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In this journal the author introduced the concept of strongly
unicoherent continua and proved that such a continuum is
apoisyndetic at a point p if and only if it is connected im kleinem
at p. In the present paper we obtain some new results on
strongly unicoherent continua. The main theorem states that
the strongly unicoherent continuum M contains a unique
irreducible subcontinuum between two points p and q provided
M is both aposyndetic and semi-locally-connected at p.

Throughout this paper a continuum is a compact connected metric
space and M will denote a continuum. The continuum M is unicoher-
ent if whenever M = A U 2?, with A and B subcontinua of M, A ΠB is
connected. M is hereditarily unicoherent if every subcontinuum of M
is unicoherent. A continuum M is said to be irreducible between a pair
of points p and q of M provided no proper subcontinuum of M
contains both p and q. M is said to be irreducible if there exists two
points so that M is irreducible between the pair of points.

If N is a subset of M, the interiorof N in M will be denoted by
int N and the closure of N in M by N.

For other terms not defined herein see [3] and [5].

DEFINITION 1. A unicoherent continuum M is strongly unicoher-
ent provided that for any pair of proper subcontinua H and K such that
M = H U K, each of H and K is unicoherent.

It is easily seen that this notion is a stronger form of unicoherence,
but is somewhat weaker than hereditarily unicoherence. For example,
a continuum which consists of a ray limiting on a circle is strongly
unicoherent but fails to be hereditarily unicoherent.

In [4] Miller proved the following theorem.

THEOREM 1. // the atriodic unicoherent continuum M is the sum of
two proper subcontinua H and K, then H and K are unicoherent, and if
N is a nonunicoherent subcontinuum of M intersecting H, it is a subset
ofH.

Thus, atriodic unicoherent continua are examples of continua
which are strongly unicoherent. A reasonable conjecture is that the
last portion of the theorem holds for strongly unicoherent continua, but
this is not the case as shown by the following example.
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EXAMPLE 1.

The strongly unicoherent continuum M consist of a circle C, two
arcs [a,b] and [c,d] which intersect C at the point b and point c
respectively, a ray R{ which limits on C U[α, b], and a ray i?2 which
limits on CU[c,d] .

Let // = #, and K = R2U[a,b]. Then ί ί and K are proper
subcontinua of M and M = H U K. Let

N is non-unicoherent, N ΠH/0, but NftH.
Note that while M = H U K and X is unicoherent it does not

follow that K is strongly unicoherent as shown by the example above.

COROLLARY 1. If M is atriodic, then every unicoherent subcon-
tinuum of M is strongly unicoherent.

Next we investigate the relationship of a strongly unicoherent
continuum M and its nonunicoherent subcontinua.

DEFINITION 2. A subcontinuum N of M is said to be a continuum
of condensation if each point of N is a limit point of M - N.

The next theorem is an immediate consequence of definitions 1
and 2.

THEOREM 2. If N is a nonunicoherent subcontinuum of a strongly
unicoherent continuum M then either (i) N separates M or, (ii) N is a
continuum of condensation.
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COROLLARY 2. // N is a nonunicoherent subcontinuum of a
strongly unicoherent continuum M then each subcontinuum of N either
(i) separates M or (ii) is a continuum of condensation.

Question. Is every nonunicoherent subcontinuum of a strongly
unicoherent continuum M a continuum of condensation?

The answer to the preceding question is in the affirmative if the
continuum M is also irreducible.

THEOREM 3. Suppose that M is a strongly unicoherent irreducible
continuum. Then every nonunicoherent subcontinuum of M is a con-
tinuum of condensation in M.

Proof. Let a and b be in M such that M is irreducible between a
and b and suppose N is a non-unicoherent subcontinuum of
M. According to Theorem 2, we may assume that N separates M. It
follows that {a,b}ΠN = 0 and M - N has exactly two components,
say A and B. ^Without loss of_generality, assume that a E A and
b E.B. If A Π J5 7̂  0 then A U B is a subcontinuum of M containing
{a,b}. Thus, M = AUB and it follows that N is a continuum of
condensation.

Suppose that A ΠB = 0. Let H and K be subcontinua of N such
that N = HUK and ί ί Π X is not connected.

Assertion. A Γ)H^ 0^ H Π B. For suppose that this is not the
case. Assume that A ΠH = 0. Then A Π_K^ 0 and A U K U H is
a proper subcontinuum of M. Since M = (A U K U Jϊ) U B, it follows
that AUffUX is unicoherent. This implies that (AUK)Γ)H =
HΠK is connected which is a contradiction. Thus the assertion
holds.

In a similar manner, it follows _that A Π K^0^ K_Π B. Since
M = A U H U JB, then K - ί f C Λ U B . Also since M = AUKUB,\t
follows that //-XCΛUJ3.

Finally we will show that HΠKCAUB. Let P and Q be
disjoint closed sets such that H ΠK = P U Q, let p G P and C be the
component of p in_if-Q. Then CΠCM0, but note that CD
(int()) = 0 1 Since CUKUA is a proper subcontinuum of M and
M = B_U(CJJK UΛ), then C U K U A is unicoherent. Thus
(XUA)ΠC=_(KnC)U(CΠA) is connected. Now (KίlCJίl
P ^ 0 ^ (K Π C) Π ζ) and K Π C CP U Q which implies that XΠCis
not connected. It follows that C Π A ^ 0.

By interchanging the roles of A and 2? in the above argument, we
have that CDB^0. Now AUCUB is a subcontinuum of M
containing {aj?}, so M = A U C I) B. Since (int Q)ΠC = 0, then
intQ)CA UB.
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Suppose q EQ -(int Q) and V is an open set containing q such
that V Π P = 0 . Then Vft Q so there is a point 2 E V Π
(M - Q)._ Since z£PUQ it follows by thefirstportion of this proof
that z E A UB. Thus q i s a limit point of A U JB and hence q E A U
JB. Therefore Q CAUB.

Since the preceding argument is symmetric with respect to P and
Q, it follows that PcAuB.

Therefore N = (H-K)U(K -H)UP U Q CA UB which im-
plies that N is a continuum of condensation.

The following well known characterization of hereditarily unico-
herent continua was given in [4].

THEOREM 4 (Miller). In order that the continuum M be hereditarily
unicoherent it is necessary and sufficient that for any two points p and q
of M there is only one subcontinuum ofM which is irreducible between p
and q.

DEFINITION 3. A continuum M is hereditarily unicoherent at the
point p of M provided for each q EM different from p, there is a
unique subcontinuum of M which is irreducible between p and q.

Thus if M is hereditarily unicoherent at p and q EM-{p}, then
the intersection of all subcontinuum of M which contain {p, q} is
connected.

We shall show that strongly unicoherent continua are "hereditarily
unicoherent at certain points", but first we prove the following lemma.

LEMMA 1. Let p and q be points of the continuum M, /, and I2 be
subcontinua of M which are irreducible between p and q, and D be a
subcontinuum of M containing p. If the continuum D U / | U / 2 is
unicoherent, then /, Π M - D = I2Π M - D.

Proof Suppose that D U /, UI2 is unicoherent. Then (D UI2) IΊ
/i is connected and hence is a subcontinuum of Ix containing
{p,q). Since /, is irreducible between p and q, then ( D U / 2 ) Π / , =
/,. Therefore / , C D U / 2 which implies that (i) /, Π(M-D) C/2.

Likewise (D U/i)Π/2 is subcontinuum of I2 containing {p,q) so
(D U /,) ΠI2 = J2. Thus / 2 C D U J , and it follows that (ii) /2Π
( M - D ) C / , .

The conclusion follows from (i) and (ii).

THEOREM 5. Let M be a strongly unicoherent continuum and
p EM. If M is both aposyndetic at p and semi-locally-connected at p,
then M is hereditarily unicoherent at p.

Proof Suppose that M is aposyndetic and semi-locally-connected
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at p, q EM-{p}, and /, and I2 are subcontinua of M which are
irreducible between p and q.

Since M is aposyndetic and semi-locally-connected at p, there are
subcontinua Hx and Kx of M such that p E //, - X,, q E Kx- Hx, and
M = HιUKi (Theorem 6 of [2]).

Since M is aposyndetic at p, according to Theorem 6 of [1], M is
also connected im kleinen at p. So there is a subcontinuum L in
M - (Hi Π K,) such that p E int L. Since M is semi-locally-connected
at /?, there is an open set V such that p E V C(int L) and M - V has a
finite number of components. Let F,, ,F n be the components of
Λί - V and without loss of generality assume that Kx CF,. Let H2 =
L U (F2 U F3 U U Fn) and X2 = F,. Then //2 and X2 are subcon-
tinua such that p EH2-K2, q EK2-H2, and M = H2U K2.

Since M is strongly unicoherent, then K, U /, U /2, H2 U /i U J2, and
X2 U /, U /2 are unicoherent. So by the preceding lemma, Ix Π
(M - Kλ) = I2Π(M- K,), /, Π (M - H2) = / 2 Π (M - H2), and
/, Π (M - K2) = I2Π(M~ K2).

Now H2 Π K2 CL CM - X, so /, Π (H2 Π X2) = /2 Π (//2 Π K2). So
it follows that

/, = [/, n (M - H2)] u [/, n (H2 n κ2)] u [/, n (M - κ2)]

= [i2 n (M - H 2 ) ] u [i2 n (/f2 n κ2)] u [/2 n (M - κ2)] = /2.

Therefore M is hereditarily unicoherent at p.

COROLLARY 3. // the strongly unicoherent M is aposyndetic at
each point, then M is hereditarily unicoherent.

Proof. By Theorem 4 of [2] M is semi-locally-connected at each
point, so it follows from the preceding theorem that M is hereditarily
unicoherent.
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