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The paper establishes a relation between the partial ex-
ponential law and the compactness of certain subsets of
Tychonoff sets of multifunctions, and deduces consequences
bearing on the Ascoli theorems established by Weston and
Lin-Rose.

1. Introduction. The "Tychonoff set" is an abstraction of a
class of sets arising in extensions of the classical Tychonoff theorem to
multifunction context ([2], [5]). Extending the definition of the partial
exponential law to multifunctions, we show that, when it is satisfied for
a topology r, certain subsets of a Tychonoff set are τ-compact. This
approach — which is a non-trivial modification of the method intro-
duced into function Ascoli theory by Noble [7] — will yield, in
particular, sufficient conditions for compactness relative to the compact
open topology.

In [6] Lin and Rose introduced a multifunction extension of the
Kelley-Morse notion of even continuity, and proved a multifunction
Ascoli theorem of the Weston type, without, however, showing that it
contains the prototype [11, p. 20]. We deduce from our criterion a
generalization of the Lin-Rose theorem. We show that this generaliza-
tion contains the Weston Ascoli theorem and yields corollaries equiva-
lent to the Tychonoff theorems for point-compact and point-closed
multifunctions established in [2].

2. Multifunctions. We review the established definitions
for multifunctions ([l],[9],[10]): Let X, Y be nonempty sets. A
multifunction is a point to set correspondence f: X—>Y such that, for
all x GX,fx is a nonempty subset of Y. For A CX,B QY it is
customary to write f(Λ) = U xeAfxJ~(B) = {x: x G X and fx Π B/ φ}
and f+(B) = {x: x EX and fx QB}. If Y is a topological space, a
multifunction f: X—>Y is point-compact (point-closed) if fx is com-
pact (closed) for all x E X. If X, Y are topological spaces, a multifunc-
tion /: X-* Y is continuous if f~(U),f+(U) are open in X whenever U
is open in Y. Henceforth the set of all continuous multifunctions
(continuous functions) on a topological space X to a topological space
Y will be denoted «(X, Y)(C(X, Y)).

Let {Yx}xEχ be a family of nonempty sets. The m-product
P{YX: x E X} of the Yx is the set of all multifunctions /: X-> U xEXYx
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such that fx C Yx for all x EX. In the case Yx = Y for all x EX, the
m-product of the Yx, denoted YmX, is the set of all multifunctions on X
to Y. For x EX, the x-projectionprx: P{YX: x EX}-* Yx is the multi-
funtion defined by prj = fx. If the yx are topological spaces, the
pointwise topology τp on P{YX: x EX} is defined to be the topology
having as open subbase the sets of the forms pr~(Ux),pr+

x(Ux), where Ux

is open in YX9 x EX ([5],[8]).
For FC YmX,xEX, we write F[x]= U fGFfx. Let Y be a to-

pological space. We say that a subset F of YmX is pointwise bounded
if F[JC] has compact closure in Y for all JC E X. We say that a subset T
of ym* is Tychonoff if, for every pointwise bounded subset F of Γ,
T Π P{F[JC]: x E X} is τp- compact. The following subsets of YmX are
Tychonoff:

(1) Yx, by the classical Tychonoff theorem.
(2) ymX, by the theorem of Lin [5, p. 400].
(3) The set of all point-closed members of YmX, by Corollary 2 of

[2].
(4) The set of all point-compact members of YmX, by Corollary 3

of [2].

LEMMA 2.1. IfFis a pointwise bounded subset of a Tychonoff set
Γ, then the rp-closure of F is compact.

Proof Let F denote the τp-closure of F. Since P{F[x]\ xE
X}DT is a τp-compact subset of T, if suffices to show that F C
P{F[x]: x EX}. Let fEF. We must show that, for x EX,y Efx
and an open neighbourhood V of y,F[jc] Π W 0 . Since M =
{h: h ET and hx ΠV^0} is a τp-neighborhood of /, there exists
h'EMΠF. Then Λ'JCΠ V ^ 0 a n d Λ'JC CF[*], so F[x]Π

Let X, y be topological spaces. The multifunction (/, x) —>/JC on
γmχ x x to y, or any restriction, will be denoted by the symbol ω. Let
F C YmX. A topology r on F is said to be jointly continuous if
ω: (F, T) x X --> y is continuous [8, p. 48]. The compact open topology
τc on YmX is defined to be the topology having as open subbase the sets
of the forms {/: f(K) C 17}, {/: fx Π Uέ 0 for all x E K}, where K is
a compact subset of X and U is open in Y ([6, p. 742], [8, p.
47]). Obviously τc is larger than τp.

3. Partial exponential law.Let X,Y,Z be topological
spaces. An element / E zm(XxY) determines the function /: x ->/(*, ) on
X to ZmY. The function μ:f-*f called the exponential map, is a
bijection of Z m ( X x y ) onto ( Z w y ) x . It is clear that if / e «(X x y,Z),
then /(JC) = /(JC, -)E%(Y,Z) for all JC G X When r is a topology on
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Zm y, we say that (X,Y,Z,τ) satisfies the partial exponential law if

We establish now the main theorem of the paper:

THEOREM 3.1. Let T be a Tychonoff set of multifunctions on a
topological space X to a topological space Y, and let rbe a topology on
YmX such that (K,X, Y,τ) satisfies the partial exponential law for all
compact spaces K. Then a subset F of T is τ-compact if

(a) F is τ-closed in Γ,
(b) F is pointwise bounded, and
(c) τp is jointly continuous on the τp-closure of F in T.

Proof Let F denote the τp-closure of F in T and let ω: (F,τp) x
X-+Y. By (c), ω is continuous, so F C ψ J ) . Since T is a
Tychonoff set, (b) implies, by Lemma 2.1, that F is τp-compact. Then
ώ: (F,τp)->(%>(X, Y),τ) is continuous. Since ώ is the inclusion map,
F = ώ(F) is τ-compact. Since, by (a), F is τ-closed in F, it follows
that F is T-compact.

The application of this theorem to τc depends on the following
generalization to multifunctions of Lemma 1 of R. H. Fox [3, p. 430]:

LEMMA 3.2. (X, Y,Z,τc) satisfies the partial exponential law.

Proof Let fe^(Xx Y, Z). Let xEX. Since f(x, •) = / °Λ
where /(y) = (Jt,y) (yEY)J(x, •) is continuous [9, p. 35]. Thus /
maps X into %{Y,Z). It remains to show that /: X->(^(Y, Z),τc) is
continuous.

Let M = {h: h E ^(Y,Z) and h(K) C I/}, where X is a compact
subset of Y and U is open in Z. Let JC0e f~\M). Then /(*<>, )EM9

so {JCO} x K Cf+(U). By the theorem of Wallace [4, p. 142], there is a
neighbourhood V of JC0 such that VxK C/+(t7). Let x G V. Then,
for all yEKj(x)y =f(x,y)CU, so f(x)(K)CU. Thus x ef'\M)9

and we have shown that f~\M) is open in X.

Let M = {h: h E «(V, Z) and Λy Π Uέ 0 for all y E X}, where X
is a compact subset of y and U is open in Z. Let x0Ef~ι(M). Then
/(jco, )EM, so {JCO}XK Qf-(U). There is a neighbourhood V of JC0

such that VxK Cf-(U). Let J C G V , Then, for all y E X,/(jc)y Π
Ijy 0 , so f(x) E M, that is, x E Γ W ) , and we have shown that f'\M)
is open in X

4. Even continuity. Let X, Y be topological spaces and let
F C ywX. Following [6], we say that F is evenly continuous if, for each
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(JC,y)£Xx Y and each neighborhood V of y, there exist neighbour-
hoods U, W of x, y, respectively, such that

(a) / G F and fxΠW^0 imply 1/ C /"(V), and
(b) / 6 F , / x n i y / 0 and /xCV imply /(I/) C V.

LEMMA 4.1. Let X, Y be topological spaces and let F C YmX. If
F is evenly continuous, τp on F is jointly continuous.

Proof. Let ω: (F, τP) x X -» Y. Suppose that (/, JC) G ω "(V),
where V is open in Y. Choose y Efx ΠV. Then there exist open
neighbourhoods U, W of JC, y, respectively, such that g EF and gx Π
ψ£ 0 imply [/Cg-( V). Write M = {h:hEF and
hx ΠW^0}. Then M x l / is a neighbourhood of (/,JC), which is
contained in ω~(V). Now suppose that (f,x)Eω+(V), where V is
open in V. Then fx C V. Choose y E /JC. There exist open neigh-
bourhoods U, W of x,y, respectively, such that g EF,gx ΓHV/0 and
g x C V imply g([/)CV. Write M = {h: h eF,hx ΠWj*0 and
ΛJC C V}. Then M x [/ is a neighbourhood of (/,x), which is contained
in ω+(V).

COROLLARY 4.2. Let X, Y be topological spaces and let F C
YmX. IfFis evenly continuous, then each member ofFis continuous.

The following result, which generalizes the Ascoli theorem of Lin
and Rose [6, p. 746], contains also the Weston Ascoli theorem [11, p.
20]:

THEOREM 4.3. Let T be a Tychonoff set of multifunction^ on a
topological space X to a topological space Y. Then a subset FofT is
re-compact if

(a) F is Tc-closed,
(b) F is pointwise bounded, and
(c) F is evenly continuous.

Proof. By Lemma 3.2, this theorem will follow as a corollary of
Theorem 3.1 if we show that τp is jointly continuous on the τp-closure F
of F. By (c) and Lemma 4.1, rp on F is jointly continuous. By (a),
F = F, where F is the τc-closure of F. Finally, by (c) and Lemma 3.1
of [6, p. 744], F = F.

COROLLARY 4.4. Let (YmX)0((YmX){) be the set of all point-
compact (point-closed) multifunction on a topotogical space X to a
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topological space Y. Then a subset F of (YmX)ϋ((YmX)ι) is τc-compact
if

(a) F is Tc-closed,
(b) F is pointwise bounded, and
(c) F is evenly continuous.

5. REMARKS. The Lin-Rose Ascoli theorem [6, p. 746], depends,
apart from Lemma 3.1 of [6], on the Tychonoff theorem of Lin [5, p.
400]. Consequently, the Corollary 4.4 can be proved by the Lin-Rose
argument, using the Tychonoff theorems of [2]. We will prove the
converse implication: Let {Yx}xSχ be a family of compact spaces. We
will deduce from Corollary 4.4 that F = (P{ Yx: x E X})0 is τp- compact.

We may suppose the Yx disjoint. Assign to X the discrete
topology and let Y= U x€ΞXYx have the sum topology. We have
F C ( y w X ) 0 and, since X is discrete, F is evenly continuous [6, p.
743]. Since F[x]=Yx and Yx is closed in Y, F is pointwise
bounded. If we show that F is τp- closed, it willJollow from Corollary
4.4 that F is τc-compact and therefore τp-compact. Let {fa} be a net in
F which is τp-convergent to an element /G(YmAΓ)0. Let J C E X Let
y G fx, and let V be an open neighborhood of y. Since {h: h G(YmX)0

and ΛJCΠ W 0 } is a τp- neighborhood of f,fax ΠV^0 eventually.
Since fax C Yx, Yx Π V^ 0 . This shows that y E Y, = Yx, proving that

We prove similarly the same implication for F = (P{YX: x G X})χ.
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