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Let G be a Hausdorff locally compact Abelian group, I its
character group. Certain closed subsets of I' are introduced,
these being closely related to sets of spectral synthesis for
L'(G)". Some properties and examples of these sets are discus-
sed, and then a Malliavin-type result is obtained.

In general we follow the notation used in [1]. We shall let A, 6
denote Haar measures on G, I" respectively, chosen so that Plancherel’s
theorem holds.

1. The definition and some properties of S,- and
C,-sets.

DEerINITION 1.1. Let = be a closed subset of . We shall call =
an S,-set (p €[1,x)) if, given € >0 and f € L'N L?(G) such that f
vanishes on E, there exists g € L' N L?(G) such that ¢ vanishes on a
neighbourhood of E and ||f —g|, <e. If such a g can be found of the
form h *f, where h € L'(G) and A vanishes on a neighbourhood of E,
then E will be called a C,-set. We also define S.- and C.-sets as
above, with f, g in L'N Cy(G) (rather than L'N L*(G)).

Since, by [1], (33.12), L'(G) admits a bounded positive approximate
identity {u; };c; such that for each i € I, u; € L' N C(G) and supp(&;) is
compact, it follows (see [1], (32.33) (b) and (32.48) (a)) that we can (and
shall) assume in Definition 1.1 that f, g, h € L' N C(G), where supp(f) is
compact and both supp(g) and supp(h) are compact and disjoint from =
(p €11, ]).

Clearly every C,-set is an S,-set. For the case p = 1 we just have
the familiar S-set and C-set; see [3], 7.2.5 (a) and 7.5.1 respectively.

For f € L*(G) the spectrum (written 2(f)) will be defined as in [1],
(40.21). For f € L?(G) (p €[1,x)), we define its spectrum by

3(f)= V{2 *f): ¢ € Cu(G)}

It is easily proved that for f € L\(G), 3(f) = supp(f).
Given E CT', we write

LE(G)={f € L’(G): X(f) CE}.
7
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We now have the following characterisation of S,- and C,-sets:

THEOREM 1.2. Let p €[1,») and suppose E is a closed subset of
I'. Then

(a) E is an S,-set if and _only if for all | € LE(G) and for all
fEL'NCWG) such that supp(f) is compact and f vanishes on E, we
have | * f = 0;

(b) E is a Cy-set if and only lf for all f€ L'N C(G) such that
supp(f) is compact and f vanishes on E, and for all | € L* (G) such that
I+fe LE(G), we have |l x f = 0.

This result is known for the case p = 1 (see [2], Chapter 7, 1.2 and
4.9). The proof is standard, and we shall not include it.
It is easy to adapt the proof of [3], Theorem 7.5.2 to give:

THEOREM 1.3. Let p €[1,»]. Then

(a) every one-point subset of T is a C,-set in T

(b) finite unions of C,-sets in I' are C,-sets in T';

(c) if the boundary of a closed set E is a C,-set, so is E;

(d) if E is a closed subset of a closed subgroup A of T, if ,(E) is
the boundary of E relative to A, and if 3,(E) is a C,-set in T then E is
also a C,-set in T';

(e) each closed subgroup of I is a C,-set in T'.

For p €[1, 2) it is not known whether the notions of C,-set and
S,-set are identical (it appears in Theorem 2.1 that every closed set is a
C,-set for p =2). Furthermore we cannot say whether the union of
two S,-sets is itself an S,-set. We can however obtain two partial
results in this direction. Both these results (Theorem 1.4 (a), (b)) are
known for the case p =1 (see [2], Chapter 2, 7.5).

THEOREM 1.4. (a) Suppose = =75,UE, where =, and E, are
disjoint closed subsets of I'. Then, for p €[1,»), E is an S,-set if and
only if both E, and E, are S,-sets.

(b) Let p E[l ©) and suppose E, is an S,-set and E, is a
C,-set. Then E=E,UE, is an S,-set.

The final result of this section gives us an inclusion result between
the set of C,-sets (respectively S,-sets) and the set of C,-sets (respec-
tively S,-sets) for 1=p <q = .

THEOREM 1.5. Let 1=p <q=x. Then every C,-set (respec-
tively S,-set) is a C,-set (respectively S,-set).



SETS OF p-SPECTRAL SYNTHESIS 9

Proof. Assume E is a C,-set. Suppose we are given € >0 and
f € L'N C(G) with supp(f) compact and f vanishing on 5. We can
find h € L' N Cy(G) such that ||[f—h *f|, <e/2. Since E is a C,-set
there exists g € L'(G) such that ¢ has compact support disjoint from =
and |h|,|f—-g*fll, <e€/2, where p—'+r'—q~'=1 (with the usual
convention for the cases p =1 and q = x). Now (see [1], (20.18))

If—h*g*flo=If—h=flo+Ihl1If—g*fl

<e€.

It remains only to note that h * g € L' N Co(G) and (h * g)" has compact
support disjoint from E.
The proof that every S,-set is an S,-set is similar.

2. Examples of S,- and C,- sets.

THEOREM 2.1. Forp € [2,»] every closed subset of T is a C,-set.

Proof. In view of Theorem 1.5 we need only prove the theorem
for p =2.

Let E be a closed subset of I and suppose we are given € >0 and
fE L' NC(G) with sppp(f) compact, f vanishing on = and |f|,=
1. Now Q={y €T f(y)#0} is a relatively compact open set, and
hence there exists a compact set Y C{ such that 8(Q\Y) <e>. Choose
an open set V such that YCVCV~ C(, and (see [3], 2.6.1) kEL'N
Co(G) such that &y = k= &v. Then, using Plancherel’s theorem,

If~kefle=([  11-k@)Fli@Faoc)):
<0(Q\Y)!

<e;

and clearly, k has compact support disjoint from =.

DerFmniTION 2.2. Let ) be a relatively compact open subset of
I'. We shall call ) a B-symmetry set (8 > 0) if there exist nets {Y;}ie:
and {V:},c; such that each Y; is compact, {V,};c; is a base of symmetric
open neighbourhoods of zero in I', partially ordered by

V. <V, if and only if V;, DV,
(Y; +2V,) cQ for each i €1, and

fim OQYD)*

m ey
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THEOREM 2.3. Suppose we are given 3 >0 and a closed subset =
of T with the property that for any relatively compact set Y CE° there
exists a B-symmetry set Q such that Y CQCE°. Then E is a C,-set for
all p =2+ B)'(2+2B).

Proof. Let p=(2+B)'(2+2B). Suppose we are given € >0
and f € L'N Cy(G), where supp(f) is compact, f vanishes on E and
fli=1. Now Y ={y €T: f(y) #0} is a relatively compact open sub-
set of Z° and hence, by assumption, there exists a relatively compact
open set ) such that Y CQ CE*, and nets {Y,}ic; and {V.}ie; satisfying
the conditions of Definition 2.2. Choose i € I such that Y, is nonvoid
and

G(Q\YI)B of2 -a —a/2
[————0(%) } <27°6(Q) e,

where a =(1+B)™". Define k; = 6(V,)"'g; h, where g h; in L*(G) are
such that g = &, (cf. [3], 2.6.1) k; € L' N C(G), &, =K, = £y, and

It follows from Holder’s inequality that

If—kixfllo = I~k *fIE I f = ke * £

= £l 1+ [29 T gy,

a al2 O(Q\Yf)(l—a)lz
= 270(Y, + V) S

<e
(recall that a = (1+ B)'andp =2+ B)'2+2B)=2(1+a")"). Noting
that k; has compact support disjoint from = we see that E is a C,- set,
and the conclusion follows from Theorem 1.5.
We have two corollaries when G is a Euclidean space.
COROLLARY 2.4. Let m =1 and suppose Z CR™ is an open set
with the property that for any relatively compact set Y CR™ there exists

a number k,, (=, (Y)) such that

0(ENY)+V,)=k,n"
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for all n €{1,2,- -}, where 3(E) denotes the boundary of E and
V.={xER™:|x||<n}.
Then E,E° and d(E) are C,-sets for all p > Q2+ m)'(2+2m).

Proof. By Theorem 1.3 (c) we need consider only 4(E).

Let Y be any relatively compact open subset of (). We shall
show that for any € >0 there exists an (m + €)-symmetry set () such
that YCQ Ca(E)°. Since Y is relatively compact in R™ there exists an
integer n,> 0 such that

YCA,={x ER™: | x| < ng-
For each n €{1,2, - -} define
Y,=0BE)+ V) NA\A ) NA,.
Clearly Y, is compact and
(Y, +2V,,) CA,NIE).
Putting Q= A, N J(E)° we have

QY, = QN @E)+ V) UQN (Anu\Are-n)
=A,NIE) NE@E)+ V) U@BLNIE) N(Aw\AL-1))
CAnNB(E)+V,) U\l
C(An+V)NIEN+V.) U (A\A-a).

Hence, since A, +V, is relatively compact,
O(QN\Y,) = kn(8n+ VN T+ 0.

Using the fact that
(V) =k, 3"n" "

for some constant «,, we have

A,
AU

and so 1 is an (m + €)-symmetry set for all € > 0.
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Thus 3(E) satisfies the conditions of Theorem 2.3 with B8 = m +¢,
and hence is a C,-set for all p > 2+ m)'(2+2m).

COROLLARY 2.5. Let m =1 and put
E={xeR":|x| =1}
Then = is a C,-set for all p > 2+ m)'Q2+2m).
Proof. Let V be any relatively compact set in R™. Then
(ENV)+V,)=6(E+V,)
=k, (1+n")"=(A-n"H")
=0(n™),
where «,, is a constant. Now apply Corollary 2.4.

REMARK 2.6. For m =3, Corollary 2.5 gives an example of a
C,-set (2+ m)'(2+2m) < p <2) whichis not an S-set; cf. [31,7.3.2.

3. The failure of certain closed sets to be S,-sets. In
this section we use a proof along the lines of that of Malliavin’s theorem
([3], 7.6.1) to show that every nondiscrete I" contains a closed set which
is not an S,-set for any p €[1,2). As in the proof of [3], Theorem
7.6.1, we first consider the cases:

(a) T is an infinite compact group;

(b) T=R.

THEOREM 3.1. Let G be an infinite discrete group. Then there
exists a closed set Z CT which is not an S,-set for any p €[1, 2).

Proof. Using the notation of [3], Theorem 7.8.6 we consider the
function ¢, on G defined by

¢i: x = (D'm)({).

It is easily proved from [3], 7.6.4 and Theorem 7.8.6 that f, € L'(G) and
¢, (as above) can be chosen so that f, and { satisfy the hypotheses of
[3], 7.6.3 (Theorem) (with f=f, and £ =¢) and ¢,€ L*(G) for all
q >2. Having thus chosen f, and ¢, we shall prove that the closed set
E={y €I f(y)= ¢} is not an S,-set for any p €1, 2).
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Let p €[1, 2) and put

I1={f € LG): {(E) = {o}},

I, = the closed ideal of L'(G) generated by f,— (&,

I, = the closed ideal of L'(G) generated by (fo — { €)™,
and J={f € L'(G): f vanishes on a neighbourhood of =} .

Clearly
E=Z()=Z(I)=ZI)=Z{J)

(where Z(I) denotes the zero set of the ideal I'; see [3], 7.1.3). Since I
and J are respectively the largest and smallest closed ideals in L'(G)
having = as their zero set, we have that JCI,CI,CIL.

As ¢, € L*(G) we can define a continuous linear functional T on
(L'(G), |- l») by
T@g)= ;G g(—x)d,(x)

(recall that G is discrete and hence L'(G)CL?(G)). By [3],7.63, T
annihilates I, but not I,.

Now suppose that = is an S,-set and let h € L' N C(G) = L'(G)
with A vanishing on E. Then, given € > 0, there exists h’ € J such that
|h—h'|, <e and hence, since T(h')=0, |T(h)|=|T(h—-h")|=
€ ||@:ll,. As this holds for all e >0 we must have that T(h) =0; thus T
annihilates I, a contradiction of the fact that T does not annihilate
I,CI. 1t follows that = is not an S,-set for any p €[1,2).

We shall now examine the case when I" contains an infinite compact
open subgroup. We require two lemmas for arbitrary Hausdorff
locally compact Abelian groups.

LEMMA 3.2. Let G be a Hausdorff locally compact Abelian group
and suppose H is a closed subgroup of G. Then a continuous integrable
function f on G is constant on cosets of H if and only if

supp(f) CA(T, H)
(the annihilator of H in I).

Proof. The result follows readily from the property
() (y)=y(h) f(y)

for all y €T (where ,f: x = f(x + h)).
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LEMMA 3.3. Let G be a Hausdorff locally compact Abelian group
and suppose A is an open subgroup of I'. If E is a closed subset of A
which is not an S,-set in A then = is not an S,-set in T.

Proof. Put H=A(G,A). By [1], (23.24) (e), H is compact.
Furthermore, in view of Theorem 2.1, we can assume that p <.

Suppose, to the contrary, that Zis an S,-setinI". Given e > 0 and
fE€ L' N Cy(G/H) such that supp(f) is compact and f vanishes on =, put
f=fomy, where my denotes the natural homomorphism of G onto
G/H. Denoting the Haar measures on H, G/H by Ay, Agy respectively
(normalised as in [2], Chapter 3, 3.3 (i) with A, (H) = 1) we have, by [2],
Chapter 3, 4.5,

19t = A 1rce pFan o)} diowco
= [ A 1o mix 9k dh) f dhom )
= L/H [f) P dAgm (%),

that is,
(3.1 151 = I1£1,

It is easily seen that

f6) = f O+ y)dra(y)

and, by [2], Chapter 4, 4.3 ((3.1) shows that f € L'(G)),

(32) fy)=f(y)

forall y € A. Furthermore, since f is constant on cosets of H, Lemma
3.2 shows that supp(f)CA(F, H)=A. As supp(f)is assumed to be
compact it follows from (3.2) that supp(f) is compact and hence (note
that f is contmuous) we see that f € Cy(G).

Now f vanishes on = U A° and, since by Theorem 1.4 (recall that A°
is open and closed) E U A° is an S,- set, there exists g € L' N Cy(G) such
that ¢ has compact support disjoint from Z U A° and |f —g|, <e. By
Lemma 3.2 again g is constant on cosets of H and we have the
existence of ¢ € L' N Co(G/H) such that g = g > m4(¢ € C(G/H) since,
by [2], Chapter 3, 1.8 (vii), g is continuous and by (3.2), g has compact
support). From (3.1) ||f — g ||, <, and (3.2) shows that g vanishes on a
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neighbourhood of Z. Hence E is shown to be an S,-set in A, contrary
to assumption.

CoroLLARY 3.4. Let G be a Hausdorff locally compact Abelian
group, T its character group. If T' contains an infinite compact open
subgroup then there exists a closed subset of T which is not an S,-set for
any p €11, 2).

Proof. Combine Theorem 3.1 and Lemma 3.3.

Before considering the case I' = R we need to extend the result in
[3], Theorem 2.7.6.

THEOREM 3.5. Supposef€l'(Z), 6 €(0, 7) and f(exp(ix)) =0 for
X E[m—68, m+6]. Let u be defined on R by

_ [fexplix))  (|x|=m)
w0 = {5 (x| >m).
Then u = g for some g € L'(R). Moreover, given p € [1, ), there exists
a positive number k,(= k,(8)) such that

£l = ol g [l

Proof. The first part of Theorem 3.5 is proved in [3], 2.7.6.
Let p €[1,»]. Consider the linear operator T from L'N L*(R) to
1'(Z), defined by

(3.3) (T(k))(n) =k *h(n),

where n € Z,and h € L'(R) is defined as in [3], 2.7.6. The argument at
the end of the proof of [3], 2.7.6 shows that there is a constant «, = «,(6)
such that | T(k)| = «, ||k [,. Itis clear from (3.3) that || T'(k)]. = .|k |-,
where k,=|h ;. By the Riesz-Thorin convexity theorem T is continu-
ous as

(L' L*R), | [.) = @), || b.)

(recall that 1'(Z) CI*(Z)), where a €(0, 1), p, =(1— )" and || T ||, =
k1k$. Inparticular, choosing a € [0, 1) such that p, = p (and a = 1if
p =) and noting that g € L' N L*(R) and (see [3], 2.7.6, (5)) f(n) =
g *h(n) for all n € Z, we have

_ Il = w7 ks lig
as required.
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THEOREM 3.6. The real line R contains a closed set which is not an
S,-set for any p €[1, 2).

Proof. It appears from Theorem 3.1 that there exists a closed set
E,CT (the circle group) which is not an S,-set for any p €[1, 2). By
translation if necessary we can assume that —1 & =, and that E, is
disjoint from =, for some closed arc =,CT containing —1. Put

Y, ={x €(—m, m): exp(ix) E E,},
Y,={x €(—m, m): exp(ix) EE,}U[m, ©) U(—0, —7],
E:E1UEZ and Y=Y|UY2

Let p €[1, 2) and suppose Y, is an S,-set. By Theorem 1.4, Y is
an S,-set. Given f € [(Z) with f(E) = {0} define g € L' N C(R) by

ooy - [flexplix))  (|x|=m)
g“)—{o (|x|> )

(see Theorem 3.5). Clearly ¢ vanishes on Y and hence, since Y is an
S,-set, there exists a sequence (g,) CL'N Co(R) such that each g,
vanishes on a neighbourhood of Y and

(3.4) lg — &, —0.

If, for each x € (— m, 7], we define f, €1'(Z) by

f.(exp(ix)) = g.(x)

(see [3], Theorem 2.7.6) then Theorem 3.5 applied to (3.4) gives
If=f.l,—0 (note that each f, vanishes on a neighbourhood of
). Hence E and consequently (see Theorem 1.4) =, would be an
S,-set, contradicting our choice of E,. It follows that Y, is not an
S,-set for any p €[1, 2).

We require two lemmas before proving the main result of this
section.

Lemma 3.7. Let G, H be Hausdorff locally compact Abglian
groups and suppose k € L' N\ Co(G X H) is such that Y = supp(k) is
compact. Then the functiony — k(x, y)(x — k(x, y)) is integrable over
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H for every x € G (over G for every y € H). Furthermore the func-
tions

d>.:x—->L k(x, y)dAu(y), ¢ y—>fG k(x, y)dAs(x)

are continuous.

Proof. Since k is continuous the function y —k(x,y) is con-
tinuous, and hence measurable, for every x € G.

Choose k (k) in L' N C(G)(L' N C(H)) such that k, =1 (k,=1) on
a neighbourhood V(V,) of Ys(Y4x), where Yg, Yy are the projections of
Y onto G, H respectively. If we define h on G X H by h[(x, y)]=
k.(x)k(y) then [1], (31.7) (b) shows that A =1 on V, X V,, a neighbour-
hoodof Y. Thush %k =k 1.a.e. and, since h * k and k are continuous,

(3.5) h*k = k.
Now the map v, on H X G X H, defined by
vel(y, s, )] = h(x —s,y —t)k(s, t),

is continuous for every x € G. Applying [1], (13.4) to | v, |, considered
as a function on H X (G X H), it follows that v, is integrable and, using
(3.5), that the function y —k(x,y) is integrable over H for every
x € G. Furthermore, since v, is integrable on H X (G X H), we can use
(3.5) and [1], (13.8) to deduce that

é,(x) = L ) [ = kG, Dk X Aus, 1),

As k € L\(G X H), k, € L'(H) and k, is uniformly continuous it follows
that ¢, is continuous.

The other part of the lemma is proved similarly.

LemMa 3.8. Suppose G, H are Hausdorff locally compact Abelian
groups, with character groups T', A respectively. If p €[1, 2) and the
closed set E' CT is not an S,-set, then E=E'X A is not an S,-set in
I'xA.

Proof. Suppose to the contrary that ;:' isan S,-setin ' X A. Let
f € L'N Cy(G) with supp(f) compact and f vanishing on =, and choose
g € L' N Cy(H) such that supp(g) is compact and |g(y)|= 1 for all y in
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some neighbourhood V of zero in H. Define h on GXH by
hi(x,y)]1=f(x)g(y). Then,by[1],(31.7) (b), supp(h)is compact and

ﬁ([y,, v2D) = f(Yl)g(Yz) =0
for all [y,, y.JEE.
Let € >0be given. Since = is assumed to be an S,-set we can find

k € L'N Cy(G x H) such that supp(k) is compact and disjoint from =,
and

(3.6) lh —kll, < exu(V)'™.

Thus, for all y, in some neighbourhood V of Z’ and for all y,E A, we
have (see [1], (13.8))

fH {L k(x, Y)‘;’n(x)d)\c(x)} 7:(y)dAu(y)

- fam k(x, y)([y1, ¥2D)"(x, y)dAg X Au(x, y)
=0.

Since y, € A was chosen arbitrarily

L k(x, y)¥:(x)dAs(x)=0 Ay —a.e..
Now

¥ (x,y)—=>k(x, y)yi(x)

is continuous and integrable, and supp(j) is compact. Hence, by
Lemma 3.7, the function ¢ on H defined by

60)= [ W »drowo)

is continuous and so, for all y E H and y, €V,

3.7 L k(x, y)y(x)dAs(x)=0.
Using (3.6) we see that

W = {y eEV: L [h(x,y)—k(x, y)[”d)\c(x)<e"}
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has the property that A, (V\W) <Ay (V), that is, Agz(W)>0. Choose
any y,€ W (W is nonempty). Then

(3.8) L [f(x)—8(yo) 'k(x, yo) P dAc(x) < €’ |g(yo))| ' S €”

and s0, defining f, € L' N Cy(G) by fi(x) =g(yo) 'k(x, yo), (3.7) shows
that f, vanishes on V and, from (3.8), ||f — f,|l, <e€; thus we have a
contradiction of the assumption that =’ is not an S, -set.

THEOREM 3.9. Let G be a Hausdor{f noncompact locally compact
Abelian group, I its character group. Then T contains a closed set
which is not an S,-set for any p €[1, 2).

Proof. By [1], (24.30), I is topologically isomorphic with R" X Iy,
where Iy is a Hausdorff locally compact Abelian group containing a
compact open subgroup.

If n =21 then Theorem 3.6 and Lemma 3.8 combine to show that
R" X T, contains a closed set which is not an S, -set for any p €[1, 2).

If n =0 then I" contains a compact open subgroup (with is infinite
since I' is nondiscrete) and the result follows from Corollary 3.4.
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