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B. W. Helton has studied linear equations of the form

() f(x)=f(a)+(RL)fa(Kf+Mf);

this paper extends some of his results to a nonlinear
setting. Let S be a linearly ordered set, {G, +,|| |} a complete
normed abelian group, H the set of functions from G to G that
take 0 to 0, O/ and O/ classes of functions from SXS to H that
are order-additive and order-multiplicative respectively and
satisfy a Lipschitz-type condition, and € be J. S. Mac Nerney’s
reversible mapping from O/ onto 0. X {V,W}is in &, we
show the collection of all functions that are differentially equiva-
lent to V is the same as the collection of functions that are
differentially equivalent to W — 1. This analysis is used to
prove existence theorems for product integrals which we show
solve (1).

1. Introduction. In his 1966 paper, Integral Equations and
Product Integrals [2], B. W. Helton obtained product integral solutions
of linear integral equations of the form (1) where the integration is
directed along intervals in some linearly ordered system, the functions
involved have their values in a complete normed ring, and the right-left
integral is of the subdivision-refinement type.

We extend some of these results to the nonlinear setting developed
by J. S. Mac Nerney in [7]. As in [7], S denotes some nondegenerate
set, with linear ( =) ordering 0; {G, +,|| |} denotes a complete normed
abelian group with zero element 0, and H denotes the class of all
functions from G to G to which {0,0} belongs, with identity function
1. O«* denotes the class of all 0-additive functions from SXS to the
set of nonnegative real numbers, and O#* denotes the class of all
O- multiplicative functions from SXS to the set of real numbers not less
than 1.

The class O consists of all functions V from SXS to H such that

(i) V is 0-additive in the sense that, for each {x, z, P} in SXSXG, if
{x,y,z} is an O-subdivision of {x,z} then

Vix,y)P+ V(y,z)P = V(x,z)P, and
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(ii) there is a member «a in O " such that if {x,y} is in SXS and
{P,Q} is in GXG then

[V(x,y)P - V(x,y)Q[=alxy)|P- Q.

The class 04 consists of all functions W from SXS to H such that
(i) W is O-multiplicative in the sense that, for each {x,z} in SXS
and P in G, if {x,y,z} is an O-subdivision of {x,z} then

Wi(x,y)W(y,z)P = W(x,z)P,  and

(ii) there is a member p of OAM* such that if {x,y} is in SXS and
{P,Q} is in GXG then

[(W(x,y)— 1P - [W(x,y)-11Q[=[uxy) - 11[|P-Q]J.

In [7], Mac Nerney establishes that there is a reversible function &
from 04 onto O such that if V is in Of and W = €(V) then, for
{x,y,P} in SXSXG,

We,y)P=J] [1+VIP and V(xy)P=.S [W-I1]P.

If {V,W} is in &€, we show the collection of functions that are
differentially equivalent to V is the same as the collection of functions
that are differentially equivalent to W — 1 (i.e., functions M and N from
SXS to H are differentially equivalent only in case there is a function k
from SXS to the real numbers such that ,2’k=0 and
[M(x,y)P -~ N(x,y)P||=k(x,y)||P| for each {x,y,P} in SXSXG
[6]). This analysis is used to prove existence theorems for product
integrals of the form

W(x,y)P =.]] [1- MI"[1+K]P,

where {x,y, P} is in SXSXG and there is a {V,, V,} in O X0 such that
K and M are differentially equivalent to V, and V,
respectively. Product integrals of this form were introduced in the
linear case by Helton in [2]. In addition, we show that if V(x,y)P =
2" {[1-M]'[1+ K]—1}P for each {x,y, P} in SXSXG, then {V, W} is
in €. Finally we show if f is a function from S to G that is of bounded
variation on each O-interval of S then W(x,a)f(a) solves (1) and as in
[7, §3] it is shown that the theory of the seemingly more general
equation

u(x)=P,+(RL) f (Ku + Mu)+ V(x,c)P,

is subsumed in this treatment.
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In [7, p. 624] Professor Mac Nerney defines sum and product
integrals in this setting. We indicate the definitions: if g is a function
from SXS to G, h is a function from SXS to H and {x,y,P} is in

SXSXG, .3, ¢~ 3"g(tt) and [T [h]P~{]_[:'h(t,~_l,t,-)}P (func-

tional composite) where {t;}; is an O-subdivision of {x,y}.

Let ® denote a function from 0« such that if V is in O« then ®(V)
is the set to which K belongs only in case K is differentially equivalent
to V.

Let ¢ denote a function from 0.4 such that if W is in O/ then
Y (W) is the set to which K belongs only in case K is differentially
equivalent to W — 1.

REMARK. In [2, p. 299] Professor Helton defines function classes
OA°, OM® and OB°. In the linear case, our ®(0sf) includes the
common part of OA° and OB® and ¢/ (O ) includes the common part of
OM* and OB°.

2. Y[E] = D. Inthissection we prove two theorems that will
be used in the proofs of later theorems. In the first theorem we prove
that if K is in ¢ (O() then the sum and product integrals of K exist and
in the second theorem we prove that if {V, W} is in &, the collection of
functions which are differentially equivalent to V is the same as the
collection of functions which are differentially equivalent to W — 1.

THEOREM 2.1. If {V, W} is in € and K is in y(W) then

(1) Wi,y)P=,IP [1+ V]P = I [1+ K]P for every {x,y,P} in
SXSXG, and

) V(x,y)P=,2[W—1]P =,2" KP for every {x,y, P} in SXSXG.

Proof. (1) Let W be in 04 and K in (W), k be a function from
SXS to the real numbers such that for {x,y, P} in SXSXG

| K(x,y)P = [W(x,y)—11P||Sk(x,y)|| P|

and 2’k =0, and u be a member of O.#" such that for each {x,y} in
SXS and {P,Q} in GXG

[IW(x,y)—11P = [W(x,y)—11Q | = [n(x,y) - 11| P~ Q].

Suppose c is a positive number and {x,y, P} is in SXSXG. Thereis
an O-subdivision s of {x,y} such that if {t;}; is a refinement of s then
Zrk(to,t) <c2u(x,y)* and Exp[Z7k(ti-1,2)] <2. By Lemma 1.2 [7,
p. 623]
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H IT 1+ Kt P = [T W(t/—z,t,-)PN

=T 1) + kot = T ot 1P
=20 I w0k, ) T (s t) + Kt DT P

gu(x,nyXp[Z,L, k(t,~_,,ti)] 2. k)| Pl < c|P].

(2) For each 0-subdivision {t,}; of {x,y} in SXS
” V(x,y)P - EfK(t,-_,,t,.)P”
=3 W (@-,8) = NP —K (4-1,4) P|
+”Z,[W— 1P - V(x,y)PN

é{Z?k(t,-_l,t,-HZ,[u ~ 1]—a(x,y)]||P||.

Since , 2’k +,% (u — 1) — a(x,y) =0 the proof is complete.

REMARK. The proof of the following theorem is similar to the

proof of Theorem 3.4 [2, p. 301] of which this theorem is an extension.

THEOREM 2.2. Y[€]=.

Proof. Part I. Let V be in O« and €(V)=W and K be in
y(W); there is a w in OA#* such that for each {x,y} in SXS and {P,Q} in
GXG

HWx,y)— 3P —{W(x,y) - Q| =[ulx,y) - 11|P-Q].

Also there is a function k from SXS to the real numbers such that

2’k =0 and

[{1+ K(x,y)}P —~ W(x,y)P| =< k(x, )| P|.
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By Corollary 1.1 {7, p. 626]
fluen-1-.2 tw-nf1P|

éwwmw—uPnZ7W‘”%

= | KeeyP -5 (W - 1P| - 11+ K e 1P =~ Wi P
hence
I 0)P = VP = {lax ) = 11-.5 (1 = 1+ k)P
so K is in ®(V).

Part 2. Let K be in @(V); there is an « in O * such that if {x,y} is
in SXS and {P,Q} is in GXG then

[VO,y)P=V(x,y)Q=alx,y)|P-Q]|
and there is a function h from SXS to the real numbers such that
| V(x,y)P—K(x,y)P|| = h(x,y)||P|| and ,2*h =0. By Corollary 1.1
[7, p. 626]

[[1+ K(x,y)]P — W(x,y)P||

g”u+wwa—qu+vw

|+ | V(x,y)P - K(x,y)P|
= [xny [I+a]l-a(x,y)—1 +h(x,y)]||PH; therefore K is in ¢ (Z(V)).

3. Existence theorems. In this section we will prove that
if each of K and M is in ®(0«) and [1— M(x,y)]"'P exists and is
bounded sufficiently there is a member V of 0 such that

[1+KI[1-M]'—1

is in ®(V); hence ,IP[1+K][1-M]'P=,IP[1+ V]P for every
{x,y,P} in SXSXG. This extends existence theorems proven by J. S.
Mac Nerney [7], B. W. Helton [3],J. V. Herod [5] and J. C. Helton [4].

THEOREM 3.0. If each of a, and a, is in OA* and a,(x,y) <1 for
each {x,y} in SXS, then

() a(x,y)=,2"{[1+a][l—a,)" — 1} exists for each {x,y} in SXS
and a is in OA™;
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2) pu(x,y)=.IP[1+a,][1—a,]™" exists for each {x,y} in SXS and
wuis in OM"; and
B) pu(x,y)=,IP {1 +a} for each {x,y} in SXS.

Proof. Let B=[1+a][1—a,]"'—1;if {r,s,t}is an O-subdivision
of {r,t} in SXS,
B(r,t)zB(r,s)+B(s,t)=0.

Hence a(x,y)=,2"B = G.L.B. 2,8 = 0 for all 0-subdivisions t of {x,y}
in SXS. B isin ®(«) and from Theorem 2.2 B is in y(€(a)). Hence
from Theorem 2.1 w(x,y)=,IP [1+B8]=,I"[1+a] for all {x,y} in
SXS, and the proof is complete.

REMARK. As noted by Herod [5, p. 188] and proved by Neuberger
[8,p. 101],if Tisin Hand0<t <land||TP-TQ| =t | P - Q| for all
{P,Q}in GXG then(1-T)'isin H,(1-T)'=1+T({1—-T)"', and for
each such {P,Q} [(1-T)'"P-(1-T)"'Q|=(-1t)"|P—-Q]. These
and closely related inequalities are used in the sequel, usually without
explicit reference.

THEOREM 3.1. Ifeach of V, and V, is in Osf and each of a, and a,
isin 04" such that for {x,y} in SXS and {P,Q} in GXG, a,(x,y) <1,
IVi(x,y)P = Vi(x,)Q | = ai(x,y)|P - Q| and

I Va(x, )P = Vi(x,y)Q || = aslx,y) [|P = Q]
then
(1) V(x,y)P=,2{[1+ V,][1—= V,]7' = 1}P exists for each {x,y, P}
in SXSXG and V is in O ;
2) W(x,y)P=_II"[1+ V|][1—= V,]7'P exists for each {x,y,P} in
SXSXG and W is in OM ; and
3) {V,W}is in &.

Proof. (1) Note that [1+ V\J[1-V,]'"=1=[V,+ V,][1 - V,]
and if {x,y, P} is in SXSXG and {x,s,t,y} is an O-subdivision of {x,y}
then

11— Vo, ))I'P—[1- Vi(s,)] ' P ||
= | Valx,y) [1 = Vi(x,9)1' P — Vs, t) [1 = Vi(s,1)]' P
+ Vi, y) [1- Vi(s,1)] ' P|
= a6, Y) [[1= Vi, »)I'P = [1 = Vi(s,)] ' P ||
+ [axx,y) — aa(s, )] [1 — ax(s, )] || P||
= {l1- a6, y)"' —[1 —as, )} P|.
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For each {x,y,P} in SXSXG and O-subdivision {t;}; of {x,y}

Vi, y) + Vi, DI = Vi, )P = 3 [Vi+ Vo] X[1- Vo] P

= “{Z,[VH— Vz]}[l = Vy(x,y)]'P — Zt[V,_p Vil -V, 'P|

= 2 en(tion ) + oot 5)I{[1— afx, y)]™!
- [1 "az(t,-_l,tj)]—l}”P”

= {lai(x,y) + aax, y)][1 — axx, y)] ' - E'[al +a)] X[1—a,] '}|| P].
If follows that if s is a refinement of ¢

“ZS[V.+ Vill= Vo' P= [Vi+ Va1 — Vz]“P”

= {3 lwralli-al =3 (ot el - a1} IPI.

Hence, by the completeness of {G,+,|| |} and Theorem 3.0
Vix,y)P=.2[V,+ V,][1 - V,]7'P exists. For each {x,y}in SXS and
{P,Q} in GXG ||V(x,y)P - V(x,y)Q|[=a(x,y)||P - Q]| where a is
defined as in Theorem 3.0. Therefore V is in O« and, with 8 as in the
proof of Theorem 3.0, considerations of 8 — a may be seen to show that
1+ VI[1-V,]'=1 is in ®(V). (2) and (3) follow from (1) and
Theorems 2.1 and 2.2.

THEOREM 3.2. Ifeach of V, and V, is in O, and each of a, and a,
is in Od* such that for each {x,y} in SXS and {P,Q} in GXG
az(X,y) < 1,

I Viix,y)P = Vix,y)Q [ = er(x,y) [P - QIl, and
| Vax,y)P = Vix,y)Q || = ax(x, ) || P - Q]],

then

() V(x,y)P=,2{1- V,]'[1+ V\]— 1}P exists for each {x,y, P}
in SXSXG, and V is in 04 ;

) W(x,y)P =, IP[1- V] '[1+ V\]P exists for each {x,y,P} in
SXSXG and W is in OM ; and

3) {V,W}isin &
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Proof. (1) Note that
[I=-V,J 1+ V]-1=V, + V[1-V,]7'[1+ V] andif {x,y, P}
is in SXSXG and {x, s,t,y} is an O-subdivision of {x, y} then

01 = Valx, T[T+ Vi(x, y)IP = [1 = Vi(s, )] '[1+ Vi(s,1)]P|

= Vi(x,y)P = Vi(s,t)P + Vy(x, y)[1 — Vox, y)]"'[1+ Vi(x, y)]P
— Vs, D)1= Vi(s, )] "'[1 + Vi(s, )]P
* Vo(x, )1 = Vo(s, )] '[1 + Vi(s, )]

= [ai(x,y) = ai(s, DI|| P + axx, ) |[1 = Valx, )] '[1+ Vi(x, y)IP
—[1= Vs, )]'[1+ Vi(s,1)]P]||
+ [ax(x, y) — ax(s, )1 — ax(s, )] '[1+ ai(s, )] || P|

= {[1- ax(x, I + ai(x, )] = [1 = ax(s, O] '[1 + ai(s, OB P]|.

For each {x,y, P} in SXSXG and O-subdivision {t;}; of {x,y}

| Vi(x, y)P + Valx, y)[1 = Vilx, Y)I'[1+ Vi(x, y)IP
— 2 AVi+ Vil =V 1+ Vl]}P“

-|{=. Vaf (1= Vil I+ Vix, 1P
-2, Vil = V[ + V.]P”

= 27wt )1 — ax(x, I+ ai(x, ¥))

— 1=t D)1 + (-, )T P
={{1 = (e, 1+ (e, )= 1= {1 -] "[1+a]- 1| P].
The rest of the proof is identical to the proof of Theorem 3.1.
THEOREM 3.3. Suppose

(1) each of V, and V, is in 0A, and each of a, and a, is in Osf*
such that for each {x,y, P,Q} in SXSXGXG

| Vitx,y)P = Vi(x,y)Q | = ai(x,y)[|P - Q| and
[ Vax, )P = Vy(x,y)Q | = ax(x, ») [P - Q||;

2) Kisin ®(V,)) and M is in ®(V,) and each of h and k is a
function from SXS to the real numbers such that for each {x,y, P} in
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SXSXG, .3’k =0, |K(x,y)P — Vi(x,y)P||= h(x,y)|P||, .=’ h =0 and
IM(x,y)P = Vix,y)P | = h(x,y)|IP|;

(3) there is a number a <1 such that for each {x,y} in SXS
axx,y)+h(x,y)=a; and

4 B=[-al'll+a]land y=[1-a,—h]'[1+a +k]

Conclusion:

(D) 1= Ve, I+ Vi, »)IP = [1= Vo, D[+ Vi(x, y)IQ |

=[1~axx,y)I"'[1 + ai(x,y)]|| P — Q|| for every {x,y} in SXS and {P, Q}
in GXG.

2 [1=M, ) '[1+ K(x,y)IP—[1- Vi(x,y)]"'[1+ Vi(x,y)]P||
=[y(xy)- B, )| P| forevery {x,y}in SXS and Pin G.

Q) P -MI'1+K]JP=.,IP[1- V' [1+ V]JP  for every
{x,y,P} in SXSXG.

Proof. Let {x,y} be in SXS, {P,Q} be in GXG and A =
[1-Vix,y)I'[1+ Vi(x,y)]. First note that A=1+V,(x,y)+
Vi(x, y)A.

and assertion (1) follows. Let B =[1— M(x,y)]"'[1+ K(x,y)];
|BP - AP||=

|[1+ K(x,y)+ M(x,y)BIP —[1+ V(x,y) + Vix,y)A]P
+ Vi(x,y)BP||

=k(x,y)||P+h(x,y)[| BP |+ axx,y) || BP — AP

=k(,y)||P|+h(x,y)[|AP ||+ [A(x,y) + ax(x,y)]| BP — AP||

Sk, P+ h(xy) 1+ aix, )] [1 = axx, )] P|
+[h(x,y) +axx,y)]| BP — AP

which, except for minor algebraic manipulation, establishes (2).

For each O-subdivision ¢ of {x,y} it follows from Lemma 1.2 [7, p.
623] that

[T t- v+ k1P =11 11- v+ vae| = (I v~ T g} 171,

By Theorem 3.2 [2, p. 300] and hypothesis (3) of this theorem, there is a
number b such that

[1y-T1,8=b02 (y=B)=b>Z k+b[1+a(x,y)]2 h.
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Since xzyk =0 and ,th = (0 the proof is complete.
THEOREM 3.4. If Vis in OA, a is in 04", a(x,y) <1
[V(x,y)P=V(x,y)Q|[Sa(x,y)|P— Q| and .2’ a*>= 0 for each {x,y}
in SXS and {P,Q} in GXG, then for each {x,y,P} in SXSXG
M JJl u-vre=JI 1+ vip;
@ JT n+vie=JIT 11— vip;
3 I 1-viP=P; and
@) xﬂy [(1+vin-vype= ,ﬂy [1+2V]P.
Indication of proof of (1). For each {x,y, P} in SXSXG
(1= V&, »I'P —[1+ V(x,y)IP||
[V, y)[1=V(x,y)I'P—V(x,y)P|

= a(xy)||Ve,y) [1- V)P
= a’(x,y)[1=—a(,V] | P]|.

Similar inequalities can be established for (2), (3) and (4).

4. The integral equations. Let each of R and L denote
a function from SXS into S such that R(x,y)=y and L(x,y)=x for
each {x,y} in SXS.

ReMARK. This notation due to W. L. Gibson in [1] provides a more
precise notation for left and right integral process than that used
before. Hence

(RL) f " (Kf + Mf) becomes f " (KfIR]+ MfIL1).

As in [7] #(c, P) denotes the class of all functions f from S to G
such that f(c)=P and there is a member B of 0" such that
I f(y)—f(x)||=B(x,y) for each {x,y} in SXS (i.e., f is of bounded
variation on each O-interval of S).

ReEMARK. The construction of the proof of the next lemma is
similar to that of Lemma 2.2 [7, p. 623].

LEmMMA 1. Suppose
(1) eachof V,and V, is in 0« and a, and a, is in O4* such that for
each {x,y} in SXS and {P,Q} in GXG
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| Vix,y)P = Vi(x,y)Q | = ai(x,y) | P~ Q| and
[ Vax,y)P = Vi, Q= ar(x, y) [P~ Q ;

(2) fisin ¥(c,P); and
(3) for each {x,y} in SXS

Clx,y) =J:{fo[R]+ VA ILT} = Vix, )f(y) = Valx, )f (x).

Conclusion. For each {x,y} in SXS

> c)=o.

Proof. Let B be in O«f* such that || df || = B, {x,y} be in SXS such
that {x,y,c} is an O-subdivision of {x,c} where ¢ is in S, and {¢;}; be an
O-subdivision of {x,y}; then

|2 AVAFIR)+ Vo [LT} = Vi(x, y)f(9) = Valx, y)f (x)
= “ 3Vt t)f(t) = 27 Villtion, 1)f(x) ”

+ | Vit 0) = E Vit t0f ) |
= 2 Vit t)f (1) = Vol 6)F () |

+ 2 I Vit t)f (1) = Vit t)F () |

= 2 : ay(ti, £)B(x, tiy) + Z :l a(ti1, 1)B (¢, 3)

= a5, Y)B(x, ) =2 @B LOLI+X aiB( )R]
—a(x,y)B(y,c).
Let h(x,y) = axx, y)B(x, ¢) =5 aB( ,c)L]

+.3 @B( ORI ax B c).

Since ,Z'a,B8( ,c)L] and 2’ a,B( ,c)[R] exist for every {x,y} in
SXS (as in [7, p. 629]) and each is real valued then by a theorem of
Kolmogoroff’s [6, p. 668] ., =" h = 0 for all {a,b} in SXS and the proof is

complete.
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LEMMA 2. Suppose
(1) eachof V,and V, is in O, each of a, and a, is in O{* and there
is a number a <1 such that for each {x,y} in SXS and {P,Q} in GXG

[ Vitx,y)P = Vi(x,y)Q S as(x,y) [P- Q| and
[ Vix, )P = Vix,y)Q || S aslx,y) |[P-Q|=a||P-Q;

(2) Cis a function from SXS to G such that for each {x,y} in SXS,
2 C[=0;

3) .IP [1— V,]7'[1 + V\]Pexists for every {x,y, P} in SXSXG ; and

4) A(x,y)P =[1-Vy(x,y)I"{[1+ Vi(x,y)]P + C(x,y)} for each
{x,y,P} in SXSXG.

Conclusion. 1P [1— V,]7'[1+ VP = 11" AP for every {x,y, P} in
SXSXG.

Proof. First note from Theorem 3.3 that

1= Vyx, I H{[1+ Vi(x,y)IP + C(x,y)}
—[1= Vy(x, )11+ Vi(x, )P

=[1-a)x,y)I"'|C(x,y)|| for each {x,y, P} in SXSXG. Let {x,y,P}be
in SXSXG and t be an 0-subdivision of {x,y}. Using Lemma 1.2 [7, p.
623], IAP —IL[1 = Vo) [1 + VP =TL[1 —a,) {[1 + @) +|C |} -
IL[1- ) '[1+ «,]; from Theorem 3.2 [2, p. 300] and our hypothesis
there is a number b such that the difference between these last two
products does not exceed b=, || C ||, which completes our proof.

THEOREM 4.1. Suppose

(1) each of V, and V, is in O,

2) Kisin ®(V)) and M is in ®(V,),

(3) fis a function from S to G that is bounded on each O-interval of
S, and

(4) for each {x,y} in SXS f "(VFIR) + VAf[L)) exists.

Conclusion. For each {x,y} in SXS
fy (Kf[R]+ Mf[L]) = fy(V.f[R] + VL f[L)).

Proof. Let each of h and k be a function from SXS to the real
numbers such that for each {x,y,P} in SXSXG, ,>’k =0,
[ K(x,y)P = Vi(x,y)P|=k(x,y)|P|, .2'h =0, and

[M(x,y)P = Vix,y)P| = h(x,y)[[P].
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Pick {x,y} in SXS and a number b such that if {x,z,y} is an
O-subdivision of {x,y} then | f(z)||=b. Let{t}; be an O-subdivision of
{x,y}; then

”Z,"{K (tis, F (1) + My, ) f(82)}

= 2 Vit t)f(8) + Vit t)f (1)} |
= DK (i t)f(8) = Vit t)f () |

+ 2 I MU t)f(t) = Vit t)f (82D |
= 2 k() fE) |+ 2T Rt t) [ (5D |
= b{zrk(t,»_[,t,-)+Z:h(t;_ht,-)}.

ReMARK. The construction of the proof of the next theorem is
similar to that of Theorem 5.1 [2, p. 310].

THEOREM 4.2. Suppose
(1) each of V, and V, is in O and each of a, and a, is in OA* such
that for each {x,y} in SXS and {Q,,Q.} in GXG

” Vi, y)Q,— Vi(x,y)Q: ” =ax,y) ” Q.- Q; “ and
| Va(x,y)Q, — Vi(x,y)Q: “ = ay(x,y) ” Q.— Q:l;

2) Kisin ®V,) and M is in ®(V,) and each of h and k is a
function from SXS to the real numbers such that for each {x,y,Q} in
SXSXG, .3k =0, | Vi(x,y)Q -~ K(x,»)Q| =k Qll, .2k =0,
| Vax,y)Q — M(x,y)Q | = h(x,y)| Q|| and there is a number a <1 such
that a,(s,t)+ h(s,t)<a for all {s,t} in SXS;

3) {c,P}isin SXG.

Conclusion. The following statements are equivalent :

(1) fisin%F(x,P)andf(x)=P +f (Kf[R]+ Mf[L]) for each x in
S,

(2) f(x)=.0°[1-M]'[1+K]P for each x in S; and

(3) if for each {a,b,Q} in SXSXG
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V(a,b)Q =, {[1- MI"[1+K]- 1}Q
then f(x)=xII°[1+ V]P for each x in S.

Proof. (1—2): If {x,y,c} is an O-subdivision of {x,c} then by
Theorem 4.1

ﬂn=P+£YKﬂRHmﬂum=P+LRVer+WﬂLD

=ﬂw+fYVJm1+VJMD.

Hence if {t;}; is an O-subdivision of {x,c} and j is an integer in [1,n] then

L,

f(t;ﬂ)—f(t,-)=jti (V.f[R1+ Vof[L]) and
f(t-) =f(t)+ Vi(t;_, ) () + Vo8-, ) f(8i-1)
+ C (-1, 1)
where C(f;_,t;) = f,i (Vif[R]1+ Vof[L]) — Vi(t;-,, t))f ()

= Vi(ti-0, 1) f (8-0).
[1=Vu(ti-, )If (4= = [1 + V(4,01 () + C (-1, 17).
f@-) =[1= Vot )T+ Vilt-, )If (1) + C (-0, 1)}

Let A(x,y)Q =[1— Vix,y)I'{[1+ Vi(x,y)]Q + C(x,y)}. By iteration
j=nn—-1n-2,---,1, in order, we obtain

f(t) = H::, A, )f ().

Using our Lemmas 1 and 2 and Theorem 3.3
fo=Jl n-v'u+vip=J[ n-mpru+kje

2—1): If{x,c}isin SXS and {t,}; is an O-subdivision of {x, c} and
i is an integer in [1, n] then from Theorem 3.3

Fty = JT 1= M1+ K)f()
= T v= v+ Vi)
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=[1= Vy(t:i_, t)]'[1 + V(i 8 (1)
+ Dty tF(8)
where D(t,_,t) =, [1 [1- VaI"'[1 + V]
= Vit ) 1+ Vit 1))
[1= Vo(tio, t)If (o) — D (4o, t)f ()] = [1+ Vi, 8 (8)5
flt)— f(t) = Vi(tiy, )f () + Vot 8) [f(5i-)

= D(ti-i, t)f(t)] + D(tio, t)f (1)

f(x) =f(C)+J’C{V1f[R]+ Vz(f[L]+Df[R])}*’xECDf[R];
but f "VLIfIL1+ DfIRN +.5 Df[R] = f "V, fIL] because

| SVttt ) = Dt 0 0]

+ 3D 0f@) = 3 Vit t)f @ |
= 2 @t 1) | Do, t)f () |+ 2T Dt t)f (1) |
= {1+ a(x,¢)} X D(tir, (8|
={1+axx, o)} 2 dtent) [ (2|

where d(a,b)=,11"[1—a,]'[1+ a,]—[1— axa,b)"'[1 + aa,b)] for
each {a,b} in SXS. The preceding inequality follows from the proof of
Theorem 3.2, and it follows from Theorem 3.0 and [6, p. 668] that
.2*d =0 for each {a,b} in SXS.

Hence f(x)= P+fc(V|f[R] + Vof[L]) = P+fc(Kf[R]+Mf[L]).

It follows from Theorems 3.2 and 3.3 that (3) is equivalent to (2) and
the proof is complete.
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REMARK. From the foregoing argument it is evident that each of
the following statements is equivalent to those in the conclusion of the
preceding theorem:

4) fis in F(c,P) and

fx)=P +f: (V.f[R]+ VA fIL])

for each x in S; and
) f(x)=,0°[1-V,]"'[1+ V,]P for each x in S.

THEOREM 4.3. Suppose
(1) each of V, and V, is in O and each of a, and a, is in O{* such
that for each {x,y} in SXS and {Q,,Q.} in GXG

” Vilx,y)Q:— Vi(x,y)Q: “ =aix,y) “ Qi —Q; ” and
| Vax, y)Qi = VAx,¥)Q: = ax, )| Q= Qall;

2 Kis in ®(V,)) and M is in ®(V,) and each of h and k is a
function from SXS to the real numbers such that for each {x,y,Q} in
SXSXG, .2k =0,

Vi 9)Q - Ky)Q | =k, Q. .3 h =0,
| Vax,y)Q — M(x,y)Q||Sh(x,y)| Q.

and there is a number a < 1 such that a,(s,t) + k(s,t) = aforall {s,t}in
SXS;

(3) K'(y,x)Q = K(x,y)Q, M'(y,x)Q = M(x,y)Q for each {x,y,Q}
in SXSXG;

4) {c,P}isin SXG.

Conclusion. The following statements are equivalent:
(1) fisin%F(c,P)andf(x)=P +f (Kf[R]+ Mf[L]) forxinS;

2) f(x)=,1I‘'[1-K']'[14+ M']P for each x in S; and
(3) if V(a,b)Q =, 2 {[1-K'T"'[1+ M')1—-1}Q for each {a,b,Q}
in SXSXG, then
f(x)=,II°[1+ V]P for each x in S.
The proof of this theorem, except for minor algebraic manipula-
tions, is the same as the proof of the previous theorem.
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5. A seemingly more general integral equation. In
[7, pp. 632-633] Mac Nerney showed that the theory he developed in

solving an integral equation of the form f(x) = P + (R) f ) Vf could be

used to solve a seemingly more general equation of the form
f) =P R) [V + Vi P,

We repeat that procedure here by using the theory developed in the
preceding section to solve an equation of the form

fx)=P,+ [ "(Kf[R]+ MfIL]) + V(x,c)P,,

and the solution of this equation in the purely linear case is shown to
include the solutions Helton obtained in Theorems 5.1-5.4 [2, pp.
310-314].

Let {GXG, +,|| |}, 04" and OM" be defined as in [7, p. 632]. Let
®" and ¢" be the mappings corresponding to the mappings ® and
Y. The following theorem is a reinterpretation of Theorem 4.3. We
will not state the corresponding reinterpretation of Theorem 4.2.

THEOREM 5. Assume the hypothesis of Theorem 4.3 with K and M
as defined there. Let P be in GXG, V be in O and each of K" and M"
be in ®"(OA") such that

K"(x,y)Q ={K(y,x)Q,,0} and

M"(x,y)Q ={M(y,x)Q:+ V(y,x)Q.,0}
foreach {x,y}in SXS and Q in GXG. Ifuis a function from S to G, the
following are equivalent :

M {u(x), P} = 1°[1- K"]"'{1+ M"]P for each x in S, and

(2) uis in F(c,P,) such that for each x in S

1 (x) =P,+fx(Ku[R]+Mu[L])+ Vix.c)P,.

The next corollary shows that in the purely linear case this theorem
includes the solutions Helton obtained in Theorems 5.1-5.4 [2, pp.
310-314].

Let {N, +,-,

[} be a complete normed ring.

COROLLARY. Suppose
(1) each of K and M is a function from SXS to N that is in the
common part of OA® and OB’ [2, p. 299];
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(2) there exists a number a <1 such that for each {x,y} in SXS

K(x’y)_xzyK +xzy|K|§a and

M'(x,y)= M(y,x) and K'(x,y) = K(y,x); and
(@) cisin S and each of f and h is a function from S to N such that
f(c)=h(c) and dh is in OB°.

Conclusions.
(1) The following two statements are equivalent :
(a) df is in OB° and

f(x)zh(x)+fx(f[R]K +f[L1M) for each x in S; and
b)) fx)=f() Ir[1+M][1-K]'
+fx(dh),H* [1+M)[1-K]"[R]

for each x in S.
(2) The following two statements are equivalent :
(@) df is in OB® and

fx) = h(x)+fx(Kf[R]+Mf[L]) for each x in S; and
(b) f(x)=,IIF[1-K'T'1+M']f(c)

+ f I [1- K')'[1 + M'][R]dh

for each x in S.

(3) The following two statements are equivalent :
(a) df is in OB® and
fx) = h(x)-f—fx(Kf[R] + fILIM) for each x in S; and
() ()= I [1 - K'7'f(e).IF [1+ M] |
+J;x JI[1=K'T'[R]1(dh), I [1+ M][R]

for each x in S.

(4) The following two statements are equivalent :
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(a) df is in OB® and
fx) =h(x)+fx(f[R]K+Mf[L]) for each x in S; and
() f(x)= I [1+ MIf(c) IF [1- K"
+f:xH'[1+M’][R](dh),H‘[I—K]“[R]

for each x in S.

Indication of proof.

(1) For each {x,y} in SXS and Q in NXN
K"(x,y)[Q]1={Q.- K(y,x),0} and
M"(x,y)[Q]={Q: - M(y,x)—dh(x,y)Q,,0}.

Let P be in NXN such that P,=h(c) and P,=1;

h(x)+jx(f[R]K +fILIM)
= Pl+fc(K"f[R]+M"f[L])+(—dh)(c,x)~P2,

and for each O-subdivision {t;}i of {x,c}

[T [ =K t)I' 1+ M0, 8)1P

i=1

~{FTT, 1+ Myt 0= Kt ot )T

+ Z;;l dh (t.;y t,.~j+1) H:: [1+ M(tn—q+l9 tn—q)]
- K(tn-q“,tn_q)]“‘,Pz}.

(@ K'(xy)[Q]1={K'(x,y)-Q,,0} and
M'(x,y)[Q]={M'(x,y) Q: = dh(x,y) - Q,,0}

for each {x,y} in SXS and Q in NXN.

3) K'"(x,y)[Q]1={K'(x,y) - Q,,0} and
M"(x,y)[Q]={Q,-M(y,x)—dh(x,y) - Q,,0}

for each {x,y} in SXS and Q in NXN.

221
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4) K"(x,y)[Q1={Q: - K(y,x),0} and
M"(x,y)[Q]={M"(x,y) - Qi — dh(x,y) - Q,,0}

for each {x,y} in S XS and Q in N X N.
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