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Recently A. Terras established some (soon to be published)
relations between the values of Riemann’s zeta function at
consecutive positive integral argument and values of certain
modified Bessel functions. By combining these relations with
some previous results concerning the values of {(s) at odd,
positive  integers (Grosswald-Nachrichten Akad. Wiss.
Gottingen, II Math.-Phys. Klasse 1970, pp. 9-13) it follows
that certain infinite series of exponentials and divisor functions
(somewhat reminiscent of Lambert series) are rational valued.

Specifically, A. Terras proved [6] that for complex p, for a,b
natural integers and with K,(z) the modified Bessel function (notation
of Watson; see [1], especially 10.2.15, page 444),
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holds, provided that Rep > 1. Formula (1) seems related to results of
Berndt [2], especially his formula (30), but does not seem to follow
trivially from it.

If in (1) we take for p a natural integer m > 1, replace the Bessel
functions according to classical formulae (see [1], p. 444) and perform
some routine transformations, (1) is seen to imply
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If we equate these representations of {(2m —1) to those estab-
lished in [3], then we obtain some rather curious formulae, that involve
the divisor functions o, (n) = Z,,d* for odd, negative k < —1. The
first few of them read
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Z}e‘“’"a_g(n H(@dmn)*+ 2(47n)} = 73/90,

3 .
Zle “mo_(n){(4mn)* + 6(4mn)? + 12(47n)} = 27°/105,

;e Mo (n)Y{(4mn)' + 12(4mn)’ + 84(dmn ) + 360(4mn )} = 2277/525.

One may wish to complete these formulae with one involving
o_(n), corresponding to m = 1. Direct substitution of m =1 in (2) is,
of course, meaningless and the correct, well known formula is indeed of
a slightly different structure, namely (see [5] vol. 1, p. 257; see also [4]
and [6))

3) ze'z""a'_l(n)(%m) = (m - 3)/6.

A glance at (3) seems to indicate that the ‘“‘natural’” variable is
v, =2mwn. 1If we make the corresponding change of the summation
variable and set also ,(n) = Z,,.(2wd)*, then we obtain the somewhat
simpler formulae

n=1

e g (n)vi+v,)=1/28-3%.5
n=1
> e e (n)wi+3vi+3y,)=1/2-3-5-7
n=1
Ye G An)vi+6vi+21vi+45y,)=11/2"-3-5-7.
n=1

Here all second members (except, naturally, in the first identity) are
rational (but, as the last one shows, not necessarily the reciprocal of an
integer).

2. General result and proofs. According to [3], for odd
m>1,

B _ (277_)2m—1 (m-1/2 v _ 2m
(om =)= o EH e S (= 1 (m = 26) (3 ) BuBun-a
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If we set this equal to (2), we obtain, after routine simplifications
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For even m, according to [3],
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We now set this equal to (2), simplify and obtain:
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Formulae (3) are the particular cases m =2,3 and 4 of (5') and (5"),
respectively.
Finally, in terms of v, =2wn and a.(n), (5, (5'") become
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Formulae (4) are the particular cases m = 2,3 and 4 of (6'), (6"),
respectively, to which has been added the formula obtained from (3')
that involves _,(n).
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It is, of course, easy to consolidate the formulae (5'), (5”) into a
single formula and simildrly for (6’), (6'’); however, the corresponding
single formulae (each valid now both for even and for odd m), while
formally simpler, are somewhat artifical and not very revealing and are,
therefore, not given here.
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