Vol. 60, No. 1, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A representation theorem for isometries of C(X,E)

Ka-Sing Lau

Vol. 60 (1975), No. 1, 229–233
Abstract

Let X, Y be compact Hausdorff spaces and let E, F be Banach spaces such that their duals are strictly convex. We show that a linear map T : C(X,E) C(Y,F) is an isometric isomorphism if and only if there exists a homeomorphism ϕ : Y X and a continuous map λ from Y to the set of isometric isomorphisms from E onto F (with the strong topology) such that Tf(y) = λ(y) f(ϕ(y)) for all y Y , f C(X,E).

Mathematical Subject Classification 2000
Primary: 46E40
Secondary: 47B37
Milestones
Received: 22 August 1974
Published: 1 September 1975
Authors
Ka-Sing Lau