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If A is an algebra over a field K let Aut(4) denote the
group of algebra automorphisms of A. Then A is said to be
extremely homogeneous if Aut(A) act transitively on A\{0].
Also A is said to be homogeneous if Aut (4) acts transitively
on the one-dimensional subspaces of A. The purpose of this
paper is to investigate some of the basic properties of homo-
geneous algebras. In particular, the alternative homogeneous
algebras and the homogeneous algebras of dimension 2 are
classified.

All algebras are assumed to be finite dimensional and not
necessarily associative.

We now include a brief historical account of this topic. The
concept of an extremely homogeneous algebra arose from a particular
problem in the structure of certain finite p-groups as studied by
Boen, Rothaus and Thompson [1]. Extremely homogeneous algebras
have been investigated by Kostrikin [4]. Homogeneous algebras
over finite fields other than GF(2) have been investigated by Shult
[6], [7], and his results completed the work on the related p-groups.
The case of homogeneous algebras over GF(2) was considered by Gross
[3]. Swierczkowski classified all real homogeneous Lie algebras [9]
and finally Dyokovie classified all real homogeneous algebras [2]. A
homogeneous algebra A is said to be nontrivial if A*=40 and dim A>1.
The author has shown that there are no nontrivial homogeneous
algebras over an algebraically closed field [8].

The paper is divided into five sections: arbitrary homogeneous
algebras, alternative homogeneous algebras, power-associative homo-
geneous algebras, homogeneous quasi-division algebras and finally
homogeneous algebras of dimension 2.

I. Arbitrary homogeneous algebras. Let A be an arbitrary
algebra over a fleld K. Then left multiplication by a fixed element
a <€ A induces a linear map on A which is denoted by L,. Similarly
right multiplication by ¢ induces a linear map on A denoted by R,.
We do not distinguish between the map L, and its matrix represen-
tation relative to some fixed basis. By End (4) we indicate the vector
space of all linear maps on 4. By L we indicate the subspace of
End (4) consisting of all L, as x runs through 4 and similarly for
R. An algebra A is said to be nonzero if A* = 0.

THEOREM 1. Let A be a monzero homogeneous algebra over a
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field K. Then

(i) dimL=dimR=dimA4

(ii) If a,be A\{0} then L, and L, are projectively similar and
stmilarly for R, and R,

(iii) Aut (4) acts as a transitive group of collineations on the
points of the projective geometry P(A).

Proof. (1) Let aec A\{0}. Then if g4 =0 the homogeneity
condition implies that A®= 0 which is a contradiction. This fact
implies that the map ¢: x — L, is a linear isomorphism and so dim L =
dim A. Similarly it can be shown that dim R = dim A.

(2) The proof is a simple generalization of a related result
found in the introduction of the paper by Boen, Rothaus, and
Thompson [1].

(3) This is obvious since the points of P(A) are exactly the
one-dimensional subspaces of A.

THEOREM 2. Let A be a nontrivial homogeneous algebra over
a field K. Then

trL,=trR,=0 vee A

Proof. Let dim A = m. It is well known that tr: End(4) — K
is a linear functional and that dim ker (tr) = »* — 1. But then since
dimL = dim A = n > 1 it follows that L N ker (tr) # 0 and so there
must exist at least one nonzero map L,c L such that tr L, = 0. But
now the second result of the previous theorem implies that tr L, = 0
for all xe A. Similarly tr R, = 0 for all x ¢ A.

THEOREM 3. Let A be a homogeneous algebra over a field K
and let a€ A\{0}. If {a) denotes the subalgebra of A generated by
a then {a) is also a homogeneous algebra emjoying the property
that it is gemerated by each of its monzero elements. Also A = |J A4,
where each A, = {a;> for some a,c A\{0} and A, N 4; = {0} for ©+# j.

Proof. Let be<la). Clearly <(b) & {(a). But there must exist
ac Aut (A) such that a(a) = Ab for some nonzero A€ K and this
implies that (a) < (b) and so {a) = <b). That is {(a) is generated by
each of its nonzero elements. Now let ¢ and d be any nonzero
elements in {(a). Again there must exist g€ Aut(4) such that
B(c) = \d for some nonzero »e€ K. But the fact that both ¢ and d
generate <{a) implies that (@) is invariant under @ and so the
restriction of 8 to <(a) is in Aut ({a)). That is, {a) is also a homo-
geneous algebra. The final statement again follows directly from
the fact that {a) is generated by each of its nonzero elements.
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The above theorem implies that in some situations it is sufficient
to consider the case where a homogeneous algebra A is generated
by each of its nonzero elements.

DEFINITION. Let V be a vector space over a field K and suppose
H is a subgroup of GL(V) where GL(V) is the general linear group.
Then C(H) is defined as

C(H) = {uec End (A) | uv = vu for all Ve H}.

DEFINITION. Let A be an algebra over a field K and suppose
S, Te C(Aut (4)). Then A(S, T) indicates a new algebra which coin-
cides with A when considered as a vector space over K but possesses
a new multiplication defined by

aob = S(a)b + T(b)a for all a,bc A

Note that the fact that S and T are linear maps on A ensure
that oA X A— A is a bilinear map. Also the algebras A(1, 1),
A(1, —1) and A(0, 1) are well known and are usually denoted as A™,
A~ and A°?® respectively.

THEOREM 4. Let A be a homogeneous algebra over a field K and
suppose S, Te C(Aut(4)). Then A(S, T) is also a homogeneous
algebra.

Proof. Let o€ Aut(A4). Then

a(a-bd) = a(S(a)b + T(b)a)
= a(S(a)b) + a(T(b)a)
= (08(a))o(b) + (¢ T(b))o(a)
= (So(a))a(b) + (Ta(b))a(a)
= a(a)a(b)

an so the result is true since Aut (A4) < Aut (A(S, T))
DEFINITION. Let A be an algebra over a field K. Then 4 is
left (right) simple if A possesses no nonzero proper left (right) ideals.

Also A is simple if A possesses no nonzero, proper, two-sided ideals
and A # 0.

THEOREM 5. If A is a nmonzero homogeneous algebra then A is
left simple and right simple.

Proof. Assume that A has proper nonzero left ideals. When
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B runs through minimal left ideals then the sets B\{0} form a par-
tition of A\{0}. Suppose a<c A\{0} and let I(a) denote the minimal
left ideal which contains a. Now R, map A — I(e) and since I(a) = A
it follows that R, has a nonzero kernel. That is, there exists b € A4\{0}
such that ba = 0. Let ¢ be any point in A\I(a). Then I(c) N I(a) = {0}
which implies that I(¢) N I(c + @) = {0}. But b(c + a) = b¢ and so
bee I(e) N I(c + @) which implies that bc = 0. Now fix some nonzero
ce A\I(a) and let d be any point in I(¢)\{0}. Then ¢ + d e A\I(e) and
80 b(c + d) = bd = 0. Hence bA = 0 which is impossible since 4 is a
nonzero homogeneous algebra. Hence A has no proper nonzero left
ideals and similarly A has no proper nonzero right ideals.

II. Alternative homogeneous algebras. The following definition
is well known.

DEFINITION. An algebra A4 over a field K is said to be alternative
if
a’b = alab)
ab® = (ab)b
for all a, be A.

THEOREM 6. There are no nontrivial alternative homogeneous
algebras.

Proof. Let A be a nontrivial alternative homogeneous algebra.
Then the previous theorem implies that A is simple. But it is known
that a simple alternative algebra has an identity element 1 (see
Corollary 3.11 of Schafer’s book [5]). But then A is certainly not
homogeneous since a(l) = 1 for all ae Aut (4).

Note that the above theorem of course implies that there are
no nontrivial associative homogeneous algebras.

ITI. Power-associative homogeneous algebras.

THEOREM 7. Let A be a power-associative nontrivial homogeneous
algebra over a field K. Then either a* =0 for all ac A or o> =«
for all @ in A and in the latter case A is a Jordan algebra and
K = GF(2).

Proof. Let a be some fixed element in A\{0}. Then Theorem 3
implies that (@) is an associative homogeneous algebra and so the
previous theorem implies that {a) is a trivial homogeneous algebra.
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It follows that either a®> = 0 or a? = \a for some nonzero ve K. In
the former case the homogeneity condition implies that z* = 0 for
all te¢ A and so we may assume the latter case. The homogeneity
condition implies that «* = M)z where M«) is a nonzero scalar in K
possibly depending on x. Since dim A > 1 we may choose two inde-
pendent vectors in A, say e and e, Since a®*= Ma implies that
(/) = a\» we may assume without loss of generality that both e,
and ¢, are idempotents. It is now necessary to perform several
simple calculations. First

(e, +e)=c¢e + ¢ + 66, + ee = Ne, + e)(e + )
(6, — &) = e, + e, — e.e, — €6, = Me, — 6;)(e, — €)

Now adding and comparing coefficients gives

2 = Me, + €) + Me, — e)
2= Me, + &) — Me, — e)

or
2n(e, — ) =0

which implies that char K = 2.
For convenience let ¢ = (e, + ¢;). Then from above

e + e, = (1t + 1)e, + &) .
Now consider

(e, + &) = e, + tfe, + e, + €,61)
= (" + ¢+ De, + fte,

from which it follows that g¢* + g + 1 =1 which implies with char
K =2 that £ =1 and so

ee, + ee = 0.
Now let ¢ be any nonzero scalar in K. Then
(e, + 06,)* = e, + 0%, + O(e6; + e) = €, + 0%,

which implies that ¢* = ¢ and s0 6 = 1 and indeed K = GF'(2). Hence
2 =2 for all xe A. But then

@+y=os+yt+aytyr=2x+y

and so zy = yx for all z, ye A and thus A is a commutative algebra.
The second identity for a Jordan algebra is trivally satisfied and so
A is a Jordan algebra over GF(2).
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It is interesting to note that Dyokovic has shown that all non-
trivial real homogeneous algebras are of the first type [2] and
Gross has shown that some, but not all, of the known homogeneous
algebras over GF(2) are of the second type [3].

IV. Homogeneous quasi-division algebras,

DEFINITION. An algebra A over a field K is said to be a quasi-
division algebra if the nonzero elements of A form a quasi-group
under multiplication.

One of the reasons for devoting a separate section to homogeneous
quasi-division algebras is that Shult [6] and Gross [3] have shown
that all nontrivial finite homogeneous algebras are in fact quasi-
division algebras.

THEOREM 8. Let A be a nontrivial homogeneous quasi-division
algebra with the property that A is generated by each of its nonzero
elements. Then

(i) Aut(4) s sharply tramsitive on the one-dimensional
subspaces of A

(ii) If a 1is any element in A\{0} then L, has precisely one
etgenvalue denoted by \,c¢ K and the corresponding eigenspace 1is
one-dimensional

(iii) Finally N, = N\, if and only if there exists some ac Aut (4)
such that afa) = b.

Proof. (1) It is sufficient to show that no automorphism of
A, except the identity Id, can have an eigenvalue in K. Let
a e Aut (A) and suppose that « has eigenvalue ne K. Then there
exists a € A\{0} such that

a(a) = A .
Since A is not associative by Theorem 6 we define inductively

a” = L2 '(a) n=234 -
But now

a(a") = \ar n=1,28, -

and so there must exists positive integers m, n with m > n such
that A™ = A" since « can only have a finite number of eigenvalues.
Letting ¥k = m — n we have

a(a*) = Ma* = a* # 0
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and so & = Id since from the hypothesis we are assuming that a”
generates A.

(2) Let @ and b be any two nonzero elements of A. Since A4
is a quasi-division algebra the equation

xb = b

must have a solution, say ¢ and the homogeneity condition implies
that there exists e Aut (4) such that

a(c) = nva for some e K\{0}.
But then
aa(b) = 1/xa(b)

and so L, has at least one eigenvalue.
Now suppose there exist nonzero elements b, c € A such that

ab = A\b

ac = e

where A, e K. If {b, ¢} is an independent set then there must exist
a € Aut (A) such that

a(c) = ob for some oeK.
But then
a(a)b = pb
and thus
(ha(a) — pa)p =0

which implies that @ = Id by the previous part of this theorem.
Thus L, has precisely one eigenvector (up to a scalar multiple) which
completes the proof of the second statement.

(3) Finally if acAut(4) then ax =z for some )e A\{0}
implies that

a(a)a(x) = Na(x)
and so
Nata) = Na
also if N, = M, then there exists x, y € A\{0} such that

ar = A&
by = My = MY -



592 LOWELL SWEET

Now choose S e Aut (A) such that B(x) = py for some pe K\{0}
and applying S8 we obtain

Bla)y = Ny = by

and so it follows that B(a) = b as required.

IV. On homogeneous algebras of dimension 2. We now in-
vestigate arbitrary homogeneous algebras of dimension 2.

THEOREM 9. Let A be a mnonzero, 2-dimenstonal, homogeneous
algebra over o field K. Then K= GF(2) and A has a basis {a, b}
so that A is isomorphic to one of the following algebras.

’ a b ' a b
a a a—+b a b a
bla-+b b b a a+b .

Proof. Let a< A\{0}. Then there are exactly three possibilities
which will be considered separately

(i) @¢=0

(ii) @* = Ma for some nonzero € K

(iii) {a, @’} is a basis of A

(1) If a* = 0 then the homogeneity condition implies that x* = 0
for all xe A and the linearized form of this identity implies that A
is anticommutative. Extend a to a basis of A, say {a, b}. Using
the fact that tr L,0 and L, # 0 it follows that ab = ha for some
nonzero A € K. But now ab = \a and b* = 0 imply that tr L, = —X\ = 0
which is impossible. Hence this case does not occur.

(2) If a*= xa where )\ # 0 then the homogeneity condition
implies that A is power-associative and so Theorem 7 implies that
K = GF(2). Again extend a to a basis of A4, say {a, b}. Using the
fact that tr L, = tr L, = 0 and L, # 1 and L, -+ 1 it follows that A
must be of the form

l a b

a a a+b
bla-+bd b

By direct computations it can be shown that Aut(4) = GL(2, 2) and
so Aut(4) is in fact triply transitive on A\{0}.

(3) Suppose that {a, @’} is a basis of 4. First pass from A to
A~. By Theorem 4, A~ is also a homogeneous algebra and clearly
A~ is of type (1) as defined above and so A~ must be a zero algebra
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which implies that 4 is commutative. If aa® = 0 then tr L, = 0 and
L., # 0 implies that L, is nilpotent but L,,,.: is invertible and so A4 is
a quasi-division algebra generated by each of its nonzero elements and
so we may apply Theorem 8. Assume aa’* = ta.

Let b be any fixed nonzero element of A. The equation xb = b
must have a solution and without loss of generality we may assume
that = a. Hence the only eigenvalue of L, is 1 and it follows that
=1 and char K=2. Also a’a*=va+a* for some nonzero v€ K. Now
since L, and L, both have eigenvalue 1 it follows from Theorem 8
that there must exist a e Aut (A) such that a(a) = ¢®. But then

a(a?) = ala)a(e) = @’a’* = va + a
a(a’a?) = a(ve + @°) = va* + va + a
= a(aDa(a’) = (va + a®)(va + a?) = v*a* + va + a* .

It follows that v = 1 and so the multiplication table of A is of the
form

l a b
a a? a
b Q a+a

If K= GF(2) it is easily shown that A is in fact a homogeneous
algebra. If K= GF(4) it can be shown that det (L, + ML) =
1+2x+2*=0 for some ne GF(4) and so A is not homogeneous
since it is not a quasi-division algebra. Now assume that K # GF'(2)
and K = GF(4). Then there must exist »,€ K such that X\, is not a
root of the polynomial z*+ x + 1 or of the polynomial x*+ 2°+ *+ 1.
Since A is homogeneous there must exist e Aut (4) such that

a(a) = Ma + ne?) for some nonzero re K.

But then
a(aa®) = M1 + N + Ao + ML 4+ N + ADa?
= afa) = Aa + M
and so
(1) N—_ L
1+ N+ A
Also

a(a’a’?) = M1 + Ma + Na?
afa) + ala?)
O+ M) + g + A1+ Ad)]e?

[l

il
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which implies using (1) that

14+ A+ A

and together (1) and (2) imply that
MAEMFMN+L=0

which contradicts our choice of A,. Hence 4 is a homogeneous algebra
if and only if K= GF(2).

REMARK. I would like to thank my supervisor, Prof. D. Z.
Dyokovic for introducing me to homogeneous algebras and for his
guidance and encouragement. The author is also indebted to the
National Research Council of Canada and the University of Waterloo
for their financial assistance.
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