RADON PARTITIONS IN REAL LINEAR SPACES

Clintond M. Petty
RADON PARTITIONS IN REAL LINEAR SPACES

C. M. PETTY

An intimate connection is established between primitive Radon partitions and generalized poonems of a set in a real linear space \mathcal{L}. It is shown that if $K \subseteq \mathcal{L}$ is convex then K is the convex hull of its extreme points if and only if the intersection of poonems of K is a poonem of K. Among the applications is a study of k-neighborly sets. This yields a considerable generalization of the theory of k-neighborly polytopes.

1. Basic concepts. The notion of a primitive partition introduced in R^d by Hare and Kenelly [3] may be formulated for a real linear space \mathcal{L}. A pair of subsets (A, B) is called a Radon partition provided $A \cap B = \emptyset$ and $\text{conv } A \cap \text{conv } B \neq \emptyset$. A Radon partition (A, B) is called primitive if (A', B') with $A' \subseteq A, B' \subseteq B$ is a Radon partition only in the case $A' = A$ and $B' = B$.

If $P \subseteq \mathcal{L}$ then a subset $S \subseteq P$ is called a poonem of P provided (a) $\text{conv } S = \text{conv } P \cap \text{aff } S$ and (b) $\text{conv } P \sim \text{conv } S$ is convex. If (a) holds for some $S \subseteq P$, $\text{conv } P \sim \text{conv } S = \text{conv } P \sim \text{aff } S$ and if P is a closed convex set in R^d and $S \subseteq P$ is convex then this definition reduces to the definition of poonem given in [2, p. 20]. However, the admission of nonconvex poonems is essential for the results obtained here.

Primitive partitions and poonems are basic in that other concepts may be defined in terms of them.

DEFINITIONS 1.1. (a) A subset $P \subseteq \mathcal{L}$ is called a simplex provided there is no primitive partition (A, B) with $A \cup B \subseteq P$. (b) If F is a flat and $P \subseteq F$, then P is said to be in general position in F provided for any subset $S \subseteq P$ either S is a simplex or $\text{aff } S = F$. (c) A set $P \subseteq \mathcal{L}$ is said to be k-neighborly, where k is a cardinal number, provided every subset $S \subseteq P$ with $\text{card } S \leq k$ is a poonem of P.

If K is a convex d-polytope in R^d and $1 \leq k \leq d$, then K is k-neighborly in the usual sense [2, Chapter 7] if and only if $P = \text{vert } K$ is k-neighborly as defined here.

2. The principal theorems. We first recall or prove some basic results.

LEMMA 2.1. (a) If (A, B) is a Radon partition, then there exists a primitive partition (A', B') with $A' \subseteq A$ and $B' \subseteq B$. If (A, B)
is primitive, then both \(A\) and \(B\) are finite simplices, \(\text{conv} A \cap \text{conv} B\)
is a singleton and \(\text{card} (A \cup B) = \dim \text{aff} (A \cup B) + 2\).

(b) A nonempty set \(P\) is a simplex if and only if \(P\) is an affinely independent set.

(c) If \(x \in \text{aff} P\) but \(x \notin P\), then there exists a simplex \(T \subset P\) and a primitive partition \((A, B)\) such that \(A \cup B = \{x\} \cup T\).

Proof. (a) Suppose \((A, B)\) is a Radon partition and \(p \in \text{conv} A \cap \text{conv} B\). Then \(p\) is a convex combination of a finite number of points in \(A\) and \(p\) is also a convex combination of a finite number of points in \(B\). See [5, p. 15]. The existence of a primitive \((A', B')\) now follows easily. For a proof of the remaining statements in (a) see [1] and [3].

(b) A finite set of (distinct) points \(x_1, \ldots, x_n\) is affinely independent if the conditions \(\alpha_1 x_1 + \cdots + \alpha_n x_n = 0\) and \(\alpha_1 + \cdots + \alpha_n = 0\) are simultaneously satisfied only by \(\alpha_1 = \cdots = \alpha_n = 0\). A nonempty set \(P\) is affinely independent if every nonempty finite subset of \(P\) is affinely independent. In the proof of (a) above, the difference of the two convex combinations which represent \(p\) yields an affine dependency. It is now easily shown that a nonempty set \(P\) is affinely dependent if and only if there exists a primitive \((A, B)\) with \(A \cup B \subset P\).

(c) If \(S = \{x_1, \ldots, x_n\} \subset P\), then \(\text{aff} S = \{\alpha_1 x_1 + \cdots + \alpha_n x_n | \alpha_1 + \cdots + \alpha_n = 1\}\) and \(\text{aff} P = \bigcup \{\text{aff} T | T \subset P\text{ is finite}\}\). It follows that \(\text{aff} P = \bigcup \{\text{aff} T | T \subset P\text{ is a finite simplex}\}\). If \(x \in \text{aff} P\) but \(x \notin P\), then there exists a minimal simplex \(T \subset P\) such that \(x \in \text{aff} T\) but \(x \notin T\). Thus, \(\{x\} \cup T\) can be partitioned so that \(A \cup B = \{x\} \cup T\) and \((A, B)\) is a Radon partition. But \((A, B)\) must be primitive since, otherwise, \(x\) would lie in the affine hull of a proper subset of \(T\) contrary to the minimal property of \(T\).

Theorem 2.2. Let \(S \subset P \subset \mathcal{L}\). Then the following four statements are equivalent:

(a) \(S\) is a poonem of \(P\).

(b) If \((A, B)\) is primitive with \(A \subset \text{aff} S\) and \(B \subset \text{conv} P\), then \(B \subset \text{conv} S\).

(c) If \((A, B)\) is primitive with \(A \subset S\) and \(B \subset P\), then \(B \subset \text{conv} S\).

(d) \(\text{conv} (P \sim \text{conv} S) \cap \text{aff} S = \emptyset\).

Proof. (a) \(\Rightarrow\) (b). Let \(S\) be a poonem of \(P\) and suppose \((A, B)\) is primitive with \(A \subset \text{aff} S\) and \(B \subset \text{conv} P\). Let \(p \in \text{conv} A \cap \text{conv} B\) and let \(B = B_1 \cup B_2\) where \(B_1 \subset \text{conv} S\) and \(B_2 \subset \text{conv} P \sim \text{conv} S\). By definition of a poonem, \(\text{conv} B_1 \subset \text{conv} P \sim \text{conv} S = \text{conv} P \sim \text{aff} S\) and therefore \(\text{conv} B_1 \cap \text{aff} S = \emptyset\). Since \(p \in \text{conv} A \subset \text{aff} S\), it follows
that \(p \in \text{conv} B_2 \) and therefore \(B_1 \neq \emptyset \). Suppose \(B_2 \neq \emptyset \). If \(p \in \text{conv} B_1 \), then \((A, B)\) would be a Radon partition contradicting \((A, B)\) being primitive. Thus, \(p \in \text{conv} B = \text{conv} (\text{conv} B_1 \cup \text{conv} B_2) \) but \(p \in \text{conv} B_1 \cup \text{conv} B_2 \). By a basic result in real linear spaces [5, p. 16], there exist \(p \in \text{conv} B \) such that \(p = tp_1 + (1 - t)p_2 \) where \(0 < t < 1 \).

Since both \(p \) and \(p_1 \) belong to \(\text{aff} S \), so also does \(p_2 \). But \(\text{conv} B_2 \cap \text{aff} S = \emptyset \). Hence \(B_2 = \emptyset \) which completes the proof.

(b) \(\Rightarrow \) (c) is trivial.

(c) \(\Rightarrow \) (d). Let \(K_1 = \text{conv} S, D = P \sim K_1 \) and \(K_2 = \text{conv} D \). Suppose there exists a point \(p \in K_2 \cap \text{aff} S \). If \(p \in K_1 \), then \((S, D)\) is a Radon partition. By Lemma (2.1a), there exists a primitive \((A', B')\) with \(A' \subset S \) and \(B' \subset D \). But (c) implies \(B' \subset K_1 \) and therefore \(B' \subset D \cap K_1 \neq \emptyset \). Thus, \(p \in \text{aff} S \sim K_1 \). By Lemma (2.1c), there exists a simplex \(T \subset S \) and a primitive \((A, B)\) such that \(A \cup B = T \cup \{p\} \).

We may assume that \(p \in B \) and therefore \(A \subset T \subset S \). Let \(C = B \sim \{p\} \subset T \). Now \((A, C \cup D)\) is a Radon partition since \(A \cap (C \cup D) = \emptyset \) and \(\text{conv} A \cap \text{conv} (C \cup D) \supset \text{conv} A \cap \text{conv} B \neq \emptyset \). By Lemma (2.1a), there exists a primitive \((A', B')\) with \(A' \subset A \subset T \subset S \) and \(B' \subset C \cup D \subset P \). Now (c) implies \(B' \subset K_1 \). Since \(D \cap K_1 = \emptyset \) we have \(B' \subset C \subset T \). But \(T \) is a simplex and therefore \(A' \cup B' \subset T \). Hence, \(K_2 \cap \text{aff} S = \emptyset \) which completes the proof.

(d) \(\Rightarrow \) (a). As above, let \(K_1 = \text{conv} S, D = P \sim K_1 \) and \(K_2 = \text{conv} D \). If \(K_1 = \emptyset \), then \(S = \emptyset \) is a poonem of \(P \) and if \(K_2 = \emptyset \), then \(\text{conv} S = \text{conv} P \) which, by definition, implies \(S \) is a poonem of \(P \). We may, therefore, assume that \(K_1 \) and \(K_2 \) are nonempty. Let \(p \in \text{conv} P \cap \text{aff} S \). Since \(p \in \text{conv} (K_1 \cup K_2) \), there exist \(p_i \in K_i \) such that \(p = tp_1 + (1 - t)p_2 \) where \(0 \leq t \leq 1 \). If \(t < 1 \), then \(p \in \text{aff} S \) which contradicts (d). Hence \(t = 1 \) and \(p = p_1 \in K_1 \). Thus \(K_1 = \text{conv} P \cap \text{aff} S \) which establishes part (a) of the definition of a poonem.

Now, suppose \(\text{conv} P \sim K_1 \) is not convex. Then, there exist \(r_1, r_2 \in \text{conv} P \sim K_1 \) such that for some \(\alpha, 0 < \alpha < 1 \), the point \(p_0 = \alpha r_1 + (1 - \alpha) r_2 \in K_1 \). Since \(r_1 \in \text{conv} P = \text{conv} (K_1 \cup K_2) \), we have \(r_1 = (1 - \beta_1)p_1 + \beta_1 q_1 \) where \(p_1 \in K_1 \), \(q_1 \in K_2 \) and \(0 \leq \beta_1 \leq 1 \). However, \(\beta_1 > 0 \) since \(r_1 \notin K_1 \). Let \(\lambda = \beta_2 \alpha / (\beta_1 \alpha + \beta_2 (1 - \alpha)) \), \(0 < \lambda < 1 \). Then \(\lambda q_1 + (1 - \lambda) q_2 = \tau_0 p_0 + \tau_1 q_1 + \tau_2 p_2 \) where \(\tau_0 = (\beta_1 \alpha + \beta_2 (1 - \alpha) - 1 \tau_1 = -\alpha (1 - \beta_1) \tau_0 \) and \(\tau_2 = -(1 - \alpha)(1 - \beta_2) \tau_0 \). Since \(p_0, p_1, p_2 \) belong to \(K_1 \) and \(\tau_0 + \tau_1 + \tau_2 = 1 \), the point \(\lambda q_1 + (1 - \lambda) q_2 \in \text{aff} S \) which contradicts (d). Hence \(\text{conv} P \sim K_1 \) is convex. This completes the proof of Theorem 2.2.

Corollary 2.3. Let \(Q \subset S \subset P \subset \mathcal{S} \).

(a) If \(Q \) is a poonem of \(S \) and \(S \) is a poonem of \(P \), then \(Q \) is a poonem of \(P \).

(b) If \(Q \) is a poonem of \(P \), then \(Q \) is a poonem of \(S \).
P is a simplex if and only if every subset of P is a poonem of P.

Proof. (a) Suppose (A, B) is primitive with $A \subset Q$ and $B \subset P$. We need only show that $B \subset \text{conv } Q$. Since S is a poonem of P and $A \subset S$, we have $B \subset \text{conv } S$. But Q is a poonem of S. Thus, $B \subset \text{conv } Q$.

Proofs of (b) and (c) are easily obtained.

Corollary 2.4. Let $K \subset \mathcal{L}$ be convex and let $P_c(K)$ be the set of all convex poonems of K. If $P_c(K)$ is partially ordered by inclusion, then $P_c(K)$ is a complete lattice where the greatest lower bound of a family of convex poonems is their intersection.

Proof. The empty set \emptyset and K itself are convex poonems of K. We need only show that the intersection $H = \bigcap K_a$ of a family $\{K_a\}$ of convex poonems of K is a poonem of K. Suppose (A, B) is primitive with $A \subset H$ and $B \subset K$. Since K_a is a poonem of K and $A \subset K_a$, we have $B \subset K_a$. Thus $B \subset H$ and therefore H is a poonem of K which completes the proof.

Even for convex K, the intersection of poonems need not be a poonem. In this direction, the following theorem with $P = K$ yields a new characterization of those convex sets K for which $K = \text{conv } (\text{ext } K)$.

Theorem 2.5. Let $P \subset \mathcal{L}$. Then $\text{conv } P = \text{conv } (\text{ext } (\text{conv } P))$ if and only if the intersection of an arbitrary family of poonems of P is a poonem of P.

Proof. Suppose $\text{conv } P = \text{conv } (\text{ext } (\text{conv } P))$. Let $\{S_a\}$ be a family of poonems of P and let $S = \bigcap S_a$. Suppose (A, B) is primitive with $A \subset S$ and $B \subset P$. By Theorem 2.2, $B \subset \bigcap \text{conv } S_a$. Let $b \in B$. If $b \in \text{ext } (\text{conv } P)$, then $b \in \text{ext } (\text{conv } S_a)$ for each α and it follows that $b \in S$. Now suppose $b \in \text{ext } (\text{conv } P)$. Since $b \in P \subset \text{conv } P = \text{conv } (\text{ext } (\text{conv } P))$, there exists by Lemma 2.1a, a primitive $([b], T)$ with $T \subset \text{ext } (\text{conv } P)$. For each α, $\text{conv } (B \cup S_a) = \text{conv } S_a$ and therefore, by definition of a poonem, $B \cup S_a$ is also a poonem of P. Since $[b] \subset B \cup S_a$, Theorem 2.2 implies $T \subset \text{conv } (B \cup S_a) = \text{conv } S_a$. Hence, for each α, $T \subset S_a$ and therefore $T \subset S$. The latter implies $b \subset \text{conv } S$. Thus, $B \subset \text{conv } S$ and S is a poonem of P by Theorem 2.2.

Now suppose that the intersection of an arbitrary family of poonems of P is a poonem of P. Let $p \in P$. We will show that $p \in \text{conv } (\text{ext } (\text{conv } P))$. Let $\{S_a\}$ be the family of all poonems of P which contain the point p and let $S = \bigcap S_a$. By hypothesis, S is the smallest poonem
of P which contains the point p. Now $S \sim \{p\} \subset \text{ext (conv } S)$. For suppose $q \in S, q \neq p$. If $\text{conv } (S \sim \{q\}) = \text{conv } S$, then $S \sim \{q\}$ is a poonem of P which contains the point p contrary to the definition of S. Hence $q \in \text{ext (conv } S)$. By Corollary 2.3a, we have $\text{ext (conv } S) \subset \text{ext (conv } P)$. Thus, if $p \in \text{ext (conv } S)$ then $p \in \text{conv } (S \sim \{p\})$ and, in either case, $p \in \text{conv (ext (conv } P))$. Hence, it follows that $\text{conv } P = \text{conv (ext (conv } P))$.

Theorem 2.6. Let $S \subset P \subset \mathcal{L}$. If $P = \text{ext (conv } P)$, then the following three statements are equivalent:

(a) S is a poonem of P.

(b) If (A, B) is primitive with $A \subset S$ and $B \subset P$, then $B \subset S$.

(c) $\text{conv } (P \sim S) \cap \text{aff } S = \emptyset$.

Proof. This follows directly from Theorem 2.2 with two observations. First, if $B \subset P \cap \text{conv } S$, then the hypothesis implies $B \subset S$. Second, the hypothesis implies $P \sim S = P \sim \text{conv } S$.

The above theorem is a generalization of a result of M. Breen [1, Theorem 4], who established the equivalence of (a) and (b) when P in the vertex set of a convex polytope in R^d.

Corollary 2.7. Let $P \subset \mathcal{L}$ satisfy $P = \text{ext (conv } P)$.

(a) If S_1 and S_2 are poonems of P with $\text{aff } S_1 = \text{aff } S_2$, then $S_1 = S_2$.

(b) If P is in general position in $\text{aff } P$, then every poonem of P other than P itself is a simplex.

Proof. (a) This follows from the equivalence of (a) and (c) in Theorem 2.6.

(b) Suppose $S \subset P$ is not a simplex. By Definition 1.1b we have $\text{aff } S = \text{aff } P$. If S is a poonem of P, then $S = P$ by part (a).

3. Applications. Given $S \subset P \subset \mathcal{L}$, we first consider the problem of the existence of a Radon partition (A, B) with $A \cup B = P$ and $S \subset A$. This problem was solved by Hare and Kenelly [3] for finite sets P in general position in R^d. The results here form a substantial generalization.

Theorem 3.1. Let $S \subset P \subset \mathcal{L}$. Then there exists a Radon partition (A, B) with $A \cup B = P$ and $S \subset A$ if and only if either $P \sim S$ is not a simplex or $\text{conv } S \cap \text{aff } (P \sim S) \neq \emptyset$.

Proof. Suppose there exists a Radon partition (A, B) with $A \cup$
Then there exists a primitive \((A', B')\) with \(A' \subset A\) and \(B' \subset B \subset P \sim S\). If \(A' \subset P \sim S\), then \(P \sim S\) is not a simplex by Definition 1.1a. Therefore, we may assume that \(S \cap A' \neq \emptyset\).

Suppose \(\text{conv } S \cap \text{aff } (P \sim S) = \emptyset\). Then since \(\text{conv } (P \sim \text{conv } (P \sim S)) \cap \text{aff } (P \sim S) \subset \text{conv } S \cap \text{aff } (P \sim S)\), by Theorem 2.2, \(P \sim S\) is a poonem of \(P\) and since \(B' \subset P \sim S\) we have \(A' \subset \text{conv } (P \sim S) \subset \text{aff } (P \sim S)\). Hence, \(A' \cap \text{conv } S = \emptyset\) which contradicts \(S \cap A' \neq \emptyset\). Thus, \(\text{conv } S \cap \text{aff } (P \sim S) \neq \emptyset\).

Now suppose \(P \sim S\) is not a simplex. Then there exists a primitive \((A', B')\) with \(A' \cup B' \subset P \sim S\). Let \(A = A' \cup S\) and \(B = P - A\). Then \((A, B)\) is a Radon partition with \(A \cup B = P\) and \(S \subset A\). Finally suppose \(\text{conv } S \cap \text{aff } (P \sim S) \neq \emptyset\). If \(P \sim S\) is a poonem of \(P\), then \(\text{conv } (P \sim S) = \text{conv } P \cap \text{aff } (P \sim S) \supset \text{conv } S \cap \text{aff } (P \sim S) \neq \emptyset\), and consequently \((S, P \sim S)\) is a Radon partition. On the other hand, if \(P \sim S\) is not a poonem of \(P\), then there exists a primitive \((A', B')\) with \(A' \subset P \sim S\) and \(B' \subset P\). Let \(A = P \sim A', B = A'\). Then \((A, B)\) is a Radon partition with \(A \cup B = P\) and \(S \subset A\).

Corollary 3.2. Let \(P\) be in general position in \(\text{aff } P\) and let \(S\) be a nonempty subset of \(P\). Then there exists a Radon partition \((A, B)\) with \(A \cup B = P\) and \(S \subset A\) if and only if \(\text{conv } S \cap \text{aff } (P \sim S) \neq \emptyset\).

Proof. This follows directly from Theorem 3.1 with the observation that if \(P \sim S\) is not a simplex then \(\text{aff } (P \sim S) = \text{aff } P\) and therefore \(\text{conv } S \cap \text{aff } (P \sim S) \neq \emptyset\).

We now turn to the study of \(k\)-neighborly sets. For \(P \subset \mathcal{L}\), we define the cardinal number \(h(P)\) by

\[h(P) = \sup \{\text{card } (A \cup B) : (A, B) \text{ is primitive and } A \cup B \subset P\} \]

It is understood that \(h(P) = 0\) if \(P\) is a simplex. From Lemma 2.1a we have

\[h(P) \leq \dim \text{(aff } P) + 2\]

Theorem 3.5. Let \(P \subset \mathcal{L}\) and let \(k\) be a cardinal number. Then the following three statement are equivalent:

(a) \(P\) is \(k\)-neighborly

(b) Each subset \(S \subset P\) with \(\text{card } S = h(P)\) is \(k\)-neighborly

(c) There exists no primitive \((A, B)\) with \(A \cup B \subset P\) such that \(\min (\text{card } A, \text{card } B) \leq k\).

Proof. (a) \(\Rightarrow\) (b). By Corollary 2.3b, if \(P\) is \(k\)-neighborly then every subset of \(P\) is \(k\)-neighborly.

(b) \(\Rightarrow\) (c). Suppose there exists a primitive \((A, B)\) with \(A \cup B \subset P\)
and card $A \leq k$ (and therefore $k \geq 1$). Since card $(A \cup B) \leq h(P) \leq$ card P, there exists $Q \subset P$ with $A \cup B \subset Q$ and card $Q = h(P)$. By hypothesis, Q is k-neighborly and hence A is a poonem of Q. However, Theorem 2.6 applied to $A \subset Q$ gives $B \subset A$ which is a contradiction.

(c) \Rightarrow (a). Let $S \subset P$ with card $S \leq k$. By hypothesis, there is no primitive (A, B) with $A \subset S$ and $B \subset P$. Hence, S is a poonem of P by Theorem 2.2. This completes the proof.

Theorem 3.6. Let $P \subset \mathcal{L}$ and let k be a cardinal number.

(a) If k is finite, $k < \text{card } P$, and every subset $S \subset P$ with card $S = k$ is a poonem of P, then P is k-neighborly.

(b) If k is transfinite, $k \leq \text{card } P$, and every subset $S \subset P$ with card $S = k$ is a poonem of P, then P is a simplex.

Proof. (a) We may assume $k \geq 2$ for otherwise the proof is trivial. We first show that $\text{conv } P = \text{conv } (\text{ext } (\text{conv } P))$. Let $p \in P$ and let $S \subset P$ with card $S = k$ contain the point p. Since S is finite, $p \in \text{conv } (\text{ext } (\text{conv } S))$ and since S is a poonem of P, $\text{ext } (\text{conv } S) \subset \text{ext } (\text{conv } P)$ by Corollary 2.3a. Thus, $\text{conv } P = \text{conv } (\text{ext } (\text{conv } P))$.

In the above argument, the intersection of all such $S \subset P$ is $\{p\}$ since $k < \text{card } P$. By Theorem 2.5, $\{p\}$ is a poonem of P and hence $P = \text{ext } (\text{conv } P)$.

Now suppose there exists a primitive (A, B) with $A \cup B \subset P$ and card $A \leq k$. Let $S \subset P$ with $A \subset S$, card $S = k$ and such that $P \sim S$ contains a point of B. By hypothesis and Theorem 2.6 we have $B \subset S$ which is a contradiction. Hence, by Theorem 3.5, P is k-neighborly.

(b) We first show that $P = \text{ext } (\text{conv } P)$. Suppose there exists a primitive $\{(a), B\}$ where $a \in P$ and $B \subset P$. Let $B = \{b_1, \ldots, b_n\}$ where $n \geq 2$. Then $a = \sum_{i=1}^{n} \lambda_i b_i$, $0 < \lambda_i < 1$, and $\sum_{i=1}^{n} \lambda_i = 1$. Let $B_i = B \sim \{b_i\}$. Since $\{a\}$ and $\text{conv } B_i$ are disjoint convex sets, by a separation theorem for real linear spaces [5, p. 20], there exist complementary convex sets C and D such that $a \in C$, $B_i \subset D$ and $C \cup D = \mathcal{L}$, $C \cap D = \emptyset$. Either card $(C \cap P) \geq k$ or card $(D \cap P) \geq k$.

Suppose card $(C \cap P) \geq k$. By hypothesis, there exist a poonem S of P with $a \in S$, $S \subset C$ and card $S = k$. By Theorem 2.2, we have $B \subset \text{conv } S \subset C$ which is a contradiction. Now suppose card $(D \cap P) \geq k$.

By hypothesis, there exists a poonem S of P with $a \in S$, $S \sim \{a\} \subset D$ and card $S = k$. By Theorem 2.2, we have $B \subset \text{conv } S$. Hence, $B \subset \text{conv } (\{(a) \cup D\})$. Therefore, for each $b_i \in B$, there exists $d_i \in D$ such that for some t_i, $0 < t_i \leq 1$, $b_i = t_i d_i + (1 - t_i) a$. It follows that $\alpha = (\sum_{i=1}^{n} \lambda_i t_i)^{-1} \sum_{i=1}^{n} (\lambda_i t_i) d_i \in D$ which is a contradiction. Hence $P = \text{ext } (\text{conv } P)$.

Now suppose there exists a primitive \((A, B)\) with \(A \cup B \subset P\). By hypothesis, there exists a point \(S\) of \(P\) with \(A \subset S, B \cap S = \emptyset\) and \(\text{card } S = k\). By Theorem 2.6, we have \(B \subset S\) which is a contradiction. Hence \(P\) is a simplex.

Theorem 3.7. Let \(P \subset \mathcal{L}\) be \(k\)-neighborly and let \(S \subset P\).

(a) If \(2k + 1 \geq h(S)\), then \(S\) is a simplex.

(b) If \(2k - 1 \geq \dim(\text{aff} S)\), then \(S\) is a simplex.

(c) If \(2k = \dim(\text{aff} S)\), then \(S\) is in general position in \(\text{aff } S\).

Proof. (a) If \(S\) is not a simplex, then there exists a primitive \((A, B)\) with \(A \cup B \subset S\). Since \(2k + 1 \geq h(S) \geq \text{card } A + \text{card } B\), either \(\text{card } A \leq k\) or \(\text{card } B \leq k\). But this contradicts Theorem 3.5.

(b) This follows from 3.4 and part (a).

(c) Suppose there exists \(Q \subset S\) which is not a simplex. Then \(k\) must be finite and by part (a) we have \(h(Q) \geq 2k + 2\). Using 3.4 we have \(\dim(\text{aff} S) \geq \dim(\text{aff} Q) \geq 2k = \dim(\text{aff} S)\). Thus \(\dim(\text{aff} S) = \dim(\text{aff} Q) = 2k\). Since \(k\) is finite and \(\text{aff } S \supset \text{aff } Q\) we have \(\text{aff } S = \text{aff } Q\) and, by Definition 1.1b, \(S\) is in general position in \(\text{aff } S\).

Theorem 3.8. Let \(P \subset \mathcal{L}\) be an infinite set which is in general position in \(\text{aff } P\) and let \(k\) be a cardinal number such that \(2k \leq \dim \text{aff } P\). Then there exists an infinite subset of \(P\) which is \(k\)-neighborly.

Proof. If \(\dim \text{aff } P = 1\), then any subset of the line \(\text{aff } P\) is in general position in the line but any such subset is also \(0\)-neighborly. If \(\dim \text{aff } P\) is infinite, then \(P\) must be a simplex. For if \((A, B)\) is primitive with \(A \cup B \subset P\), then \(A \cup B\) is not a simplex nor is \(\text{aff } (A \cup B) = \text{aff } P\). We may therefore assume that \(d = \dim \text{aff } P\) is a positive integer greater than 1 and we will show that there exists an infinite subset of \(P\) which is \([d/2]\)-neighborly. Since \(P\) is in general position in \(\text{aff } P\), each subset \(S \subset P\) consisting of \(d + 2\) points determines a unique primitive \((A, B)\) with \(A \cup B = S\). Thus the set all such subsets \(S \subset P\) may be partitioned into \([d/2] + 1\) mutually exclusive classes \(C_i\) according to the value \(i = \min(\text{card } A, \text{card } B)\). By the infinite version of Ramsey's theorem [4, p. 82], \(P\) contains an infinite subset \(Q\) such that every subset of \(Q\) consisting of \(d + 2\) points belongs to the same \(C_i\). By use of Gale diagrams, M. A. Perles has shown [2, p. 120] that if \(d + 3\) points of \(R^d\) are in general position then some \(d + 2\) of them are the vertices of a \([d/2]\)-neighborly polytope. Hence, for the particular \(C_i\) referred to above, we have \(i = [d/2] + 1\). Consequently, by Theorem 3.5, \(Q\) is \([d/2]\)-neighborly. This completes the proof.
We conclude with some example which are pertinent to the general situation considered here.

Examples 3.9. (a) There exist nondenumerable sets P in R^d, $d \geq 1$, which are $[d/2]$-neighborly. Let $x(t) = (t, t^2, \ldots, t^d) \in R^d$ and let $P = \{x(t) \mid t \text{ real}\}$. Each subset of P with $d + 2$ points is $[d/2]$-neighborly [2, p. 61]. Since $h(P) = d + 2$, P itself is $[d/2]$-neighborly by Theorem 3.5.

(b) Let \mathcal{L} be the real linear space of all real-valued functions defined on the set of positive integers. Let $x(t) = (t, t^2, \ldots) \in \mathcal{L}$ and let $P = \{x(t) \mid t \text{ real}\}$. Then P is a simplex. This follows from Lemma 2.1b by showing that every nonempty finite subset of P is an affinely independent set. The latter may be established by a proof similar to that given in [2, p. 62] where the corresponding problem for the moment curve is considered.

(c) Let \mathcal{L} be an infinite dimensional real linear space. For each finite cardinal number k there exists $P_k \subset \mathcal{L}$ with $\text{aff } P_k = \mathcal{L}$ such that P_k is k-neighborly but not $(k + 1)$-neighborly. For $k = 0$, we may take $P_0 = \mathcal{L}$. Now let $k \geq 1$ and let $H \subset \mathcal{L}$ be a Hamel basis for \mathcal{L}. Let $\{p_1, \ldots, p_k\}$ and $\{q_1, \ldots, q_k\}$ be disjoint subsets of H and let $p_0 = -\sum_{i=1}^k p_i$, $q_0 = -\sum_{i=1}^k q_i$. Define $P_k = \{p_0, q_0\} \cup H$. If $A = \{p_0, p_1, \ldots, p_k\}$ and $B = \{q_0, q_1, \ldots, q_k\}$, then (A, B) is primitive, the origin being the unique point in $\text{conv } A \cap \text{conv } B$. Since $\text{aff } P_k$ contains the origin, we have $\text{aff } P_k = \mathcal{L}$. Moreover, (A, B) is the only primitive, with $A \cup B \subset P_k$ which may be verified by studying the possible affine dependencies in P_k. Thus, by Theorem 3.5, P_k is k-neighborly but not $(k + 1)$-neighborly.

References

Received May 24, 1974 and in revised form June 12, 1975.

University of Missouri—Columbia
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Richard Arens (Managing Editor)
University of California
Los Angeles, California 90024

J. Dugundji
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. Beaumont
University of Washington
Seattle, Washington 98105

D. Gilbarg and J. Milgram
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. Beckenbach
B. H. Neumann
F. Wolf
K. Yoshida

SUPPORTING INSTITUTIONS

<table>
<thead>
<tr>
<th>University of British Columbia</th>
<th>University of Southern California</th>
</tr>
</thead>
<tbody>
<tr>
<td>California Institute of Technology</td>
<td>Stanford University</td>
</tr>
<tr>
<td>University of California</td>
<td>University of Tokyo</td>
</tr>
<tr>
<td>Montana State University</td>
<td>University of Utah</td>
</tr>
<tr>
<td>University of Nevada</td>
<td>Washington State University</td>
</tr>
<tr>
<td>New Mexico State University</td>
<td>University of Washington</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>* *</td>
</tr>
<tr>
<td>University of Oregon</td>
<td>American Mathematical Society</td>
</tr>
<tr>
<td>Osaka University</td>
<td></td>
</tr>
</tbody>
</table>

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The *Pacific Journal of Mathematics* expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 169, Japan.

Copyright © 1975 by Pacific Journal of Mathematics

Manufactured and first issued in Japan
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aharon Atzmon</td>
<td>A moment problem for positive measures on the unit disc</td>
<td>317</td>
</tr>
<tr>
<td>Peter W. Bates and Grant Bernard Gustafson</td>
<td>Green’s function inequalities for two-point boundary value problems</td>
<td>327</td>
</tr>
<tr>
<td>Howard Edwin Bell</td>
<td>Infinite subrings of infinite rings and near-rings</td>
<td>345</td>
</tr>
<tr>
<td>Grahame Bennett, Victor Wayne Goodman and Charles Michael Newman</td>
<td>Norms of random matrices</td>
<td>359</td>
</tr>
<tr>
<td>Beverly L. Brechner</td>
<td>Almost periodic homeomorphisms of (E^2) are periodic</td>
<td>367</td>
</tr>
<tr>
<td>Beverly L. Brechner and R. Daniel Mauldin</td>
<td>Homeomorphisms of the plane</td>
<td>375</td>
</tr>
<tr>
<td>Jia-Arng Chao</td>
<td>Lusin area functions on local fields</td>
<td>383</td>
</tr>
<tr>
<td>Frank Rimi DeMeyer</td>
<td>The Brauer group of polynomial rings</td>
<td>391</td>
</tr>
<tr>
<td>M. V. Deshpande</td>
<td>Collectively compact sets and the ergodic theory of semi-groups</td>
<td>399</td>
</tr>
<tr>
<td>Raymond Frank Dickman and Jack Ray Porter</td>
<td>(\theta)-closed subsets of Hausdorff spaces</td>
<td>407</td>
</tr>
<tr>
<td>Charles P. Downey</td>
<td>Classification of singular integrals over a local field</td>
<td>417</td>
</tr>
<tr>
<td>Daniel Reuven Farkas</td>
<td>Miscellany on Bieberbach group algebras</td>
<td>427</td>
</tr>
<tr>
<td>Peter A. Fowler</td>
<td>Infimum and domination principles in vector lattices</td>
<td>437</td>
</tr>
<tr>
<td>Barry J. Gardner</td>
<td>Some aspects of (T)-nilpotence. II: Lifting properties over (T)-nilpotent ideals</td>
<td>445</td>
</tr>
<tr>
<td>Gary Fred Gruenhage and Phillip Lee Zenor</td>
<td>Metrization of spaces with countable large basis dimension</td>
<td>455</td>
</tr>
<tr>
<td>J. L. Hickman</td>
<td>Reducing series of ordinals</td>
<td>461</td>
</tr>
<tr>
<td>Hugh M. Hilden</td>
<td>Generators for two groups related to the braid group</td>
<td>475</td>
</tr>
<tr>
<td>Tom (Roy Thomas Jr.) Jacob</td>
<td>Some matrix transformations on analytic sequence spaces</td>
<td>487</td>
</tr>
<tr>
<td>Elyahu Katz</td>
<td>Free products in the category of (k_w)-groups</td>
<td>493</td>
</tr>
<tr>
<td>Tsang Hai Kuo</td>
<td>On conjugate Banach spaces with the Radon-Nikodým property</td>
<td>497</td>
</tr>
<tr>
<td>Norman Eugene Liden</td>
<td>(K)-spaces, their antispaces and related mappings</td>
<td>505</td>
</tr>
<tr>
<td>Clinton M. Petty</td>
<td>Radon partitions in real linear spaces</td>
<td>515</td>
</tr>
<tr>
<td>Alan Saleski</td>
<td>A conditional entropy for the space of pseudo-Menger maps</td>
<td>525</td>
</tr>
<tr>
<td>Michael Singer</td>
<td>Elementary solutions of differential equations</td>
<td>535</td>
</tr>
<tr>
<td>Eugene Spiegel and Allan Trojan</td>
<td>On semi-simple group algebras. I</td>
<td>549</td>
</tr>
<tr>
<td>Charles Madison Stanton</td>
<td>Bounded analytic functions on a class of open Riemann surfaces</td>
<td>557</td>
</tr>
<tr>
<td>Sherman K. Stein</td>
<td>Transversals of Latin squares and their generalizations</td>
<td>567</td>
</tr>
<tr>
<td>Ivan Ernest Stux</td>
<td>Distribution of squarefree integers in non-linear sequences</td>
<td>577</td>
</tr>
<tr>
<td>Lowell G. Sweet</td>
<td>On homogeneous algebras</td>
<td>585</td>
</tr>
<tr>
<td>Lowell G. Sweet</td>
<td>On doubly homogeneous algebras</td>
<td>595</td>
</tr>
<tr>
<td>Florian Vasilescu</td>
<td>The closed range modulus of operators</td>
<td>599</td>
</tr>
<tr>
<td>Arthur Anthony Yanushka</td>
<td>A characterization of the symplectic groups (\text{PSp}(2m, q)) as rank 3 permutation groups</td>
<td>611</td>
</tr>
<tr>
<td>James Juei-Chin Yeh</td>
<td>Inversion of conditional Wiener integrals</td>
<td>623</td>
</tr>
</tbody>
</table>