Pacific Journal of Mathematics

SETS OF *p*-SPECTRAL SYNTHESIS

WALTER RUSSELL BLOOM

Vol. 60, No. 1

September 1975

SETS OF *p*-SPECTRAL SYNTHESIS

WALTER R. BLOOM

Let G be a Hausdorff locally compact Abelian group, Γ its character group. Certain closed subsets of Γ are introduced, these being closely related to sets of spectral synthesis for $L^1(G)^{\wedge}$. Some properties and examples of these sets are discussed, and then a Malliavin-type result is obtained.

In general we follow the notation used in [1]. We shall let λ , θ denote Haar measures on G, Γ respectively, chosen so that Plancherel's theorem holds.

1. The definition and some properties of S_p - and C_p -sets.

DEFINITION 1.1. Let Ξ be a closed subset of Γ . We shall call Ξ an S_p -set $(p \in [1, \infty))$ if, given $\epsilon > 0$ and $f \in L^1 \cap L^p(G)$ such that \hat{f} vanishes on Ξ , there exists $g \in L^1 \cap L^p(G)$ such that \hat{g} vanishes on a neighbourhood of Ξ and $||f - g||_p < \epsilon$. If such a g can be found of the form h * f, where $h \in L^1(G)$ and \hat{h} vanishes on a neighbourhood of Ξ , then Ξ will be called a C_p -set. We also define S_{∞} - and C_{∞} -sets as above, with f, g in $L^1 \cap C_0(G)$ (rather than $L^1 \cap L^{\infty}(G)$).

Since, by [1], (33.12), $L^1(G)$ admits a bounded positive approximate identity $\{u_i\}_{i\in I}$ such that for each $i \in I$, $u_i \in L^1 \cap C_0(G)$ and $\operatorname{supp}(\hat{u}_i)$ is compact, it follows (see [1], (32.33) (b) and (32.48) (a)) that we can (and shall) assume in Definition 1.1 that $f, g, h \in L^1 \cap C_0(G)$, where $\operatorname{supp}(\hat{f})$ is compact and both $\operatorname{supp}(\hat{g})$ and $\operatorname{supp}(\hat{h})$ are compact and disjoint from Ξ $(p \in [1, \infty])$.

Clearly every C_p -set is an S_p -set. For the case p = 1 we just have the familiar S-set and C-set; see [3], 7.2.5 (a) and 7.5.1 respectively.

For $f \in L^{\infty}(G)$ the spectrum (written $\Sigma(f)$) will be defined as in [1], (40.21). For $f \in L^{p}(G)$ $(p \in [1, \infty))$, we define its spectrum by

$$\Sigma(f) = \bigcup \{ \Sigma(\phi * f) \colon \phi \in C_{00}(G) \}$$

It is easily proved that for $f \in L^1(G)$, $\Sigma(f) = \operatorname{supp}(\hat{f})$. Given $\Xi \subset \Gamma$, we write

$$L_{\underline{E}}(G) = \{ f \in L^{p}(G) \colon \Sigma(f) \subset \Xi \}.$$

We now have the following characterisation of S_{p} - and C_{p} -sets:

THEOREM 1.2. Let $p \in [1, \infty)$ and suppose Ξ is a closed subset of Γ . Then

(a) Ξ is an S_p -set if and only if for all $l \in L_{\Xi}^{p}(G)$ and for all $f \in L^{1} \cap C_{0}(G)$ such that $\operatorname{supp}(\hat{f})$ is compact and \hat{f} vanishes on Ξ , we have l * f = 0;

(b) Ξ is a C_p -set if and only if for all $f \in L^1 \cap C_0(G)$ such that $\operatorname{supp}(\hat{f})$ is compact and \hat{f} vanishes on Ξ , and for all $l \in L^{p'}(G)$ such that $l * f \in L^{p'}_{\Xi}(G)$, we have l * f = 0.

This result is known for the case p = 1 (see [2], Chapter 7, 1.2 and 4.9). The proof is standard, and we shall not include it.

It is easy to adapt the proof of [3], Theorem 7.5.2 to give:

THEOREM 1.3. Let $p \in [1, \infty]$. Then

- (a) every one-point subset of Γ is a C_p -set in Γ ;
- (b) finite unions of C_p -sets in Γ are C_p -sets in Γ ;
- (c) if the boundary of a closed set Ξ is a C_p -set, so is Ξ ;

(d) if Ξ is a closed subset of a closed subgroup Λ of Γ , if $\partial_{\Lambda}(\Xi)$ is the boundary of Ξ relative to Λ , and if $\partial_{\Lambda}(\Xi)$ is a C_p -set in Γ then Ξ is also a C_p -set in Γ ;

(e) each closed subgroup of Γ is a C_p -set in Γ .

For $p \in [1, 2)$ it is not known whether the notions of C_p -set and S_p -set are identical (it appears in Theorem 2.1 that every closed set is a C_p -set for $p \ge 2$). Furthermore we cannot say whether the union of two S_p -sets is itself an S_p -set. We can however obtain two partial results in this direction. Both these results (Theorem 1.4 (a), (b)) are known for the case p = 1 (see [2], Chapter 2, 7.5).

THEOREM 1.4. (a) Suppose $\Xi = \Xi_1 \cup \Xi_2$, where Ξ_1 and Ξ_2 are disjoint closed subsets of Γ . Then, for $p \in [1, \infty)$, Ξ is an S_p -set if and only if both Ξ_1 and Ξ_2 are S_p -sets.

(b) Let $p \in [1, \infty)$ and suppose Ξ_1 is an S_p -set and Ξ_2 is a C_p -set. Then $\Xi = \Xi_1 \cup \Xi_2$ is an S_p -set.

The final result of this section gives us an inclusion result between the set of C_p -sets (respectively S_p -sets) and the set of C_q -sets (respectively S_q -sets) for $1 \le p < q \le \infty$.

THEOREM 1.5. Let $1 \le p < q \le \infty$. Then every C_p -set (respectively S_p -set) is a C_q -set (respectively S_q -set).

Proof. Assume Ξ is a C_p -set. Suppose we are given $\epsilon > 0$ and $f \in L^1 \cap C_0(G)$ with $\operatorname{supp}(\hat{f})$ compact and \hat{f} vanishing on Ξ . We can find $h \in L^1 \cap C_0(G)$ such that $||f - h * f||_q < \epsilon/2$. Since Ξ is a C_p -set there exists $g \in L^1(G)$ such that \hat{g} has compact support disjoint from Ξ and $||h||_r ||f - g * f||_p < \epsilon/2$, where $p^{-1} + r^{-1} - q^{-1} = 1$ (with the usual convention for the cases p = 1 and $q = \infty$). Now (see [1], (20.18))

$$\|f - h * g * f\|_q \leq \|f - h * f\|_q + \|h\|_r \|f - g * f\|_p$$

< ϵ .

It remains only to note that $h * g \in L^1 \cap C_0(G)$ and $(h * g)^{\wedge}$ has compact support disjoint from Ξ .

The proof that every S_p -set is an S_q -set is similar.

2. Examples of S_p - and C_p - sets.

THEOREM 2.1. For $p \in [2, \infty]$ every closed subset of Γ is a C_p -set.

Proof. In view of Theorem 1.5 we need only prove the theorem for p = 2.

Let Ξ be a closed subset of Γ and suppose we are given $\epsilon > 0$ and $f \in L^1 \cap C_0(G)$ with $\operatorname{supp}(\hat{f})$ compact, \hat{f} vanishing on Ξ and $||f||_1 \leq 1$. Now $\Omega = \{\gamma \in \Gamma : \hat{f}(\gamma) \neq 0\}$ is a relatively compact open set, and hence there exists a compact set $\Upsilon \subset \Omega$ such that $\theta(\Omega \setminus \Upsilon) < \epsilon^2$. Choose an open set ∇ such that $\Upsilon \subset \nabla \subset \nabla^- \subset \Omega$, and (see [3], 2.6.1) $k \in L^1 \cap C_0(G)$ such that $\xi_{\Upsilon} \leq \hat{k} \leq \xi_{\Upsilon}$. Then, using Plancherel's theorem,

$$\|f - k * f\|_{2} = \left(\int_{\Omega \setminus Y} |1 - \hat{k}(\gamma)|^{2} |\hat{f}(\gamma)|^{2} d\theta(\gamma)\right)^{\frac{1}{2}}$$
$$< \theta(\Omega \setminus Y)^{\frac{1}{2}}$$
$$< \epsilon ;$$

and clearly, \hat{k} has compact support disjoint from Ξ .

DEFINITION 2.2. Let Ω be a relatively compact open subset of Γ . We shall call Ω a β -symmetry set ($\beta > 0$) if there exist nets $\{Y_i\}_{i \in I}$ and $\{\nabla_i\}_{i \in I}$ such that each Y_i is compact, $\{\nabla_i\}_{i \in I}$ is a base of symmetric open neighbourhoods of zero in Γ , partially ordered by

 $\nabla_i < \nabla_j$ if and only if $\nabla_i \supset \nabla_j$,

 $(\Upsilon_i + 2\nabla_i)^- \subset \Omega$ for each $i \in I$, and

$$\lim_{i\in I}\frac{\theta(\Omega\backslash Y_i)^{\beta}}{\theta(\nabla_i)}=0.$$

THEOREM 2.3. Suppose we are given $\beta > 0$ and a closed subset Ξ of Γ with the property that for any relatively compact set $\Upsilon \subset \Xi^c$ there exists a β -symmetry set Ω such that $\Upsilon \subset \Omega \subset \Xi^c$. Then Ξ is a C_p -set for all $p \ge (2+\beta)^{-1}(2+2\beta)$.

Proof. Let $p = (2+\beta)^{-1}(2+2\beta)$. Suppose we are given $\epsilon > 0$ and $f \in L^1 \cap C_0(G)$, where $\operatorname{supp}(\hat{f})$ is compact, \hat{f} vanishes on Ξ and $\|f\|_i \leq 1$. Now $Y = \{\gamma \in \Gamma : \hat{f}(\gamma) \neq 0\}$ is a relatively compact open subset of Ξ^c and hence, by assumption, there exists a relatively compact open set Ω such that $Y \subset \Omega \subset \Xi^c$, and nets $\{Y_i\}_{i \in I}$ and $\{\nabla_i\}_{i \in I}$ satisfying the conditions of Definition 2.2. Choose $i \in I$ such that Y_i is nonvoid and

$$\left[\frac{\theta(\Omega\backslash \Upsilon_i)^{\beta}}{\theta(\nabla_i)}\right]^{\alpha/2} < 2^{-\alpha}\theta(\Omega)^{-\alpha/2}\epsilon,$$

where $\alpha = (1+\beta)^{-1}$. Define $k_i = \theta(\nabla_i)^{-1} g_i h_i$, where g_i, h_i in $L^2(G)$ are such that $\hat{g}_i = \xi_{\nabla_i}$ (cf. [3], 2.6.1) $k_i \in L^1 \cap C_0(G)$, $\xi_{Y_i} \leq \hat{k}_i \leq \xi_{Y_i+2\nabla_i}$ and

$$\|k_i\|_1 \leq \left[\frac{\theta(\Upsilon_i + \nabla_i)}{\theta(\nabla_i)}\right]^{\frac{1}{2}}$$

It follows from Hölder's inequality that

$$\begin{split} \|f - k_i * f\|_p &\leq \|f - k_i * f\|_i^{\alpha} \|f - k_i * f\|_2^{1-\alpha} \\ &\leq \|f\|_1^{\alpha} \left[1 + \left[\frac{\theta(\Upsilon_i + \nabla_i)}{\theta(\nabla_i)}\right]^{\frac{1}{2}}\right]^{\alpha} \theta(\Omega \backslash \Upsilon_i)^{(1-\alpha)/2} \\ &\leq 2^{\alpha} \theta(\Upsilon_i + \nabla_i)^{\alpha/2} \frac{\theta(\Omega \backslash \Upsilon_i)^{(1-\alpha)/2}}{\theta(\nabla_i)^{\alpha/2}} \\ &\leq \epsilon \end{split}$$

(recall that $\alpha = (1 + \beta)^{-1}$ and $p = (2 + \beta)^{-1}(2 + 2\beta) = 2(1 + \alpha^{-1})^{-1}$). Noting that \hat{k}_i has compact support disjoint from Ξ we see that Ξ is a C_p -set, and the conclusion follows from Theorem 1.5.

We have two corollaries when G is a Euclidean space.

COROLLARY 2.4. Let $m \ge 1$ and suppose $\Xi \subset \mathbb{R}^m$ is an open set with the property that for any relatively compact set $Y \subset \mathbb{R}^m$ there exists a number κ_m (= $\kappa_m(Y)$) such that

$$\theta((\partial(\Xi)\cap Y)+\nabla_n)\leq \kappa_m n^{-1}$$

for all $n \in \{1, 2, \dots\}$, where $\partial(\Xi)$ denotes the boundary of Ξ and

$$\nabla_n = \{ x \in R^m : ||x|| < n^{-1} \}.$$

Then Ξ, Ξ^c and $\partial(\Xi)$ are C_p -sets for all $p > (2+m)^{-1}(2+2m)$.

Proof. By Theorem 1.3 (c) we need consider only $\partial(\Xi)$.

Let Y be any relatively compact open subset of $\partial(\Xi)^c$. We shall show that for any $\epsilon > 0$ there exists an $(m + \epsilon)$ -symmetry set Ω such that $Y \subset \Omega \subset \partial(\Xi)^c$. Since Y is relatively compact in \mathbb{R}^m there exists an integer $n_0 > 0$ such that

$$\Upsilon \subset \Delta_{n_0} = \{x \in \mathbb{R}^m : ||x|| < n_0\}.$$

For each $n \in \{1, 2, \dots\}$ define

$$\Upsilon_n = (\partial(\Xi) + \nabla_n)^c \cap (\Delta_{n_0} \setminus \Delta_{n_0 - n^{-1}}^-)^c \cap \Delta_{n_0}.$$

Clearly Y_n is compact and

$$(\Upsilon_n + 2\nabla_{3n})^- \subset \Delta_{n_0} \cap \partial(\Xi)^c$$
.

Putting $\Omega = \Delta_{n_0} \cap \partial(\Xi)^c$ we have

$$\Omega \setminus \Upsilon_{n} = (\Omega \cap (\partial (\Xi) + \nabla_{n})) \cup (\Omega \cap (\Delta_{n_{0}} \setminus \Delta_{n_{0}-n^{-1}}^{-1}))$$

= $(\Delta_{n_{0}} \cap \partial (\Xi)^{c} \cap (\partial (\Xi) + \nabla_{n})) \cup (\Delta_{n_{0}} \cap \partial (\Xi)^{c} \cap (\Delta_{n_{0}} \setminus \Delta_{n_{0}-n^{-1}}^{-1}))$
 $\subset (\Delta_{n_{0}} \cap (\partial (\Xi) + \nabla_{n})) \cup (\Delta_{n_{0}} \setminus \Delta_{n_{0}-n^{-1}}^{-1})$
 $\subset (((\Delta_{n_{0}}^{-} + \nabla_{1}) \cap \partial (\Xi)) + \nabla_{n}) \cup (\Delta_{n_{0}} \setminus \Delta_{n_{0}-n^{-1}}^{-1}).$

Hence, since $\Delta_{n_0} + \nabla_1$ is relatively compact,

$$\theta(\Omega \setminus \Upsilon_n) \leq \kappa_m (\Delta_{n_0} + \nabla_1) n^{-1} + O(n^{-1}).$$

Using the fact that

$$\theta(\nabla_{3n}) = \kappa'_m 3^{-m} n^{-m}$$

for some constant κ'_m , we have

$$\lim_{n\to\infty}\frac{\theta(\Omega\backslash \Upsilon_n)^{m+\epsilon}}{\theta(\nabla_{3n})}=0,$$

and so Ω is an $(m + \epsilon)$ -symmetry set for all $\epsilon > 0$.

Thus $\partial(\Xi)$ satisfies the conditions of Theorem 2.3 with $\beta = m + \epsilon$, and hence is a C_p -set for all $p > (2+m)^{-1}(2+2m)$.

COROLLARY 2.5. Let $m \ge 1$ and put

$$\Xi = \{ x \in R^m : ||x|| = 1 \}.$$

Then Ξ is a C_p -set for all $p > (2+m)^{-1}(2+2m)$.

Proof. Let ∇ be any relatively compact set in \mathbb{R}^m . Then

$$\theta((\Xi \cap \nabla) + \nabla_n) \leq \theta(\Xi + \nabla_n)$$

= $\kappa'_m((1 + n^{-1})^m - (1 - n^{-1})^m)$
= $O(n^{-1}),$

where κ'_m is a constant. Now apply Corollary 2.4.

REMARK 2.6. For $m \ge 3$, Corollary 2.5 gives an example of a C_p -set $((2+m)^{-1}(2+2m) which is not an S-set; cf. [3], 7.3.2.$

3. The failure of certain closed sets to be S_p -sets. In this section we use a proof along the lines of that of Malliavin's theorem ([3], 7.6.1) to show that every nondiscrete Γ contains a closed set which is not an S_p -set for any $p \in [1, 2)$. As in the proof of [3], Theorem 7.6.1, we first consider the cases:

- (a) Γ is an infinite compact group;
- (b) $\Gamma = R$.

THEOREM 3.1. Let G be an infinite discrete group. Then there exists a closed set $\Xi \subset \Gamma$ which is not an S_p -set for any $p \in [1, 2)$.

Proof. Using the notation of [3], Theorem 7.8.6 we consider the function ϕ_1 on G defined by

$$\phi_1: x \to (D^1 m_x)(\zeta).$$

It is easily proved from [3], 7.6.4 and Theorem 7.8.6 that $f_0 \in L^1(G)$ and ϕ_1 (as above) can be chosen so that f_0 and ζ satisfy the hypotheses of [3], 7.6.3 (Theorem) (with $f = f_0$ and $\xi = \zeta$) and $\phi_1 \in L^q(G)$ for all q > 2. Having thus chosen f_0 and ϕ_1 we shall prove that the closed set $\Xi = \{\gamma \in \Gamma: \hat{f}_0(\gamma) = \zeta\}$ is not an S_p -set for any $p \in [1, 2)$.

Let $p \in [1, 2)$ and put

 $I = \{ f \in L^{1}(G) \colon \hat{f}(\Xi) = \{ 0 \} \},\$

 I_1 = the closed ideal of $L^1(G)$ generated by $f_0 - \zeta \xi_{\{0\}}$,

 I_2 = the closed ideal of $L^1(G)$ generated by $(f_0 - \zeta \xi_{(0)})^{*2}$,

and $J = \{f \in L^1(G): \hat{f} \text{ vanishes on a neighbourhood of } \Xi\}^-$.

Clearly

$$\Xi = Z(I) = Z(I_1) = Z(I_2) = Z(J)$$

(where Z(I) denotes the zero set of the ideal *I*; see [3], 7.1.3). Since *I* and *J* are respectively the largest and smallest closed ideals in $L^1(G)$ having Ξ as their zero set, we have that $J \subset I_2 \subset I_1 \subset I$.

As $\phi_1 \in L^{p'}(G)$ we can define a continuous linear functional T on $(L^{i}(G), \|\cdot\|_{p})$ by

$$T(g) = \sum_{x \in G} g(-x)\phi_1(x)$$

(recall that G is discrete and hence $L^{l}(G) \subset L^{p}(G)$). By [3], 7.6.3, T annihilates I_{2} but not I_{1} .

Now suppose that Ξ is an S_p -set and let $h \in L^1 \cap C_0(G) = L^1(G)$ with \hat{h} vanishing on Ξ . Then, given $\epsilon > 0$, there exists $h' \in J$ such that $\|h - h'\|_p < \epsilon$ and hence, since T(h') = 0, $|T(h)| = |T(h - h')| \le \epsilon \|\phi_1\|_{p'}$. As this holds for all $\epsilon > 0$ we must have that T(h) = 0; thus Tannihilates I, a contradiction of the fact that T does not annihilate $I_1 \subset I$. It follows that Ξ is not an S_p -set for any $p \in [1, 2)$.

We shall now examine the case when Γ contains an infinite compact open subgroup. We require two lemmas for arbitrary Hausdorff locally compact Abelian groups.

LEMMA 3.2. Let G be a Hausdorff locally compact Abelian group and suppose H is a closed subgroup of G. Then a continuous integrable function f on G is constant on cosets of H if and only if

$$\operatorname{supp}(\hat{f}) \subset A(\Gamma, H)$$

(the annihilator of H in Γ).

Proof. The result follows readily from the property

$$(hf)^{\wedge}(\gamma) = \gamma(h)\hat{f}(\gamma)$$

for all $\gamma \in \Gamma$ (where $_h f: x \to f(x + h)$).

LEMMA 3.3. Let G be a Hausdorff locally compact Abelian group and suppose Λ is an open subgroup of Γ . If Ξ is a closed subset of Λ which is not an S_p -set in Λ then Ξ is not an S_p -set in Γ .

Proof. Put $H = A(G, \Lambda)$. By [1], (23.24) (e), H is compact. Furthermore, in view of Theorem 2.1, we can assume that $p < \infty$.

Suppose, to the contrary, that Ξ is an S_p -set in Γ . Given $\epsilon > 0$ and $\dot{f} \in L^1 \cap C_0(G/H)$ such that supp (\hat{f}) is compact and \hat{f} vanishes on Ξ , put $f = \dot{f} \circ \pi_H$, where π_H denotes the natural homomorphism of G onto G/H. Denoting the Haar measures on H, G/H by λ_H , $\lambda_{G/H}$ respectively (normalised as in [2], Chapter 3, 3.3 (i) with $\lambda_H(H) = 1$) we have, by [2], Chapter 3, 4.5,

$$\begin{split} \|f\|_{p}^{p} &= \int_{G/H} \left\{ \int_{H} |f(x+y)|^{p} d\lambda_{H}(y) \right\} d\lambda_{G/H}(\dot{x}) \\ &= \int_{G/H} \left\{ \int_{H} |\dot{f} \circ \pi_{H}(x+y)|^{p} d\lambda_{H}(y) \right\} d\lambda_{G/H}(\dot{x}) \\ &= \int_{G/H} |\dot{f}(\dot{x})|^{p} d\lambda_{G/H}(\dot{x}), \end{split}$$

that is,

(3.1) $||f||_p = ||\dot{f}||_p$

It is easily seen that

$$\dot{f}(\dot{x}) = \int_{H} f(x+y) d\lambda_{H}(y)$$

and, by [2], Chapter 4, 4.3 ((3.1) shows that $f \in L^1(G)$),

(3.2) $\hat{f}(\gamma) = f(\gamma)$

for all $\gamma \in \Lambda$. Furthermore, since f is constant on cosets of H, Lemma 3.2 shows that $\operatorname{supp}(\hat{f}) \subset A(\Gamma, H) = \Lambda$. As $\operatorname{supp}(\hat{f})$ is assumed to be compact it follows from (3.2) that $\operatorname{supp}(\hat{f})$ is compact and hence (note that f is continuous) we see that $f \in C_0(G)$.

Now \hat{f} vanishes on $\Xi \cup \Lambda^c$ and, since by Theorem 1.4 (recall that Λ^c is open and closed) $\Xi \cup \Lambda^c$ is an S_p -set, there exists $g \in L^1 \cap C_0(G)$ such that \hat{g} has compact support disjoint from $\Xi \cup \Lambda^c$ and $||f - g||_p < \epsilon$. By Lemma 3.2 again g is constant on cosets of H and we have the existence of $\hat{g} \in L^1 \cap C_0(G/H)$ such that $g = \hat{g} \circ \pi_H(\hat{g} \in C_0(G/H)$ since, by [2], Chapter 3, 1.8 (vii), \hat{g} is continuous and by (3.2), $\hat{\hat{g}}$ has compact support). From (3.1) $||\hat{f} - \hat{g}||_p < \epsilon$, and (3.2) shows that \hat{g} vanishes on a

neighbourhood of Ξ . Hence Ξ is shown to be an S_p -set in Λ , contrary to assumption.

COROLLARY 3.4. Let G be a Hausdorff locally compact Abelian group, Γ its character group. If Γ contains an infinite compact open subgroup then there exists a closed subset of Γ which is not an S_p -set for any $p \in [1, 2)$.

Proof. Combine Theorem 3.1 and Lemma 3.3.

Before considering the case $\Gamma = R$ we need to extend the result in [3], Theorem 2.7.6.

THEOREM 3.5. Suppose $f \in l^1(Z)$, $\delta \in (0, \pi)$ and $\hat{f}(\exp(ix)) = 0$ for $x \in [\pi - \delta, \pi + \delta]$. Let u be defined on R by

$$u(x) = \begin{cases} \hat{f}(\exp(ix)) & (|x| \leq \pi) \\ 0 & (|x| > \pi). \end{cases}$$

Then $u = \hat{g}$ for some $g \in L^1(\mathbb{R})$. Moreover, given $p \in [1, \infty]$, there exists a positive number $\kappa_p(=\kappa_p(\delta))$ such that

$$\|f\|_p \leq \kappa_p \|g\|_p.$$

Proof. The first part of Theorem 3.5 is proved in [3], 2.7.6.

Let $p \in [1,\infty]$. Consider the linear operator T from $L^1 \cap L^{\infty}(R)$ to $l^1(Z)$, defined by

(3.3)
$$(T(k))(n) = k * \hat{h}(n),$$

where $n \in \mathbb{Z}$, and $h \in L^1(\mathbb{R})$ is defined as in [3], 2.7.6. The argument at the end of the proof of [3], 2.7.6 shows that there is a constant $\kappa_1 = \kappa_1(\delta)$ such that $||T(k)||_1 \le \kappa_1 ||k||_1$. It is clear from (3.3) that $||T(k)||_{\infty} \le \kappa_2 ||k||_{\infty}$, where $\kappa_2 = ||\hat{h}||_1$. By the Riesz-Thorin convexity theorem T is continuous as

$$(L^{1}\cap L^{\infty}(\mathbb{R}), \|\cdot\|_{p_{\alpha}}) \xrightarrow{l} (l^{1}(\mathbb{Z}), \|\cdot\|_{p_{\alpha}})$$

(recall that $l^{1}(Z) \subset l^{\infty}(Z)$), where $\alpha \in (0, 1)$, $p_{\alpha} = (1 - \alpha)^{-1}$ and $||T||_{(\alpha)} \leq \kappa_{1}^{1-\alpha}\kappa_{2}^{\alpha}$. In particular, choosing $\alpha \in [0, 1)$ such that $p_{\alpha} = p$ (and $\alpha = 1$ if $p = \infty$) and noting that $g \in L^{1} \cap L^{\infty}(R)$ and (see [3], 2.7.6, (5)) $f(n) = g * \hat{h}(n)$ for all $n \in Z$, we have

$$\|f\|_p \leq \kappa_1^{1-\alpha} \kappa_2^{\alpha} \|g\|_p,$$

as required.

THEOREM 3.6. The real line R contains a closed set which is not an S_p -set for any $p \in [1, 2)$.

Proof. It appears from Theorem 3.1 that there exists a closed set $\Xi_1 \subset T$ (the circle group) which is not an S_p -set for any $p \in [1, 2)$. By translation if necessary we can assume that $-1 \notin \Xi_1$ and that Ξ_1 is disjoint from Ξ_2 for some closed arc $\Xi_2 \subset T$ containing -1. Put

$$Y_1 = \{x \in (-\pi, \pi): \exp(ix) \in \Xi_1\},\$$

$$Y_2 = \{x \in (-\pi, \pi): \exp(ix) \in \Xi_2\} \cup [\pi, \infty) \cup (-\infty, -\pi],\$$

$$\Xi = \Xi_1 \cup \Xi_2 \text{ and } Y = Y_1 \cup Y_2.$$

Let $p \in [1, 2)$ and suppose Υ_1 is an S_p -set. By Theorem 1.4, Υ is an S_p -set. Given $f \in l^1(Z)$ with $\hat{f}(\Xi) = \{0\}$ define $g \in L^1 \cap C_0(R)$ by

 $\hat{g}(x) = \begin{cases} \hat{f}(\exp(ix)) & (|x| \le \pi) \\ 0 & (|x| > \pi) \end{cases}$

(see Theorem 3.5). Clearly \hat{g} vanishes on Y and hence, since Y is an S_p -set, there exists a sequence $(g_n) \subset L^1 \cap C_0(R)$ such that each \hat{g}_n vanishes on a neighbourhood of Y and

$$(3.4) ||g - g_n||_p \to 0.$$

If, for each $x \in (-\pi, \pi]$, we define $f_n \in l^1(Z)$ by

$$\hat{f}_n(\exp(ix)) = \hat{g}_n(x)$$

(see [3], Theorem 2.7.6) then Theorem 3.5 applied to (3.4) gives $||f - f_n||_p \to 0$ (note that each \hat{f}_n vanishes on a neighbourhood of Ξ). Hence Ξ and consequently (see Theorem 1.4) Ξ_1 would be an S_p -set, contradicting our choice of Ξ_1 . It follows that Y_1 is not an S_p -set for any $p \in [1, 2)$.

We require two lemmas before proving the main result of this section.

LEMMA 3.7. Let G, H be Hausdorff locally compact Abelian groups and suppose $k \in L^1 \cap C_0(G \times H)$ is such that $\Upsilon = \operatorname{supp}(\hat{k})$ is compact. Then the function $y \to k(x, y)(x \to k(x, y))$ is integrable over H for every $x \in G$ (over G for every $y \in H$). Furthermore the functions

$$\phi_1: x \to \int_H k(x, y) d\lambda_H(y), \quad \phi_2: y \to \int_G k(x, y) d\lambda_G(x)$$

are continuous.

Proof. Since k is continuous the function $y \rightarrow k(x, y)$ is continuous, and hence measurable, for every $x \in G$.

Choose $k_1(k_2)$ in $L^1 \cap C_0(G)(L^1 \cap C_0(H))$ such that $\hat{k}_1 = 1$ ($\hat{k}_2 = 1$) on a neighbourhood $\nabla_1(\nabla_2)$ of $Y_G(Y_H)$, where Y_G, Y_H are the projections of Y onto G, H respectively. If we define h on $G \times H$ by $h[(x, y)] = k_1(x)k_2(y)$ then [1], (31.7) (b) shows that $\hat{h} = 1$ on $\nabla_1 \times \nabla_2$, a neighbourhood of Y. Thus h * k = k 1.a.e. and, since h * k and k are continuous,

$$h * k = k.$$

Now the map ν_x on $H \times G \times H$, defined by

$$\nu_{x}[(y, s, t)] = h(x - s, y - t)k(s, t),$$

is continuous for every $x \in G$. Applying [1], (13.4) to $|v_x|$, considered as a function on $H \times (G \times H)$, it follows that v_x is integrable and, using (3.5), that the function $y \rightarrow k(x, y)$ is integrable over H for every $x \in G$. Furthermore, since v_x is integrable on $H \times (G \times H)$, we can use (3.5) and [1], (13.8) to deduce that

$$\phi_1(x) = \int_H k_2(y) d\lambda_H(y) \int_{G \times H} k_1(x-s) k(s,t) d\lambda_G \times \lambda_H(s,t).$$

As $k \in L^1(G \times H)$, $k_2 \in L^1(H)$ and k_1 is uniformly continuous it follows that ϕ_1 is continuous.

The other part of the lemma is proved similarly.

LEMMA 3.8. Suppose G, H are Hausdorff locally compact Abelian groups, with character groups Γ , Λ respectively. If $p \in [1, 2)$ and the closed set $\Xi' \subset \Gamma$ is not an S_p -set, then $\Xi = \Xi' \times \Lambda$ is not an S_p -set in $\Gamma \times \Lambda$.

Proof. Suppose to the contrary that Ξ is an S_p -set in $\Gamma \times \Lambda$. Let $f \in L^1 \cap C_0(G)$ with $\operatorname{supp}(\hat{f})$ compact and \hat{f} vanishing on Ξ , and choose $g \in L^1 \cap C_0(H)$ such that $\operatorname{supp}(\hat{g})$ is compact and $|g(y)| \ge 1$ for all y in

some neighbourhood V of zero in H. Define h on $G \times H$ by h[(x, y)] = f(x)g(y). Then, by [1], (31.7) (b), supp(\hat{h}) is compact and

$$\hat{h}([\gamma_1, \gamma_2]) = \hat{f}(\gamma_1)\hat{g}(\gamma_2) = 0$$

for all $[\gamma_1, \gamma_2] \in \Xi$.

Let $\epsilon > 0$ be given. Since Ξ is assumed to be an S_p -set we can find $k \in L^1 \cap C_0(G \times H)$ such that $\operatorname{supp}(\hat{k})$ is compact and disjoint from Ξ , and

$$\|h-k\|_p < \epsilon \lambda_H(V)^{1/p}.$$

Thus, for all γ_1 in some neighbourhood ∇ of Ξ' and for all $\gamma_2 \in \Lambda$, we have (see [1], (13.8))

$$\int_{H} \left\{ \int_{G} k(x, y) \bar{\gamma}_{1}(x) d\lambda_{G}(x) \right\} \bar{\gamma}_{2}(y) d\lambda_{H}(y)$$
$$= \int_{G \times H} k(x, y) ([\gamma_{1}, \gamma_{2}])^{-}(x, y) d\lambda_{G} \times \lambda_{H}(x, y)$$
$$= 0.$$

Since $\gamma_2 \in \Lambda$ was chosen arbitrarily

$$\int_G k(x, y) \bar{\gamma}_1(x) d\lambda_G(x) = 0 \qquad \lambda_H - \text{a.e.} \ .$$

Now

 $\psi: (x, y) \rightarrow k(x, y) \bar{\gamma}_1(x)$

is continuous and integrable, and $supp(\hat{\psi})$ is compact. Hence, by Lemma 3.7, the function ϕ on H defined by

$$\phi(y) = \int_G \psi(x, y) d\lambda_G(x)$$

is continuous and so, for all $y \in H$ and $\gamma_1 \in \nabla$,

(3.7)
$$\int_G k(x, y) \bar{\gamma}_1(x) d\lambda_G(x) = 0.$$

Using (3.6) we see that

$$W = \left\{ y \in V \colon \int_G |h(x, y) - k(x, y)|^p d\lambda_G(x) < \epsilon^p \right\}$$

has the property that $\lambda_H(V \setminus W) < \lambda_H(V)$, that is, $\lambda_H(W) > 0$. Choose any $y_0 \in W$ (W is nonempty). Then

(3.8)
$$\int_{G} |f(x) - g(y_0)^{-1} k(x, y_0)|^p d\lambda_G(x) < \epsilon^p |g(y_0)|^{-1} \leq \epsilon^p$$

and so, defining $f_1 \in L^1 \cap C_0(G)$ by $f_1(x) = g(y_0)^{-1}k(x, y_0)$, (3.7) shows that \hat{f}_1 vanishes on ∇ and, from (3.8), $||f - f_1||_p < \epsilon$; thus we have a contradiction of the assumption that Ξ' is not an S_p -set.

THEOREM 3.9. Let G be a Hausdorff noncompact locally compact Abelian group, Γ its character group. Then Γ contains a closed set which is not an S_p -set for any $p \in [1, 2)$.

Proof. By [1], (24.30), Γ is topologically isomorphic with $\mathbb{R}^n \times \Gamma_0$, where Γ_0 is a Hausdorff locally compact Abelian group containing a compact open subgroup.

If $n \ge 1$ then Theorem 3.6 and Lemma 3.8 combine to show that $R^n \times \Gamma_0$ contains a closed set which is not an S_p -set for any $p \in [1, 2)$.

If n = 0 then Γ contains a compact open subgroup (with is infinite since Γ is nondiscrete) and the result follows from Corollary 3.4.

REFERENCES

1. Edwin Hewitt and Kenneth A. Ross, *Abstract Harmonic Analysis*, vols. I, II, Die Grundlehren der mathematischen Wissenschaften, Bände 115, 152. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963, 1970.

2. Hans Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford at the Clarendon Press, 1968.

3. Walter Rudin, *Fourier Analysis on Groups*, Interscience Publishers, John Wiley and Sons, New York, London, 1962; 2nd printing, 1967.

Received September 11, 1974.

THE AUSTRALIAN NATIONAL UNIVERSITY, CANBERRA, ACT, AUSTRALIA

Present address: Murdoch University Murdoch, Western Australia, Australia

Vol.	60.	No.	1
	$\mathbf{v}\mathbf{v}$		-

CONTENTS

D. E. Bennett, Strongly unicoherent continua 1
Walter R. Bloom, Sets of p-spectral synthesis 7
R. T. Bumby and D. E. Dobbs, Amitsur cohomology of quadratic
extensions: Formulas and number-theoretic examples 21
W. W. Comfort, Compactness-like properties for generalized weak
topological sums
D. R. Dunninger and J. Locker, Monotone operators and nonlinear
biharmonic boundary value problems
T. S. Erickson, W. S. Martindale, 3rd and J. M. Osborn, Prime
nonassociative algebras 49
P. Fischer, On the inequality $\sum_{i=1}^{n} p_i \frac{f(p_i)}{f(r_i)} \ge 1$
P. Fischer, On the inequality $\sum_{i=1}^{n} p_i \frac{f(p_i)}{f(q_i)} \ge 1$
G. Fox and P. Morales, Compact subsets of a Tychonoff set 75
R. Gilmer and J. F. Hoffmann, A characterization of Prüfer domains
in terms of polynomials
L. C. Glaser, On tame Cantor sets in spheres having the same
projection in each direction
Z. Goseki, On semigroups in which $X = XYX = XZX$ if and only if
$X = XYZX \dots \dots$
E. Grosswald, Rational valued series of exponentials and divisor
functions
D. Handelman, Strongly semiprime rings
J. N. Henry and D. C. Taylor, <i>The</i> $\bar{\beta}$ <i>topology for w</i> *- <i>algebras</i>
M. J. Hodel, Enumeration of weighted p-line arrays141
S. K. Jain and S. Singh, Rings with quasiprojective left ideals 169
S. Jeyaratnam, The diophantine equation $Y(Y+m)(Y+2m) \times$
(Y+3m) = 2X(X+m)(X+2m)(X+3m)
R. Kane, On loop spaces without p torsion
Alvin J. Kay, Nonlinear integral equations and product integrals
A. S. Kechris, Countable ordinals and the analytic hierarchy, I
Ka-Sing Lau, A representation theorem for isometries of $C(X, E)$ 229
I. Madsen, On the action of the Dyer-Lashof algebra in $H_*(G)$ 235
R. C. Metzler, Positive linear functions, integration, and Choquet's
theorem
A. Nobile, Some properties of the Nash blowing-up
G. E. Petersen and G. V. Welland, Plessner's theorem for Riesz
conjugates

Pacific Journal of Mathematics Vol. 60, No. 1 September, 1975

Donald Earl Bennett, Strongly unicoherent continua	1
Walter Russell Bloom, Sets of p-spectral synthesis	7
Richard Thomas Bumby and David Earl Dobbs, Amitsur cohomology of	
quadratic extensions: formulas and number-theoretic examples	21
W. Wistar (William) Comfort, Compactness-like properties for generalized	
weak topological sums	31
Dennis Robert Dunninger and John Stewart Locker, Monotone operators	
and nonlinear biharmonic boundary value problems	39
Theodore Erickson, Wallace Smith Martindale, III and J. Marshall Osborn,	
Prime nonassociative algebras	49
Pál Fischer, On the inequality $\sum_{i=0}^{n} [f(p_i)/f(q_i)] p_i \ge i$	65
Geoffrey Fox and Pedro Morales, Compact subsets of a Tychonoff set	75
Robert William Gilmer, Jr. and Joseph F. Hoffmann, A characterization of	
Prüfer domains in terms of polynomials	81
Leslie C. Glaser, On tame Cantor sets in spheres having the same projection	
in each direction	87
Zensiro Goseki, On semigroups in which $x = xyx = xzx$ if and only if	
x = xyzx	103
Emil Grosswald, Rational valued series of exponentials and divisor	
functions	111
David E. Handelman, <i>Strongly semiprime rings</i>	115
Jackson Neal Henry and Donald Curtis Taylor, <i>The</i> $\bar{\beta}$ <i>topology for</i>	
W*-algebras	123
Margaret Jones Hodel, <i>Enumeration of weighted p-line arrays</i>	141
Surender Kumar Jain and Surjeet Singh, <i>Rings with quasi-projective left</i>	
ideals	169
S. Jeyaratnam, The Diophantine equation	
$Y(Y+m)(Y+2m)(Y+3m) = 2X(X+m)(X+2m)(X+3m)\dots$	183
Richard Michael Kane, On loop spaces without p torsion	189
Alvin John Kay, <i>Nonlinear integral equations and product integrals</i>	203
Alexander S. Kechris, Countable ordinals and the analytical hierarchy.	
I	223
Ka-Sing Lau, A representation theorem for isometries of $C(X, E)$	229
Ib Henning Madsen, On the action of the Dyer-Lashof algebra in $H_*(G)$	235
Richard C. Metzler, <i>Positive linear functions, integration</i> , and Choquet's	
theorem	277
Augusto Nobile, Some properties of the Nash blowing-up.	297
Gerald E. Peterson and Grant Welland, <i>Plessner's theorem for Riesz</i>	
conjugates	307