K-SPACES, THEIR ANTISPACES AND RELATED MAPPINGS

NORMAN EUGENE LIDEN
The purpose of this paper is to investigate various properties of a mapping between spaces \(X \) and \(Y \) by relating them to properties of the corresponding mapping between the antispaces of \(X \) and that of \(Y \). The particular properties discussed include "closed", "proper", "perfect", "compact" "reflexive compact" and "compact trace". In general the context is that of \(k \)-spaces.

Throughout the paper \(X \) and \(Y \) are topological spaces in which each compact set closed, \(f: X \to Y \) is a (not necessarily continuous) surjection between the spaces \(X \) and \(Y \) and \(f^*: X^* \to Y^* \) is the corresponding surjection between the antispaces of \(X \) and the antispaces of \(Y \).

1. Antispaces. All of the results in this section are due to J. deGroot and appear, in essence, in [5].

Suppose \(X \) is a topological space. The collection of all compact sets in \(X \) is closed under the formation of finite unions and arbitrary intersections. Consequently this collection together with the set \(X \) itself can be taken as the closed sets for a new (weaker) \(T_2 \) topology on \(X \), denoted \(X^* \), and called the antispaces of \(X \). Furthermore each closed subset of \(X \) is compact in \(X^* \) and, provided \(X \) is a \(k \)-space (a \(T_2 \) space in which a set is closed if and only if it has compact intersection with each compact set), each compact subset of \(X^* \) is in turn closed in \(X \). The relation between the closed and the compact sets in \(X \) and in \(X^* \) is indicated in the following diagram.

\[
\begin{array}{ccc}
X & \longrightarrow & X^* \\
\text{closed} & \iff & \text{compact} \\
\downarrow & & \downarrow \\
\text{compact} & \iff & \text{a proper subset} \text{closed} \\
\longrightarrow & & \\
\end{array}
\]

If \(X \) is compact, \(X \) and its antispaces \(X^* \) coincide. If \(X \) is non-compact, \(X^* \) is a compact, connected, locally connected, \(T_1 \), non-\(T_1 \) space in which each nonempty open set is both dense and connected.

The concept of an antispaces was first introduced by J. deGroot in [5]. For papers in related topics see [6], [7] and [8].

The concept of a \(k \)-space was first introduced by R. Arens in
The category of k-spaces includes all first countable T_2 spaces, spaces complete in the sense of Čech ($G_δ$ subsets of compact T_2 spaces) and all quotient spaces of locally compact T_2 spaces. In fact Cohen [4] has shown that the latter category is all k-spaces. For further discussion the reader is referred to [2, 3, 11, 12, 13, 14, 15 and 17].

2. Mappings. $f: X \to Y$ is proper if $f^{-1}(K)$ is compact in X whenever K is compact in Y. It is easy to show that a 1-1, closed (open) mapping is proper as is a continuous mapping from a compact space onto a T_2 space. On the other hand, a proper mapping from a T_2 space onto a compact space is continuous. f is perfect if it is continuous, closed and has compact point inverses. f is quotient if a set C in Y is closed if and only if $f^{-1}(C)$ is closed in X. A continuous closed (open) mapping is quotient. Finally f is compact if $f(K)$ is compact in Y whenever K is compact in X. Clearly, a continuous mapping is compact.

Theorem 1. Let $f: X \to Y$ be surjective and $f^*: X^* \to Y^*$ the corresponding map of the antispaces.
1. If f is proper then f^* is continuous.
2. Let Y be T_2. If f^* is continuous and nonconstant then f is proper.
3. Let Y be a k-space. If f is continuous then f^* is proper.
4. Let X be a k-space. If f^* is proper then f is continuous.
5. Let X be a k-space. If f is closed then f^* is compact.
6. Let Y be a k-space. If f^* is compact then f is closed.
7. If f is compact then f^* is closed.
8. If f^* is closed then for each compact $C \subseteq X$, $f(C)$ is either compact or equal to Y.

Proof. All parts (except possibly 2) are straightforward applications of the results of §1. For a proof of 2 suppose f^* is continuous and nonconstant and C is a compact set in Y. If $C \neq Y$ then C is closed in Y^*, $f^{-1}(C)$ is a proper closed subset of X^* and hence $f^{-1}(C)$ is compact in X. If $C = Y = Y^*$ then $X = f^{-1}(Y)$ is also compact by the following argument: Let y_1 and y_2 be distinct elements of $Y = Y^*$. Since Y is T_2 there exists disjoint open sets U and V such that $y_1 \in U$ and $y_2 \in V$. Then $f^{-1}(V)$ and $f^{-1}(U)$ are nonempty open sets in X^* and hence from §1 X is compact.

Parts 1 and 6 of Theorem 1 yield the following result of Arhangelski in [2].
THEOREM 2. Let Y be a k-space. If $f: X \to Y$ is proper then f is closed.

If in Theorem 2 the condition "closed" is augmented by assuming the function to have compact point inverses as well, then the k-space condition on Y can be dropped to yield the following converse.

THEOREM 3. If $f: X \to Y$ is closed and has compact point inverses then f is proper.

Proof. Let A be a compact set in Y, let $B = f^{-1}(A)$ and suppose $\{C_a \cap B\}$ is a collection of sets having the finite intersection property where each C_a is closed in X. Let $\{D_a\}$ be the collection of all finite intersections of C_a's. Clearly the collection $\{D_a \cap B\}$ has the finite intersection property, as does the collection $\{f(D_a) \cap A\}$. Moreover each $f(D_a)$ is closed in Y. Since A is compact, there exists a point $y \in \bigcap_a (f(D_a) \cap A)$. Now $f^{-1}(y)$ is compact and the collection $\{f^{-1}(y) \cap C_a\}$ has the finite intersection property. Finally, since $f^{-1}(y) \subseteq B$, the collection $\{f^{-1}(y) \cap C_a \cap B\} = \{f^{-1}(y) \cap C_a\}$ and since $f^{-1}(y)$ is compact, the collection $\{f^{-1}(y) \cap C_a \cap B\}$ has nonempty intersection. Therefore $\{C_a \cap B\}$ has nonempty intersection. Hence $f^{-1}(A)$ is compact.

COROLLARY. Let Y be a k-space. $f: X \to Y$ is proper if and only if f is closed and has compact point inverses.

Proof. The proof is an immediate consequence of Theorems 2 and 3.

Notice that Theorem 3 implies the well-known fact that a perfect mapping is proper. Conversely, the corollary shows that a continuous, proper mapping onto a k-space is perfect. In this latter result the "continuity" condition cannot be weakened to "compact" for if X is a T_2 space which is not a k-space then the identity map from X onto $k(X)$ is compact and proper (X and $k(X)$ have the same compact sets) but it is not continuous (and hence not perfect).

THEOREM 4. Let X be a k-space. $f: X \to Y$ is continuous if and only if f is compact and has closed point inverses.

Proof. The corresponding function f^* is closed and has compact

\footnote{If X is a T_2 space, the k-extension of X, denoted $k(X)$, is the set X with the following topology: a set in $k(X)$ is closed if it has closed intersection in X with each compact set in X. $k(X)$ is a k-space whose topology is stronger than that of X. Moreover, $k(X)$ and X have the same compact sets, and $k(X) = X$ if and only if X is a k-space.}
point inverses. Thus it is proper. Since \(X \) is a \(k \)-space the original function is continuous (part 4, Theorem 1).

It is an easy consequence of Theorem 4 that a function from a \(k \)-space is perfect if and only if it is compact, closed and has compact point inverses.

Theorem 5. Let \(X \) and \(Y \) be \(k \)-spaces. A compact \(f: X \rightarrow Y \) is perfect if and only if \(f \) is proper.

Proof. Suppose \(f \) is compact and proper. By Theorem 2 \(f \) is closed and by Theorem 4 \(f \) is continuous. Hence \(f \) is perfect.

In Theorem 5 the \(k \)-space condition on \(Y \) cannot be weakened to \(T_1 \) for if \(Y \) is a \(T_1 \) space which is not a \(k \)-space, the identity mapping from \(k(Y) \) onto \(Y \) is compact and proper but it is not closed (and hence not perfect).

Corollary 1. Suppose \(X \) is \(T_2 \) and \(Y \) is compact. \(f: X \rightarrow Y \) is perfect if and only if \(f \) is closed and has compact point inverses.

Proof. If \(f \) is closed and has compact point inverses then since \(X \) is \(T_2 \) so also is \(Y \) ([10] p. 235). Hence \(Y \) is a \(k \)-space. Since \(f \) is proper (corollary to Theorem 3), \(X \) is compact \(T_2 \) and hence also a \(k \)-space. Finally, since \(f \) is compact the result follows from Theorem 5.

Corollary 2. Let \(X \) be a \(k \)-space and let \(Y \) be \(T_2 \). If \(f: X \rightarrow Y \) is one-to-one, compact and proper, then \(X \) is homeomorphic to \(k(X) \).

Proof. The composition of \(f \) followed by the identity mapping from \(Y \) onto \(k(Y) \) is a 1-1, compact, proper mapping from \(X \) onto \(k(Y) \) and (since \(X \) and \(k(Y) \) are \(k \)-spaces) hence by Theorem 5 a 1-1, perfect mapping (hence a homeomorphism).

Clearly if \(X \) is a \(T_2 \) space then \(X \) is a 1-1, compact, proper image of \(k(X) \). The above corollary says, in fact, that each \(T_2 \) space is a 1-1 compact, proper image of one and only one \(k \)-space. An immediate consequence is that a \(T_2 \) space is a \(k \)-space if and only if it is not a 1-1, compact proper image of another \(k \)-space.

The collection of all \(T_2 \) spaces can be partitioned into mutually disjoint classes such that each class contains a unique \(k \)-space. Moreover, each \(k \)-space is maximal among the spaces of the class in the sense that each is a 1-1, compact, proper image of it.
There are numerous references in the literature to two properties of functions closely related to those considered thus far in this section. For the sake of completeness these are discussed in the next few theorems.

A function \(f: X \rightarrow Y \) has **compact trace** if for each compact set \(K \) in \(Y \) there exists a compact set \(L \) in \(X \) such that \(f(L) = K \). Clearly every proper mapping has compact trace. A function \(f \) is **reflexive compact** if whenever \(K \) is compact in \(Y \), then \(f^{-1}(f(K)) \) is compact in \(X \). Reflexive compactness of a mapping together with its having compact trace implies "proper": Suppose \(K \) is a compact set in \(Y \). By the compact trace property there exists a compact set \(L \) in \(X \) such that \(f(L) = K \). By reflexive compactness \(f^{-1}(K) = f^{-1}(f(L)) \) is compact. The converse is true provided the mapping is compact; that is, a compact proper mapping is both reflexive compact and has compact trace. These observations together with Theorem 5 yield.

Theorem 6. Suppose \(X \) and \(Y \) are \(k \)-spaces. \(f: X \rightarrow Y \) is perfect if and only if it is compact, reflexive compact and has compact trace.

In [9] Duda shows that a reflexive compact, quotient mapping from a \(k \)-space onto a \(T_2 \) space is proper. In view of Theorems 4, 5 and 11 this can be strengthened to the statement

Theorem 7. Suppose \(X \) is a \(k \)-space and \(Y \) is \(T_2 \). \(f: X \rightarrow Y \) is perfect if and only if it is reflexive compact and quotient.

Duda shows also that for a function on a locally compact \(T_2 \) space having compact and connected point inverses implies reflexive compactness. This yields the following corollary to the above theorem.

Corollary. Let \(X \) be locally compact and \(T_2 \), and let \(Y \) be \(T_2 \). If \(f: X \rightarrow Y \) is a quotient mapping having compact and connected point inverses then \(f \) is perfect.

Theorem 8. Let \(Y \) be a \(k \)-space. If \(f: X \rightarrow Y \) is a continuous mapping having compact trace then \(f \) is quotient.

Proof. Suppose \(f^{-1}(C) \) is closed. In order to show that \(C \) is closed in \(Y \) it suffices to show that \(C \cap K \) is compact for an arbitrary compact set \(K \). Now there exists a compact set \(L \) in \(X \) such that \(f(L) = K \). \(f^{-1}(C) \cap L \) is compact in \(X \) and hence so is \(f(f^{-1}(C) \cap L) = C \cap f(L) = C \cap K \).
In [18] Whyburn proves that a continuous function from a locally compact separable metric space onto a separable metric space which has compact trace and compact, connected point inverses is proper. The corollary to Theorem 7 together with Theorem 8 yields the following improvement of Whyburn's result.

Theorem 9. Let X be locally compact and T_2, and let Y be a k-space. If $f: X \to Y$ is continuous and has compact trace and compact connected point inverses then f is perfect.

The connectedness criterion in the above theorem is necessary by the following example: $f: [0, 2] \to [0, 1]$ defined by $f(x) = x$ for $x \in [0, 1]$ and $f(x) = 2 - x$ for $x \in [1, 2]$ is continuous, has compact point inverses and has compact trace but it is not perfect.

As a final comment on the compact trace property, Michael has shown in [13] that a closed, continuous mapping from a paracompact space has compact trace.

The final two results give conditions on a function sufficient to insure that the image (respectively inverse-image) of a k-space is again a k-space. The first is well-known and appears in [10]. The second is due to Arhangelski and appears in [2].

Theorem 10. Let X be a k-space and let Y be T_2. If $f: X \to Y$ is a quotient mapping then Y is a k-space.

Theorem 10 is not true for 1-1, continuous, proper maps for if Y is a T_2 space which is not a k-space then the identity mapping from $k(Y)$ onto Y is 1-1 continuous and proper.

Theorem 11. Let X be T_2 and let Y be a k-space. If $f: X \to Y$ is continuous and proper, then X is a k-space.

Theorem 11 is not true for continuous, closed, open mappings for if X is an arbitrary non-k-space and Y a one point space, the constant mapping from X onto Y is continuous, closed and open, Y is a k-space but X is not. Neither can the continuity condition be weakened to compactness for if X is a T_2 space which is not a k-space the identity mapping from X onto $k(Y)$ is compact and proper.

3. **Convergence.** In this section the properties "compact", "closed", "proper" and "perfect" of a mapping are described in terms of the convergence of sequences and filterbases.

Theorem 12. Let X and Y be second countable T_2 spaces. A con-
tinuous \(f: X \to Y \) is perfect if and only if whenever \(\{x_n\} \) has no cluster points in \(X \), \(\{f(x_n)\} \) has none in \(Y \).

Proof. Only if. Suppose \(\{f(x_n)\} \) has a cluster point \(y_0 \). There exists a subsequence \(\{f(y_n)\} \) which converges to \(y_0 \). Now \(A = \{f(y_n)\} \cup \{y_0\} \) is compact and thus (since \(f \) if proper) \(f^{-1}(A) \) is compact and contains \(\{y_n\} \). Thus \(\{y_n\} \), and hence \(\{x_n\} \), has a cluster point. If. In order to show that \(f \) is perfect it suffices, by Theorem 5, to show that \(f \) is proper. Assume \(A \) is compact in \(Y \) and that \(C = f^{-1}(A) \) is not compact in \(X \). Then there exists a sequence \(\{x_n\} \) in \(C \) having no cluster points. Hence \(\{f(x_n)\} \) has no cluster points in \(A \). Contradiction.

Corollary. A continuous mapping on the real line is perfect if and only if \(\lim_{x \to \pm \infty} f(x) \) is either \(+\infty \) or \(-\infty \).

In [18] Whyburn gives the following characterization of perfect mappings.

Theorem 13. A continuous mapping on the real line is perfect if and only if it has compact point inverses.

Theorem 14. Suppose \(X \) and \(Y \) are second countable \(T_2 \) spaces. \(f \) is proper if and only if whenever \(\{f(x_n)\} \) has a cluster point \(y_0 \) in \(Y \) then \(\{x_n\} \) has a cluster point in \(X \) and if \(\{x_n\} \) has only one cluster point \(x_0 \), \(f(x_0) = y_0 \).

Proof. Only if. Suppose \(\{f(x_n)\} \) has a cluster point \(y_0 \). Then there exists a subsequence \(\{f(y_n)\} \) which converges to \(y_0 \). Now \(A = \{f(y_n)\} \cup \{y_0\} \) is compact and thus \(f^{-1}(A) \) is compact and contains \(\{y_n\} \). Thus \(\{y_n\} \), and hence \(\{x_n\} \), has a cluster point \(x_0 \). Suppose \(\{x_n\} \) has only \(x_0 \) as a cluster point. If \(f(x_0) \neq y_0 \) there exists a subsequence \(\{f(y_n)\} \) of \(\{f(x_n)\} \) which converges to \(y_0 \) and such that \(f(y_n) \neq y_0 \) for each \(n \). Now \(A = \{f(y_n)\} \cup \{y_0\} \) is compact and hence \(f^{-1}(A) \) is compact. Furthermore \(\{y_n\} \subset f^{-1}(A) \) and thus must have a cluster point in \(f^{-1}(A) \). Since \(x_0 \in f^{-1}(A) \), \(\{y_n\} \) and hence \(\{x_n\} \) has a cluster point other than \(x_0 \). Contradiction. If. Suppose \(A \) is compact in \(Y \), and \(\{x_n\} \) is a sequence in \(f^{-1}(A) \). \(\{x_n\} \) has a cluster point \(x_0 \) in \(X \). (Otherwise \(\{f(x_n)\} \) has no cluster points in \(A \), contradiction.) Thus there exists a subsequence \(\{y_n\} \to x_0 \). Now since \(\{f(y_n)\} \) has a cluster point in \(A \) it must be \(f(x_0) \). Therefore \(x_0 \in f^{-1}(A) \). Therefore \(f^{-1}(A) \) is compact.

Lemma. Suppose \(X \) is a locally compact \(T_2 \) space. A filterbase \(\{B_n\} \) converges to \(x_0 \) in \(X^* \) if and only if \(\{B_n\} \) has at most \(x_0 \) as a
Proof. Suppose \(\{B_a\} \) has at most \(x_0 \) as a cluster point in \(X \) (equivalently \(\bigcap_a \bar{B}_a \) contains at most \(x_0 \)). If \(\{B_a\} \) does not converge to \(x_0 \) in \(X^* \) then there exists a set \(U \), open in \(X^* \), containing \(x_0 \), such that \(B_a \cap U^c \neq \emptyset \) for every \(\alpha \). Since \(\{B_a\} \) is a filterbase \(\{\bar{B}_a \cap U^c\} \) has the finite intersection property and since \(U^c \) is compact in \(X \), \(\bigcap_a \bar{B}_a \cap U^c \neq \emptyset \). Contradiction. Only if. Suppose \(\{B_a\} \) has a cluster point \(y_0 \) in \(X \) in addition to perhaps \(x_0 \). Since \(X \) is locally compact \(T_2 \) there exists a set \(U \), open in \(X \), containing \(x_0 \), such that \(y_0 \not\in \bar{U} \) and such that \(\bar{U} \) is compact. Thus \(\bar{U}^c \) contains \(y_0 \) and is open in \(X^* \) (and hence in \(X \)) and since \(y_0 \) is a cluster point of \(\{B_a\} \) in \(X \), \(B_a \cap \bar{U}^c \neq \emptyset \) for each \(\alpha \). Therefore no \(B_a \) is contained completely in \(U \) which implies that \(\{B_a\} \) does not converge to \(x_0 \) in \(X^* \).

Theorem 15. Let \(X \) and \(Y \) be locally compact \(T_2 \) spaces. A nonconstant \(f:X \rightarrow Y \) is proper if and only if whenever \(\{B_a\} \) is a filterbase in \(X \) with at most \(x_0 \) as a cluster point then \(\{f(B_a)\} \) is a filterbase in \(Y \) with at most \(f(x_0) \) as a cluster point.

Proof. From Theorem 1 \(f \) is proper if and only if \(f^* \) is continuous. This together with the above lemma and the standard characterization of continuity with respect to filterbases proves the theorem.

Theorem 16. \(f:X \rightarrow Y \) is compact if whenever \(x_0 \) is a cluster point of a filterbase \(\{B_a\} \) in \(X \) then \(f(x_0) \) is a cluster point of \(\{f(B_a)\} \) in \(Y \).

Proof. Suppose \(A \) is compact in \(X \) and let \(\mathcal{B} \) be a filterbase in \(f(A) \). Now \(f^{-1}(\mathcal{B}) \cap A = \{f^{-1}(D) \cap A: D \in \mathcal{B}\} \) is a filterbase in \(A \) and hence has a cluster point \(x_0 \) in \(A \), since \(A \) is compact. Therefore \(f(x_0) \) is a cluster point of \(f(f^{-1}(\mathcal{B}) \cap A) = \{f(f^{-1}(D) \cap A): D \in \mathcal{B}\} = \{D \cap f(A): D \in \mathcal{B}\} = \mathcal{B} \). Hence \(f(A) \) is compact.

Theorem 17. Suppose \(X \) and \(Y \) are locally compact \(T_2 \). \(f:X \rightarrow Y \) is closed if whenever a filterbase \(\{B_a\} \) has at most \(x_0 \) as a cluster point in \(X \), then \(\{f(B_a)\} \) has a subordinate filterbase with at most \(f(x_0) \) as a cluster point in \(Y \).

Proof. By the lemma the hypothesis is equivalent to the following statement in \(X^* \) and \(Y^* \): whenever a filterbase \(\{B_a\} \) converges to \(x_0 \) in \(X^* \), then \(f(x_0) \) is a cluster point of \(\{f(B_a)\} \) in \(Y^* \). Hence by Theorem 16 \(f^* \) is compact. The result follows by part 6, Theorem 1.
It is immediate from Theorem 15 that a proper mapping satisfies the hypothesis of Theorem 17. Consequently this condition is weaker than "proper" and stronger than "closed". The following counterexample shows in fact, that the condition is strictly stronger: Consider \(f: \mathbb{R} \to \{0, 1\} \) defined by \(f(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases} \) where \(\{0, 1\} \) has the discrete topology. \(f \) is closed but does not satisfy the condition in Theorem 17 for the sequence \(\{1/n\} \) has at most 0 as a cluster point but \(\{ f(1/n) \} \) is the constant sequence of 1's and thus has no subsequence with at most 0 as a cluster point.

Theorem 18. Suppose \(X \) and \(Y \) are first countable spaces. \(f: X \to Y \) is closed if and only if whenever \(\{ f(x_n) \} \to y_0 \), \(y_0 \neq f(x_n) \) for any \(n \), then there exists an \(x_0 \) and a subsequence \(\{ y_n \} \) of \(\{ x_n \} \) such that \(\{ y_n \} \to x_0 \) and \(f(x_0) = y_0 \).

Proof. If. Suppose \(A \) is closed. To prove that \(f(A) \) is closed it suffices to show that if \(y_0 \) is the limit of a sequence from \(f(A) \) then \(y_0 \in f(A) \). Suppose \(\{ f(x_n) \} \to y_0 \) where each \(x_n \in A \). If \(\{ f(x_n) \} \) is a finite set we are done. If \(\{ f(x_n) \} \) is an infinite set there is a subsequence \(\{ f(a_n) \} \to y_0 \) such that \(y_0 \neq f(a_n) \) for any \(n \). Therefore there exists an \(x_0 \) such that \(y_0 = f(x_0) \) and \(x_0 \) is the limit of some subsequence of \(\{ a_n \} \). Since \(A \) is closed \(x_0 \in A \) and thus \(y_0 \in f(A) \). Only if. Suppose \(\{ f(x_n) \} \to y_0 \) where \(y_0 \neq f(x_n) \) for any \(n \). Let \(A = \{ x_n \} \). Then \(f(A) \) is closed and contains the sequence \(\{ f(x_n) \} \). Thus \(y_0 \in f(A) \). Therefore there exists an \(x_0 \in A \) such that \(y_0 = f(x_0) \). Since \(x_0 \in \{ x_n \} \), there exists a subsequence of \(\{ x_n \} \) which converges to \(x_0 \).

References

Received July 1, 1973 and in revised form February 7, 1975.
Aharon Atzmon, A moment problem for positive measures on the unit disc 317
Peter W. Bates and Grant Bernard Gustafson, Green’s function inequalities for
two-point boundary value problems ... 327
Howard Edwin Bell, Infinite subrings of infinite rings and near-rings 345
Grahame Bennett, Victor Wayne Goodman and Charles Michael Newman, Norms of
random matrices ... 359
Beverly L. Brechner, Almost periodic homeomorphisms of E^2 are periodic 367
Beverly L. Brechner and R. Daniel Mauldin, Homeomorphisms of the plane 375
Jia-Arng Chao, Lusin area functions on local fields 383
Frank Rimi DeMeyer, The Brauer group of polynomial rings 391
M. V. Deshpande, Collectively compact sets and the ergodic theory of
semi-groups .. 399
Raymond Frank Dickman and Jack Ray Porter, θ-closed subsets of Hausdorff
spaces .. 407
Charles P. Downey, Classification of singular integrals over a local field 417
Daniel Reuven Farkas, Miscellany on Bieberbach group algebras 427
Peter A. Fowler, Infimum and domination principles in vector lattices 437
Barry J. Gardner, Some aspects of T-nilpotence. II: Lifting properties over
T-nilpotent ideals .. 445
Gary Fred Gruenhage and Phillip Lee Zenor, Metrization of spaces with countable
large basis dimension ... 455
J. L. Hickman, Reducing series of ordinals ... 461
Hugh M. Hilden, Generators for two groups related to the braid group 475
Tom (Roy Thomas Jr.) Jacob, Some matrix transformations on analytic sequence
spaces .. 487
Elyahu Katz, Free products in the category of k_w-groups 493
Tsang Hai Kuo, On conjugate Banach spaces with the Radon-Nikodým property .. 497
Norman Eugene Liden, K-spaces, their antispaces and related mappings 505
Clinton M. Petty, Radon partitions in real linear spaces 515
Alan Saleski, A conditional entropy for the space of pseudo-Menger maps 525
Michael Singer, Elementary solutions of differential equations 535
Eugene Spiegel and Allan Trojan, On semi-simple group algebras. I 549
Charles Madison Stanton, Bounded analytic functions on a class of open Riemann
surfaces ... 557
Sherman K. Stein, Transversals of Latin squares and their generalizations 567
Ivan Ernest Stux, Distribution of squarefree integers in non-linear sequences 577
Lowell G. Sweet, On homogeneous algebras 585
Lowell G. Sweet, On doubly homogeneous algebras 595
Florian Vasilescu, The closed range modulus of operators 599
Arthur Anthony Yanushka, A characterization of the symplectic groups $\text{PSp}(2m, q)$
as rank 3 permutation groups ... 611
James Juei-Chin Yeh, Inversion of conditional Wiener integrals 623