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The algebras to be discussed are assumed to be finite
dimensional and not necessarily associative. If A is an algebra
over a field K let Aut (A) denote the group of algebra auto-
morphisms of A. We define A to be doubly homogeneous if
Aut (.4) is doubly transitive on the one-dimensional subspaces
of A. Also a doubly homogeneous algebra A is said to be
nontrivial if A2 ±? 0 and dimension A > 1. It is shown that
the only nontrivial doubly homogeneous algebra is unique up
to isomorphism.

An algebra A is said to be homogeneous if Aut (A) acts transi-
tively on the one-dimensional subspaces of A. The reader is referred
to the author's previous paper [1] for a discussion of homogeneous
algebras and a bibliography of the related literature.

An arbitrary algebra A is said to be nonzero if A2 Φ 0. If the
nonzero elements of A form a quasi-group under multiplication then
we say that A is a quasi-division algebra.

LEMMA. If A is a nonzero doubly homogeneous algebra over a
field K then A is a quasi-division algebra.

Proof. Let dim A—n. If n = 1 then A is isomorphic to K
and the result is obvious and so we assume that n > 1. Let a be
any element of A. We claim that if 6 g Ka then ab Φ 0. For if
ab — 0 the doubly homogeneity condition implies that ac — 0 for all
c such that c £ Ka. But then in particular b + a <g Ka and so a(b + a) = 0
which implies that a2 = 0 and thus a A = 0. In this case the homo-
geneity condition implies that A2 — 0 which is a contradiction and
the claim is verified.

Now suppose that a2 — 0. Then the homogeneity condition implies
that x2 = 0 for all xe A. Suppose there exists 6 g Ka such that

ab e Ka .

Then by doubly homogeneity we would also have

(a + b)b e K(a + 6)

and b2 — 0 implies that

ab e Ka Π K(a + b) = {0}

which is impossible. Fix some b £ Ka. Let c be any nonzero element
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of A. Then there must exist a e Aut (A) such that

a(ab) e KG

and

<x(a) e Ka .

This implies that La (left multiplication by a) is a surjective map
which is impossible and so a2 Φ 0. Hence La is invertible and the
homogeneity condition implies that A is a quasi-division algebra.

THEOREM. If A is a nonzero doubly homogeneous algebra over
a field K then either A ~ K or K — GF(2) and A is isomorphic to
the following algebra

a

b

a

a

a + b

b

a +
b

b

Proof. If dim A = 1 then clearly A = K. If dim A = 2 then A
must be contained in the authors list of 2-dimensional homogeneous
algebras [1] and it is easily checked that the only possibility is that
K = GF(2) and A is isomorphic to the following algebra

a

b a

a

a

+ b

b

a +
b

b

Hence to prove the theorem it is sufficient to show that there exist
no nonzero doubly homogeneous algebras of dimension n > 2.

Let A be a nonzero doubly homogeneous algebra of dimension
n > 2. If a is any fixed nonzero element in A then the lemma implies
that the equation ax — a must have a unique solution, say 6 and the
doubly homogeneity condition now implies that be Ka. It follows
that A is a nonzero, power-associative, homogeneous algebra and so
Theorem 7 of the author's previous paper [1] implies that K = GF(2).

Now let a and b be any two distinct nonzero elements of A and
let A1 = <α, 6> be the subalgebra of A generated by a and b. It
can be shown that A1 is also a doubly homogeneous algebra and it
is generated by any two distinct nonzero elements. Hence only the
identity automorphism of At can fix two distinct nonzero elements
of Ax and so Aut(A0 is sharply doubly transitive on A f̂O}. Hence
the order of Aut(Ai) must be even and so Aut(Ax) must contain at
least one involution, say a. This involution a fixes at most 1 one-
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dimension subspace of Ax. But since any involution acting on a
vector space V over a field of characteristic 2 fixes vectorwise a
subspace of dimension ^1/2 dim V this forces dim Aι = 2 and so we
may assume that

ab = a + b .

But since A is doubly homogeneous it follows that

x2 = x for all xe A

xy — x + y whenever y£Kx.

Now since n > 2 we can choose three independent vectors α, 6, c e A.
But then

(α + δ)c = a + δ + c

and

acJrbc = aJrc + b + c — a + b

which is impossible and the proof is complete.
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