f with respect to Γ_l is given by

$$m^{(l)}f(z) = \sup_{(x, k) \in \Gamma_l(z)} |f(x, k)|.$$

Write $f^*(z) = m^{(0)}f(z) = \sup_z |(z, k)|$.

Let us suppose that $f(x, k) \to 0$ as $k \to \infty$ for each $x \in K$. Let $\|f\|_p = \sup_x \|f(\cdot, k)\|_p$ for $0 < p < \infty$. It is shown in [10] that for $1 < p < \infty$,

$$A_p\|f\|_p \leq \|Sf\|_p \leq B_p\|f\|_p$$

with constants $A_p, B_p > 0$. 383
It is easy to see that for $1 < p < \infty$

\begin{equation}
\|f\|_p \leq \|f^*\|_p \leq C_p \|f\|_p \quad \text{with constant } C_p > 0.
\end{equation}

In other words,

\begin{equation}
\|Sf\|_p \approx \|f\|_p \approx \|f^*\|_p \quad \text{for } 1 < p < \infty.
\end{equation}

From [4], we have that, for all nonnegative l and h,

\begin{equation}
\{x \in K: S^{(l)}f(x) < \infty\} = \left\{x \in K: \lim_{k \to -\infty} f(x, k) \text{ exists}\right\}
\end{equation}

\begin{equation}
\approx \{x \in K: m^{(h)}f(x) < \infty\};
\end{equation}

i.e., the above sets are equal except possibly for a set of measure 0. Our main objective is to show that

\begin{equation}
\|S^{(l)}f\|_p \approx \|m^{(h)}f\|_p \quad \text{for } 0 < p < \infty.
\end{equation}

As a consequence, we show that “nice” singular integral transforms preserve H^p-space ($0 < p < \infty$) which is the space of distributions whose maximal function are in L^p. The last result is the main contribution of [5].

The euclidean version of the main theorem can be found in [2] (see also [7]); its martingale version about Sf and f^* is proved in [1]. Our work has been motivated by these results. In Appendix we shall discuss briefly how our argument can be applied to certain martingales.

Remark 1. The equivalence in L^p “norm” is interpreted in the obvious way, i.e., if one side is finite, so is the other and is bounded by a constant multiple of the former one. The restriction that $f(x, k) \to 0$ as $k \to \infty$ is needed only for the first inequality of (1) and $\|m^{(h)}f\|_p \leq A_p \|S^{(l)}f\|_p$.

Remark 2. A trivial modification gives us the same result for K^*, the n-dimensional vector space over K. The “Φ-inequalities” of Burkholder-Gundy [1][2] for $S^{(l)}$ and $m^{(h)}$ could also be proved.

2. We first show that $\|f^*\|_p \approx \|m^{(h)}f\|_p$ for $0 < p < \infty$.

Lemma 1. For $\lambda > 0,$

\begin{equation}
|\{x \in K: f^*(x) > \lambda\}| \leq \left|\{z \in K: m^{(h)}f(z) > \lambda\}\right| \leq \left|\{x \in K: f^*(x) > \lambda\}\right|.
\end{equation}

Proof. $|\{f^* > \lambda\}| \leq \left|\{m^{(h)}f > \lambda\}\right|$ is obvious since $f^* \leq m^{(h)}f$.

Suppose $m^{(h)}f(z) > \lambda$. Then there exists $(x, k) \in \Gamma^*(z)$ such that $|f(x, k)| > \lambda$. Hence $\mathcal{P}^{-h} \subset \{f^* > \lambda\}$ and $z \in \mathcal{P}^{-h}^{(k+1)}$. Therefore
THEOREM 1. \(\| f^* \|_p \leq \| m^{(1)} f \|_p \leq \| f^* \|_p \) for \(0 < p < \infty \).

Proof. This follows from Lemma 1 and the following identity:

\[
(5) \quad \| g \|_p^p = p \int_0^\infty \lambda^{p-1} |g(\lambda)| d\lambda, \quad 0 < p < \infty.
\]

Now let us break up the proof of \(\| S^{(1)} f \|_p \approx \| m^{(1)} f \|_p \) into several lemmas:

Lemma 2. \(\| S^{(1)} f \|_p = q \| S f \|_p = q \| f \|_p^2 \).

Proof. Easy and known. (See Lemma 2.8(c) of [4].)

Lemma 3. \(\| f^* \|_p \leq A_p \| S f \|_p \) for \(0 < p < 2 \).

Proof. By (5), it suffices to show the following estimate:

\[
(6) \quad |\{ f^* > \lambda \}| \leq A \lambda^{-2} \int_0^\lambda t \{ S f > t \} dt \text{ for } \lambda > 0.
\]

For a fixed \(\lambda > 0 \), let

\[
\sigma(x) = \sup \{ n: S_n f(x) > \lambda \text{ for some } z \in F_z^{(n+1)} \}
\]

where \(S_n f(z) = (\sum_{k \leq n} |d_k f(z)|^2)^{1/2} \). (Convention: sup \(\emptyset = -\infty \).)

For \(x \in K \) with \(\sigma(x) = n \), let

\[
g(x, k) = \begin{cases} f(x, k) & \text{if } k \geq n + 1, \\ f(x, n + 1) & \text{if } k \leq n. \end{cases}
\]

Hence \(S g(x) \leq \lambda \) and \(S g(x) \leq S f(x) \) for all \(x \). Moreover, for \(x \in \{ \sigma = -\infty \} \subset \{ S f \leq \lambda \} \), we have \(g^*(x) = f^*(x) \) and \(S g(x) = S f(x) \). On the other hand, suppose \(\sigma(x) = n > -\infty \). Then there exists \(z \in F_z^{-(n+1)} \) such that \(S_n f(z) > \lambda \). Thus \(F_z^{-(n+1)} \subset \{ z: S f(x) > \lambda \} \) with \(x \in F_z^{-(n+1)} \). Therefore we have

\[
|\{ x: \sigma(x) > -\infty \}| \leq q |\{ z: S f(x) > \lambda \}|.
\]

Now

\[
|\{ f^* > \lambda, \sigma > -\infty \}| \leq q |\{ S f > \lambda \}|
\]

\[
\leq 2q \lambda^{-2} \int_0^\lambda t \{ S f > t \} dt
\]

and, by Lemma 2 and (5),
\[|\{f^* > \lambda, \sigma = -\infty\}| \leq |\{g^* > \lambda\}| \leq 2\lambda^{-2}||g||^2 \]
\[= 2\lambda^{-2}||S g||^2 = 4\lambda^{-2}\int_0^\infty t|\{S g > t\}| dt \]
\[= 4\lambda^{-2}\int_0^1 t|\{S g > t\}| dt \]
\[\leq 4\lambda^{-2}\int_0^1 t|\{S f > t\}| dt . \]

Thus
\[|\{f^* > \lambda\}| \leq |\{f^* > \lambda, \sigma > -\infty\}| + |\{f^* > \lambda, \sigma = -\infty\}| \]
\[\leq (2q + 4)\lambda^{-2}\int_0^1 t|\{S f > t\}| dt . \]

This establishes (6) and Lemma 3.

Lemma 4. For \(l > 0 \) and \(0 < p < 2 \),
\[||S^{(l)} f||_p \leq B_p||m^{(l)} f||_p . \]

Proof. Again, it suffices to show that for \(l > 0 \) and \(\lambda > 0 \),
\[|\{S^{(l)} f > \lambda\}| \leq B\lambda^{-2}\int_0^1 t|\{m^{(l)} f > t\}| dt . \]

Let \(\mu(z) = \sup\{n : |f(x, n)| > \lambda \text{ for some } x \in \mathcal{F}_z^{-(a+1)}\} \). For \(z \in K \) with \(\mu(z) = n \), we have \(\mu(x) = n \) for all \(x \in \mathcal{F}_z^{-(a+1)} \); and let
\[g(z, k) = \begin{cases} f(x, k) & \text{if } k \geq n + 1, \\ f(x, n + 1) & \text{if } k \leq n. \end{cases} \]

Hence \(\{ \mu = -\infty \} = \{ m^{(l)} f \leq \lambda \} \) and for \(\mu(z) = -\infty \), we have \(g(x, k) = f(x, k) \) if \(x \in \mathcal{F}_z^{-(a+1)} \) or \((x, k) \in \Gamma_1(z) \). Thus on \(\{ z: \mu(z) = -\infty \} \), \(S^{(l)} g(z) = S^{(l)} f(z) \) and \(m^{(l)} g(z) = m^{(l)} f(z) \leq \lambda \). Now
\[|\{S^{(l)} f > \lambda, \mu > -\infty\}| \leq |\{m^{(l)} f > \lambda\}| \]
\[\leq 2\lambda^{-2}\int_0^1 t|\{m^{(l)} f > t\}| dt , \]
and by Lemma 2 and (5),
\[|\{S^{(l)} f > \lambda, \mu = -\infty\}| \leq |\{S^{(l)} g > \lambda\}| \leq \lambda^{-2}||S^{(l)} g||^2 \]
\[= q^l\lambda^{-2}||g||^2 \leq q^l\lambda^{-2}||m^{(l)} g||^2 \]
\[\leq q^l\lambda^{-2} \cdot 2\int_0^\infty t|\{m^{(l)} g > t\}| dt \]
\[\leq 2q^l\lambda^{-2}\int_0^1 t|\{m^{(l)} f > t\}| dt \]

Hence
Therefore Lemma 4 is proved.

Lemma 5. For \(l \geq 0 \) and \(2 < p < \infty \),

\[
\| S^{(l)} f \|_p \leq C_p \| f \|_p .
\]

Proof. Suppose \(p > 4 \) and let \(r \) be the conjugate index of \(p/2 \). Thus \(1 < r < 2 \). Consider a fixed \(k \in \mathbb{Z} \). For \(x \in K \), let \(\{x_i\}_{i=1}^q \) be the distinct coset representatives such that \(K^q \sim (k-l+1) \subset \mathcal{S}_x^{-(k-1)} \). For \(g \in L^r \) with \(\|g\|_r = 1 \), we have

\[
\int_K \sum_{i=1}^q d_k f(x_i) \left| g(x) \right| dx = \sum_{i=1}^q \int_K d_k f(x_i) \left| g(x, k+1) \right| dx
\]

\[
= \sum_{i=1}^q \int_K d_k f(x_i) \left| g(x, k+1) \right| dx
\]

\[
= q \int_K \sum_{i=1}^q d_k f(x) \left| g(x, k+1) \right| dx .
\]

Hence it follows from this, Hölder's inequality, (1) and (2) that

\[
\int_K [S_n f(x)]^q \left| g(x) \right| dx = \sum_{k \in \mathbb{Z}} \int_K \sum_{i=1}^q d_k f(x_i) \left| g(x) \right| dx
\]

\[
= \sum_{k \in \mathbb{Z}} q \int_K [S_n f(x)]^q \left| g(x, k+1) \right| dx
\]

\[
\leq q \|S_n f\|_p^q \|g^*\|_r
\]

\[
\leq B_p \|f\|_p^p .
\]

where \(B_p \) depends only on \(p \) and \(q \). Thus

\[
\|S_n f\|_p^p = \|S_n f^q\|_{p/2} = \sup_{g \in L^r, \|g\|_r = 1} \left| \int_K [S_n f(x)]^q g(x) dx \right|
\]

\[
\leq B_p \|f\|_p^p .
\]

Therefore \(\|S f\|_p \leq C_p \|f\|_p \) for \(4 < p < \infty \).

Apply the Marcinkiewicz interpolation theorem to this and Lemma 2, we have

\[
\|S f\|_p \leq C_p \|f\|_p \text{ for } 2 < p < \infty .
\]

Theorem 2. For \(l, h \geq 0 \) and \(0 < p < \infty \),

\[
\|S^{(l)} f\|_p \approx \|m^{(h)} f\|_p .
\]

Proof. The case of \(p = 2 \) is obvious.
If $0 < p < 2$, then, from Lemma 3, Lemma 4 and Theorem 1, we have for $I > 0$,
\[
\|f^*\|_p \leq A_p \|SF\|_p \leq A_p \|S^{(i)}f\|_p \\
\leq A_p B_p \|m^{(i)}f\|_p \approx \|f^*\|_p .
\]

If $2 < p < \infty$, then, by Theorem 1, (3) and Lemma 5,
\[
\|m^{(h)}f\|_p \approx \|f^*\|_p \approx \|F\|_p \approx \|Sf\|_p \\
\leq \|S^{(i)}f\|_p \leq C_p \|f\|_p .
\]

Therefore $\|S^{(i)}f\|_p \approx \|m^{(h)}f\|_p$ for $0 < p < \infty$ and the proof of the theorem is completed.

Remark 3. The above argument simplifies the extension argument as used in §2 of [4] and is essentially similar to the decomposition argument of [5]. It is also a sort of stopping time argument for martingales relative to a regular stochastic basis. (See Appendix.) The main result (with respect to “truncated cones”) could be used to show (4)—the Fatou-Calderón-Stein theorem, in a similar manner as in [2].

3. Let π be a (multiplicative) unitary character on K^* such that it is homogeneous of degree 0 and is ramified of degree $h \geq 1$. Denote $Q(x) = c\pi(x)|x|^{-1}$ where $c = 1/\Gamma(\pi)$. (See [9] for details about Γ-function.) Let $Q_n = R_n \ast Q$ and $Q_n^g = Q_n \Phi_{-\gamma}$ for $N \geq n + h$. For a distribution f on K or a regular function $f(x, k)$ on $K \times \mathbb{Z}$, we note that $Q_n^g \ast f(x, k) = Q_n^g \ast f(x, k)$ for $n \leq k \leq N - h$. Define
\[
(T_\pi f)(x, k) = \lim_{N \to \infty} Q_n^g \ast f(x, k) \quad \text{for} \quad (x, k) \in K \times \mathbb{Z}.
\]

If $f \in L^p(K)$, $1 \leq p < \infty$, then this is just a sort of singular integral transform as been studied in [8], [11] and [4].

For $0 < p < \infty$, let $H^p(K)$ be the space of all distributions f on K whose maximal function $f^* \in L^p(K)$ with the H^p “norm” $\|f^*\|_p$. From [5], we know that for $f \in H^p$, $(T_\pi f)(x, k)$ is a well-defined regular function. The regularization of the corresponding distribution is just $(T_\pi f)(x, k)$. Moreover, the following is also shown:

Theorem 3. T_π preserves H^p-spaces for $0 < p < \infty$. That is, $\|(T_\pi f)^*\|_p \approx \|f^*\|_p$ for $0 < p < \infty$.

We show here how this result can be obtained as a consequence of Theorem 2.

Lemma 6. $S^{(h)}f(z) = S^{(h)}T_\pi f(z)$ for all $z \in K$.

Proof. For a fixed \(k \in \mathbb{Z} \) and \(x \in K \),
\[
d_{k}T_{x}f(x) = T_{x}f(x, k) - T_{x}f(x, k + 1) = T_{x}d_{k}f(x).
\]

For each \(m \in \mathbb{Z} \), let \(\varepsilon_{m}^{i} \), \(i = 1, 2, \ldots, (q - 1)q^{h-1} \), be coset representatives of \(\mathcal{G}^{-(m-h+1)} \) in \(\{ t : |t| = q^{m+1} \} \). Then
\[
T_{x}f(x, k) = c \int_{|t| > q^{h}} f(x - t) \frac{\pi(t)}{|t|} dt
\]
\[
= c \sum_{m=k}^{\infty} q^{-(m+1)} \int_{|t| = q^{m+1}} f(x - t) \pi(t) dt
\]
\[
= cq^{-h} \sum_{m=k}^{\infty} \sum_{i=1}^{(q-1)q^{h-1}} \pi(\varepsilon_{m}^{i}) f(x - \varepsilon_{m}^{i}, m - h + 1).
\]
Thus
\[
(7) \quad T_{x}d_{k}f(x) = cq^{-h} \sum_{i=1}^{(q-1)q^{h-1}} \pi(\varepsilon_{m}^{i}) f(x - \varepsilon_{m}^{i}, k - h + 1).
\]

Now let \(g(x) \) be the restriction of \(d_{k}f(x) \) on \(z + \mathcal{G}^{-(h+1)} \) for any fixed \(z \). Hence from (7) we see that \(T_{x}g(x) \) is also supported on \(z + \mathcal{G}^{-(h+1)} \). By Plancherel’s theorem, since \(|\pi| = 1 \), we have
\[
\| T_{x}g \|_{2} = \| (T_{x}g)^{\pi} \|_{2} = \| \pi^{-1}g \|_{p} = \| g \|_{p} = \| g \|_{2}.
\]
That is,
\[
\sum_{i=1}^{q^{h}} |d_{k}f(x_{i})|^{2} = \sum_{i=1}^{q^{h}} |d_{k}T_{x}f(x_{i})|^{2}
\]
where \(x_{i}, i = 1, 2, \ldots, q^{h} \), are coset representatives of \(\mathcal{G}^{-(h-h+1)} \) in \(\mathcal{G}_{z}^{-(h+1)} \). Thus summing this up with respect to \(k \), we have
\[
S^{(k)}f(x) = S^{(k)}T_{x}f(x).
\]

Proof of Theorem 3. It follows immediately from Theorem 2 and Lemma 6 that for \(0 < p < \infty \),
\[
\| f^{*} \|_{p} \approx \| S^{(k)}f \|_{p} = \| S^{(k)}T_{x}f \|_{p} \approx \| (T_{x}f)^{*} \|_{p}.
\]

Appendix. Let \((\Omega, \mathcal{A}, P) \) be a probability space and \(\{ \mathcal{A}_{n} \}_{n=1} \) a nondecreasing sequence of sub-\(\sigma \)-fields of \(\mathcal{A} \). Let \(f = \{ f_{n} \}_{n \geq 1} \) be a real-valued martingale relative to \(\{ \mathcal{A}_{n} \}_{n \geq 1} \) and \(\{ d_{k} \}_{k \geq 1} \) be the difference sequence of \(f \). For a nonnegative integer \(l \), write
\[
m^{(l)}f = \sup_{n} E(|f_{n+l}| \mid \mathcal{A}_{n})
\]
and \(S^{(l)}f = \left[\sum_{k \geq 1} E(d_{k}^{l} \mid \mathcal{A}_{k-1}) \right]^{1/2} \). \(f^{*} = m^{(0)}f = \sup_{n} |f_{n}| \) is the maximal function of \(f \) and \(Sf = S^{(0)}f = \left[\sum_{k \geq 1} d_{k}^{2} \right]^{1/2} \) is the square function of \(f \). Burkholder and Gundy [1] proved that for a large class of
martingales,
\begin{equation}
\| S^f \|_p \approx \| f^* \|_p \quad \text{for} \quad 0 < p < \infty.
\end{equation}

However examples (in [1]) show that
\begin{equation}
\| S^{(1)}f \|_p \approx \| m^{(1)}f \|_p \quad \text{for} \quad 0 < p < \infty
\end{equation}

fails to hold. Nevertheless by a slight modification of the previous argument, we can show that this is true for martingales relative to a regular stochastic basis (after Chow [6]).

Indeed, the crucial part of the proof is to consider the following stopping time:
\[\mu(x) = \inf \{ n : E(|f_{n+1}|^\lambda) < \lambda \} \quad (\lambda > 0). \]

Together with the regularity of the stochastic basis and (8), we get (9) by a similar argument as before.

We remark that our argument gives a simplified proof of (8) for martingales relative to a regular stochastic basis. Also the argument used in Lemma 5 similar to the one in [3] provides a new proof of that
\[\| sf \|_p \leq C_p \| f \|_p \quad \text{for} \quad p > 2 \]

where \(sf = S^{(1)}f = [\sum_{k>1} E(d^2_k | \mathcal{F}_{k-1})]^{1/2} \) is the conditioned square function of the martingale \(f \) (relative to any stochastic basis).

REFERENCES

Received February 20, 1975.
Aharon Atzmon, A moment problem for positive measures on the unit disc 317
Peter W. Bates and Grant Bernard Gustafson, Green’s function inequalities for
two-point boundary value problems .. 327
Howard Edwin Bell, Infinite subrings of infinite rings and near-rings 345
Grahame Bennett, Victor Wayne Goodman and Charles Michael Newman, Norms of
random matrices ... 359
Beverly L. Brechner, Almost periodic homeomorphisms of E^2 are periodic 367
Beverly L. Brechner and R. Daniel Mauldin, Homeomorphisms of the plane 375
Jia-Arng Chao, Lusin area functions on local fields 383
Frank Rimi DeMeyer, The Brauer group of polynomial rings 391
M. V. Deshpande, Collectively compact sets and the ergodic theory of
semi-groups ... 399
Raymond Frank Dickman and Jack Ray Porter, θ-closed subsets of Hausdorff
spaces .. 407
Charles P. Downey, Classification of singular integrals over a local field 417
Daniel Reuven Farkas, Miscellany on Bieberbach group algebras 427
Peter A. Fowler, Infimum and domination principles in vector lattices 437
Barry J. Gardner, Some aspects of T-nilpotence. II: Lifting properties over
T-nilpotent ideals .. 445
Gary Fred Gruenhage and Phillip Lee Zenor, Metrization of spaces with countable
large basis dimension ... 455
J. L. Hickman, Reducing series of ordinals 461
Hugh M. Hilden, Generators for two groups related to the braid group 475
Tom (Roy Thomas Jr.) Jacob, Some matrix transformations on analytic sequence
spaces ... 487
Elyahu Katz, Free products in the category of k_w-groups 493
Tsang Hai Kuo, On conjugate Banach spaces with the Radon-Nikodým property 497
Norman Eugene Liden, K-spaces, their antispaces and related mappings 505
Clinton M. Petty, Radon partitions in real linear spaces 515
Alan Saleski, A conditional entropy for the space of pseudo-Menger maps 525
Michael Singer, Elementary solutions of differential equations 535
Eugene Spiegel and Allan Trojan, On semi-simple group algebras. I 549
Charles Madison Stanton, Bounded analytic functions on a class of open Riemann
surfaces ... 557
Sherman K. Stein, Transversals of Latin squares and their generalizations 567
Ivan Ernest Stux, Distribution of squarefree integers in non-linear sequences 577
Lowell G. Sweet, On homogeneous algebras 585
Lowell G. Sweet, On doubly homogeneous algebras 595
Florian Vasilescu, The closed range modulus of operators 599
Arthur Anthony Yanushka, A characterization of the symplectic groups $\text{PSp}(2m, q)$
as rank 3 permutation groups ... 611
James Juei-Chin Yeh, Inversion of conditional Wiener integrals 623