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The study of extensions of positive linear functions leads, in
this paper, to a generalized and unified treatment of the
Riemann, Lebesgue, Daniell, and Bourbaki integrals and of the
Choquet-Bishop-deLeeuw integral representation theorem.

Let a be a positive linear function mapping from a subspace of an
ordered vector space to another ordered vector space. Generalizing
the process of extending the definition of an integral from some space of
“simple”” functions (e.g., continuous functions or step functions) to a
larger space of integrable functions it is shown that extensions of «
exist which are positive and linear and preserve a certain approximation
property. In many cases of interest there is exactly one such extension
which is maximal; in particular, this holds true for the generalizations of
the familiar integrals of analysis. Different choices of approximating
properties lead to different “integrals.” With additional completeness
assumptions on domain, range and function it is shown that the
approximation property which leads to the Lebesgue integral in the
function case gives an extension for which the generalizations of the
usual convergence theorems hold. In the case when « is defined on the
space of continuous functions on a compact Hausdorff space the
correct choice of approximating property gives extensions which are
measures supported by the Choquet boundary; this is the Choquet-
Bishop-de Leeuw theorem. Integrals with values in a locally convex
space are treated by using an order determined by the topology of the
space.

McShane in [7] and Alfsen in [1] have studied very general versions
of integration. The treatment presented here differs in that we are
concerned with showing how different integrals arise uniquely as
maximal positive linear extensions. The idea that this is a natural and
useful approach is reinforced by the fact that the Choquet theorem and
also the Hahn-Banach theorem (see [6, p. 21]) appear as easy conse-
quences. )

1. Existence of positive linear W -extensions. Anor-
dered vector space is a vector space V over the reals with an order
relation “ =" such that x =y implies x +z=y +2z for all z in V and
rx = ry for all nonnegative numbers r. If the requirement of antisym-
metry is omitted from the order relation, V is said to be a preordered
vector space. In this case the set V* ={x € V: x = 0} forms a wedge in
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V (e V*'+V*CV*and rV*CV"* for r =0) while if V is an ordered
vector space V" satisfies the additional requirement V*N (- V*) = {0}
(i.e. V' is a cone). An ordered vector space is said to be Dedekind
complete (resp. monotone Dedekind complete) if every upper bounded
subset (resp. increasingly directed upper bounded subset) has a least
upper bound. A linear function @ from V to another preordered
vector space Y is said to be positive if x =y in V implies a(x) = a(y)
in Y. In the following R will always designate the real numbers.

An ordered vector space V is said to be a vector lattice if, for every
pair of elments u and v in V, sup{u, v} (written u v v) and inf{u, v}
(written u A v) both existin V. Wedenote u vOby u*and (—u) v 0by
u and u v(—u) by |u| and note that (u vo)+w =@ +w)v(v+w)
and (u Av)+w=(u+w)r(v+w). A subset S of a vector lattice V
is said to be a sublattice of V if, for every u, v in S, we have (4 v v) and
(u Av) in S also.

For brevity we will write z =a(g — V") instead of z =y for all
yEa(g— V") and supa((g — V*)N(— W)) will be written in place of
sup{a(h): g = h €(— W)Ndmna}.

Many times in the theory of integration we wish to be able to
approximate the value of our integral by its value on some special class
of elements (e.g. step functions, continuous functions, lower semicon-
tinuous functions, etc.). We generalize this in the following way: Let a
be a positive linear function from a subspace G of a preordered vector
space V to an ordered vector space Y. Given a wedge W CV we say
that « is W-approximated if W CG + V* and, for all g € G, we have:

supa((g — V)N (— W)) exists in Y and equals a(g).

The first problem of integration can be viewed as that of finding an
extension of a simple integral which is still positive and linear and which
preserves some approximation property. In this section we are con-
cerned with the existence, in our abstract situation, of extensions which
are positive and linear and which preserve the W-approximation

property.

THEOREM 1.1. Let a be a positive linear function from a subspace
G of a preordered vector space V to an ordered vector space Y. Let W
be a wedge in V such that a is W-approximated. Then a can be
extended to a positive linear function & such that & is W-approximated
and such that & is maximal with respect to positive, linear, W-
approximated extensions.

Proof. Let M be the set of all positive linear W-approximated
functions mapping from a subspace of V into Y and let # be partially
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ordered by inclusion (as sets of ordered pairs). An application of
Zorn’s lemma gives the result.

An extension with the properties described above will be called a
maximal W-extension.

Given a positive linear function « from a subspace G of a
preordered vector space V to an ordered vector space Y we define a
new function a by: a(f) =supa(f— V") for all f € G + V* such that
the sup exists in Y. We define & in the obvious dual fashion. Itis not
hard to see that f € dmna if and only if —f € dmna and in this case
a(—f)=—a(f). If B is any positive extension of « it is clear that
a(f) = B(f) (and B(f) = a(f)) wherever both sides of the inequality are
defined. If Y is Dedekind complete then (dmna)N(dmna)=
(G+VHN(G— V") (1e. both the “upper integral” and the ‘“lower
integral” are always defined on “G-bounded elements”).

LEmMA 1.2. Let a be a positive linear function from a subspace G
of a preordered vector space V to an ordered vector space Y. Let W be
a wedge in V such that a is W-approximated and suppose that
f € dmna. If we define a, on G + Rf by a(g + rf) = a(g) + ra(f) then
ay is linear and positive and, for r >0, supa((g+rf—V)IN(—W))
exists and equals a (g + rf).

Proof. It is clear that «a, is a linear extension of a and it is easily
shown that «; is positive [6].

For the last property let h, € (— W) N G be such that g = h, and let
h,€ G be such that f=h,. Now let h; in (—~ W)N G be such that
hi=h, Theng+rfzh +rh,€(—W)NG soif y €Y is any upper
bound for a((g +rf — V)N (— W)) then y = a(h, + rh;). This shows
that y —ra(h;) Z a(h,) forall h, € (— W)N G such that h,=g. Hence
y—ra(h)=Zsupa((g - VHN(—W))=a(g) by W-approximation.
Thus (1/r)(y —a(g))= a(h,) for all h,€(—W)NG such that A=
h,. Again W-approximation shows that (1/r)(y —a(g)) = a(h,) and
since this is true for all h,€ G such that h,=f we have (1/r)
(y—a(g@)za(f). Thus y=a,(g +rf). This shows that a,(g +rf) is
smaller than any upper bound of a((g + rf — V)N (— W)). Since a, is
positive this element clearly is an upper bound itself so it is the required
least upper bound.

THEOREM 1.3. Let a be a positive linear function from a subspace
G of a preordered vector space V to an ordered vector space Y. Let W
be a wedge in V such that a is W-approximated and suppose that
fE€dmna. If f € W then there is a maximal W-extension which takes
the value a(f) on f. Alternatively if f € dmna and a(f) = a(f) then all
maximal W-extensions are defined on f and take the value a(f) on f.
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Proof. As before we define a;, on G+Rf by af(g+rf)=
a(g)+ra(f). The lemma shows that a, is linear and positive and that
a, is W-approximated on g + rf for r >0.

If fE Wandr =0in g + rf we note first that a,(g + rf) is an upper
bound for a,((g +rf — V)N (— W)) because «a, is positive. Lety €Y
be any other bound for this set. Then, since rf € — W and since — W
is a wedge, for any h€(—W)NG with h =g we have g+rf=
h+rfe(—W)N(G+ Rf). Therefore:

y=sup{a,(h+rf):g=zhe(—W)NG}
=supa((g — VHN(— W)+ a(rf)
= a(g) + a\(rf) = a:(g + rf).

So a,g+rf) is the least upper bound. Then a, is W-
approximated and any maximal W-extension of «, is of the required
sort.

To prove the last statement suppose that f € dmna and a(f) =
a(f). Let @ be any maximal W-extension of « and note first that
a) =@ =@(f)=a(f). If we define @ on dmna +Rf by
a(h +rf)=a(h)+r(a)(f) then the lemma shows that & is linear and
positive and that @ is W-approximated on g + rf for g € dmna and
r>0. If we note that (¢)(—f)= — a(f) and apply the lemma to —f
we find that the W-approximation property holds also for r <0. Thus
a is W-approximated and maximality shows that @ = @ Finally the
inequality a(f) = & (f) = a(f) gives the required uniqueness.

2. Unique extensions. For applications a maximal exten-
sion is often too “‘large” to be useful. It is not possible in general to
determine what the value of the extension is on a given element since
the extension is not constructed. Another drawback is the fact that
different extensions may give different values on the same
element. However, in the pleasant situation when there is exactly one
maximal W-extension these difficulties disappear. In our approach to
integration all integrals will be defined as the unique maximal, positive,
linear, W-approximated extension. The following theorem character-
izes the domain of a unique maximal W-extension and gives necessary
and sufficient conditions for uniqueness.

THEOREM 2.1. Let a be a positive linear function from a subspace
G of a preordered vector space V to an ordered vector space Y. Let W
be a wedge in V such that o is W-approximated. Then there is exactly
one maximal W-extension of a if we have the following condition :

() Letfe W, g€ — Wand suppose that f=g. Then, ifyand z
in Y are such that yZa(f—V*) and z =a(g + V"), we have y = 2.
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In this case if we designate this unique maximal W-extension by &
we have a N(WXY)=aN(WXY). For any v E YV, we have v €
dmna if and only if infa((v + V)N W))=supa((v — V)N(— W)).

If Y is Dedekind complete, then (*) is also a necessary condition for
uniqueness.

Proof. Let & be any maximal W-extension of a and choose an
fEW. If A, B, and C denote the sets of upper bounds in Y of
a(f—-VH, a((f-V)HIN(=W)), and a(f— V") respectively, W-
approximation shows that A DB and B=C. Butif y€EA and z =
a(g) for some g €E(f— V)N (— W) then, since a(g)=a(g + V*), we
conclude by condition (*) that y = a(g). Hence y € B and we have
equality of the three sets of upper bounds. Thus f € dmna N W if and
only if f€dmn(a)N W. By Theorem 1.3 and maximality of @ we
conclude that f € dmna N W if and only if f € dmna N W. In this
case a(f) is the least upper bound of &((f— V*)N(— W)) by W-
approximation and, since A =B above, we see that a(f)=
a(f). Hence aN(WXY)=aN(WXY).

Now if f is any element of dmna then W-approximation shows
that a(f)=infa((f+ V)N W)=infa((f+ V)N W). Similarly we
see that a(f) =supa((f — V)N (= W)). On the other hand if we are
given that an f€E€ V satisfies the equality infa((f+V)NW)=
supa((f— V) N(—= W)) then (a)(f) =(a)(f) so, by Theorem 1.3 and
maximality of &, we have f € dmna and a(f) is equal to the common
value. Thus there is exactly one maximal W-extension.

Finally, let Y be Dedekind complete and suppose that there is
exactly one maximal W-extension @&. Let f€E W, g € — W and sup-
pose that f=g. If y and z in Y are such that y=Za(f— V") and
z=a(g+ V") then f is in dmna and g is in dmna. By Theorem 1.3
and uniqueness of a we have f and g in dmna and a(f) = a(f) = a(g) =
a(g). Since y=Za(f) and z =a(g) we see that condition (*) is
fulfilled.

In the future if there is exactly one maximal W-extension of a
function @ we will designate it ay.

With this approach to abstract integration it is automatic that the
set of “integrable elements’ is a subspace. In the next theorem we
investigate under what circumstances the subspace is a sublattice.

THEOREM 2.2. Let a be a positive linear function from a sublattice
G of a vector lattice V to a monotone Dedekind complete space Y. If W
is a wedge in V which is a sublattice of V and which is such that o has
exactly one maximal W-extension, then dmnay is a sublattice of V.



282 RICHARD C. METZLER

Proof. 1If f and g are in W N dmnay then f A g € W N dmng by
the assumption on W and because Y is monotone Dedekind complete
and G is a sublattice. By Theorem 2.1, fag is in WnN
dmnay. Furthermore we can show that f* is in dmnay N W. In fact,
if we choose ¢ in G such that f=c, we have f—(c AQ)=(f—c)vf=
f*, so f* is in dmna by monotone Dedekind completeness of Y.

Now if v is in dmna, and h and g are such that h =v =g with g
and —h in WNdmnay, then h AO=v A0=g A0. Furthermore

gA0—hAO0=—-g +h"=—g"+h +g'—~h"=g—h
Then

0=inf{aw(g A0): v =g € WNdmnay}
—sup{aw(h A0): v =Zh €(— W)Ndmnay}
= inf{aw(g A0)—aw(h A0): v =g € W N dmnay,
v=Zh e€(— W)Ndmnaw}
=inf{aw(g —h): v =g € W Ndmnay, v =Zh €(— W)Ndmnay}

= aw(v) — aw(v) =0 by W-approximation.

(The existence of the required sups and infs above follows from the fact
that Y is monotone Dedekind complete and the fact that W N dmnay is
closed under finite infs.) We conclude that (aw)(v A 0)=(aw)(v A 0)
so v A0 is in dmnayw by Theorem 1.3 and maximality. Since a A b =
(a—b)A0+b for any a and b in V it follows easily that dmnay is a
sublattice.

3. The Riemann extension. In this section we will con-
sider a generalization of the Darboux approach to the Riemann integral.

THEOREM 3.1. Let a be a positive linear function from a subspace
G of a preordered vector space V to an ordered vector space Y. Then
there is exactly one maximal G-extension, ag, and ac = a N a.

Proof. 1tis clear that a is G-approximated and that condition ( *)
of Theorem 2.1 is satisfied, so there is a unique maximal G-
extension. Furthermore the equality condition on the domain of a; in
that theorem reduces in this case to ag = a N a.

The function a; will be referred to as the Riemann extension of
a. The reason for this name is apparent from the following
application. Let V=R* andlet Y = R. Suppose G is the subspace
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of V composed of step functions which vanish outside of a bounded
interval and suppose that « is the wusual ‘‘signed area”
functional. Then for any bounded function f which vanishes outside
of a bounded interval we see that o (f) is the lower Darboux integral of f
and a(f) is the upper Darboux integral of f. The previous theorem then
shows that the Riemann extension of a gives the usual Riemann
integral.

THEOREM 3.2. Let & be any maximal W-extension of a positive
linear function a from a subspace G of a preordered vector space V to an
ordered vector space Y. Then & is equal to its Riemann extension.

Proof. If fE€ V is such that (gi)(f)=(—c‘v—)(f) then Theorem 1.3
shows that there is a maximal W-extension of & defined on
f. Maximality of @ and the previous theorem complete the proof.

4. The unbounded Riemann extension. The Riemann
extension has the weakness that it is defined only for elements that are
bounded above and below by elements of G. In this section we define
an extension with a larger domain. This extension generalizes the
improper Riemann integeral and will also be used to obtain our
generalizations of the Lebesgue integral.

THEOREM 4.1. Let a be a positive linear function from a sublattice
G of a vector lattice V to an ordered vector space Y. Let U=
{feG+V*"fageG for each g € G}. Then U is a wedge and a is
U-approximated. Furthermore there is exactly one maximal U-
extension, ay.

Proof. To see that U is a wedge suppose first that f, h € U* and
let g be any element of G*. Then we have:

f+rh)rg=F+)A((f+8)rh+g)r(g+g)rg)
=((frg)+hrg)rgEG
Now if f and h are any elements of U and g is any element of G choose
p in G* such that f+p=0, h+p=0, and g+2p =0. Since

(f+p)rq=fr(q@q—p)+p for all q in G we see that f+p (and
similarly h + p) is in U*. Consequently:

f+th)rg=((f+p)+(h+p)r(g+2p)—2p €EG.

Since it is easy to see that rU C U for all nonnegative real numbers r, we
conclude that U is a wedge.
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Since G C U itis clear that « is U-approximated. Suppose f is in
U (in fact we need only assume f is in G + V*) and suppose f=
g €(—U). Choosing h €G such that f=h we have f=Zgvh=
g. Since g v h € G by definition of U we see that y Za(f — V*) and
z=a(g+ V") implies y = a(g v h) = z so condition (*) of Theorem 2.1
is satisfied. (Note that if f € (G + V*) N dmnay then this argument
shows that ay(f) = a(f).)

The unique U-extension of this theorem will be called the un-
bounded Riemann extension. The next theorem gives an alternate
characterization of the domain of this extension which we will use to
show that we have a generalization of one definition of the improper
Riemann integral.

THEOREM 4.2. Let a be a positive linear function from a sublattice
G of a vector lattice V to a monotone Dedekind complete space
Y. Then dmnay is a sublattice of V and ay(v) = a(v*)—a(v") forallv
in dmnay. If, furthermore, « is equal to its own Riemann extension,
then v is in dmnay if and only if v* and v~ are in U N dmnay.

Proof. It is easy to see that U is a sublattice of V so Theorem 2.2
shows that dmnay is a sublattice of V. If v €dmna, then v*€E
(G + V*)Ndmnay and the remark in the last line of the proof of the
previous theorem shows that ay(v*) = a(v*). The same argument for
—v allows us to conclude that ay(v™) = a(v).

To prove the last statement of the theorem assume that « is equal
to its own Riemann extension. Clearly if v* and v~ are in U N dmnga
then v is in dmnay. For the converse let v be any element of
dmnay. Then, for any g € G, v* A g is an element of dmnay which is
bounded above and below by elements of G. But then U-
approximation implies that ¢ and @ coincide on v* A g. Since g was
arbitrary v* is in U.

This theorem shows that when « is the usual Riemann integral ay is
the improper Riemann integral as defined by de la Vallee Poussin.

5. Sequential and non-sequential extensions. In this
section we will develop two new extensions which will have useful
convergence properties. The first extension generalizes the o -algebra
approach to integration and the second will be used to obtain our
generalization of the integral of Bourbaki. In order to have an exten-
sion with desirable convergence properties the original function must
preserve limits in the following way.
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Let a be a positive linear function from a subspace G of a
preordered vector space V to an ordered vector space Y. Then a is
said to have the Daniell property if, for every lower bounded decreasing
sequence {f,} in G with only negative lower bounds in V, the sequence
{a(f,)} in Y has only negative lower bounds or none at all. We will call
such a function a Daniell function.

Given a subspace G of an ordered vector space V we designate by
S(G) (just written S when no confusion is possible) the set of elements
of V which are sups of increasing sequences from G. It is easy to see
that S is a wedge and that « is S-approximated for any positive linear a
defined on G.

THEOREM 5.1. Let a be a Daniell function from a subspace G of an
ordered vector space V to an ordered vector space Y. Then there is
exactly one maximal S-extension of a. If G contains a sequence {f,}
such that f, 1Tz f € S then f € dmnq if and only if sup,a(f,) exists in

Y. In this case f € dmnas and as(f) = a(f) = sup,a(f,).
Note. When we write f, 1 f we mean that {f,} is an increasing
n=12,

sequence and f = sup, f,.

Proof. Letf€ S, g€ —S and f =g and supposethaty andzinY
are such that y=Za(f—V*) and z =a(g + V*). By definition of S
there are sequences {g,} and {f,} in G such that g, | g and

n=12,

f. 1 f Then the fact that f=g shows that the lower bounded
n=12,-

decreasing sequence {g, — f,} has only negative lower bounds. Since
z —y is a lower bound of {a(g, — f,)} the Daniell property shows that
y =z. By Theorem 2.1 we conclude that there is a unique maximal
S-extension as and that as N(S X Y)=a N(S X Y).

To prove the next statement we need to show that when G 3
f. 1 f€S then the sequence {a(f,)} and the set a(f — V*) have the

n=12,
same set of upper bounds. Clearly if y = a(g) for all g in G such that
g=ftheny=a(f,)foralln =1,2,---. Ontheother handif y = a(f,)
for all n=1,2,--- let g€ G be such that g=f Then {g—f,}is a
sequence which is decreasing and has only negative lower bounds in
V. Thus a(g)—y=a(g)—a(f,) for all n =1,2,--- implies a(g)=
y. This shows the equality of the two sets of upper bounds and we
conclude that f € dmna if and only if sup, a (f,) exists and, in this case,

a(f) = sup.a(f,).

THEOREM 5.2. Let a be a Daniell function from a sublattice G of a
vector lattice V to an ordered vector space Y. Let f = sup, f, where {f,}
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is an increasing sequence in S N dmnas. Then sup, as(f,) exists in Y if
and only if f € dmna. In this case f € dmnas and sup,as(f,) = a(f) =

as(f)-

Proof. For each n =1,2,--- there is a sequence {f,.}CG such

that f,, 1 f.. If we define h,=f,v---vf,.,. then h, €G for all
m=1.2, -

n=1,2,--- since G is a sublattice, and f =sup,h,. Since {h,} is an

increasing sequence we see that f € S.

To complete the proof we need only show that any upper bound of
the sequence {as(f,)} is an upper bound of a (f — V*) and vice versa. If
y Za(g) for all g €G such that g =f then y = a(f,.) for all n,m =

1,2,---. Hence y Zsup, a(f,.)=as(f,) foralln =1,2,---. On the
other hand if y = as(f,) foralln =1,2,--- then, for h, = fi, vV fon
we havey = a(h,) foralln =1,2,---. Thenif g EGissuchthatf=g

the lower bounded decreasing sequence {g — h, } has only negative lower
bounds in V. Since a(g)—y =a(g)—a(h,) for all n=1,2,--- we
conclude a(g)=y.

We can apply the sequential extension in the familiar measure-
theoretic approach to integration. Let () be a set and let & be a
o-algebra of subsets of (). If w is a measure on & we let G, be the
linear sublattice of R® composed of linear combinations of characteris-
tic functions of sets of finite w-measure. If « is defined as the usual
integral on G, it is a Daniell function [9, 10]. It can be easily seen that
a positive f is in S(G,) if and only if f is a finite-valued measurable
function in G, + V" which vanishes outside a countable union of sets of
finite measure. Finally it can be shown that the functions in the
domain of as are those finite-valued functions which are integrable by
the completion [9; p. 211] of w. With this interpretation, Theorem 5.2 is
seen to be the monotone convergence theorem for finite-valued, integra-
ble, u-measurable functions.

Now we investigate the situation when our function a has a
stronger convergence property. Let a be a positive linear function
from a subspace G of a preordered vector space V to an ordered vector
space Y. Then a is said to be a non-sequential Daniell function if, for
every lower bounded decreasingly directed family {f,: A € A}CG with
only negative lower bounds in V, the family {a(f,); A € A}CY has only
negative lower bounds or none at all.

We designate by N(G) (just written N when no confusion is
possible) the family of elements of V which are sups of increasingly
directed families from G. It is easy to see that N is a wedge and that «
is N-approximated for any positive linear a defined on G. If a is a
non-sequential Daniell function, Theorems 5.1 and 5.2 still hold when N
is substituted everywhere for S and increasingly directed families are
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substituted for increasingly directed sequences. The proofs are the
obvious variants of the proofs in the sequential case.

When o is a non-sequential Daniell function we call the unique
N-extension, ay, the non-sequential extension of . In order to use the
results of §4 in the next section we need to know when dmnas and
dmnay are sublattices.

THEOREM 5.3. Let a be a Daniell (resp. non-sequential Daniell)
function from a sublattice G of a vector lattice V to a monotone
Dedekind complete space Y. Let H = dmnas (resp.
H = dmnay). Then H is a sublattice of V.

Proof. In light of Theorem 2.2 we need only show that S (or N in
the non-sequential case) is a sublattice. This follows easily from the
fact that G is a sublattice.

6. Convergence theorems. In this section we define four
different “generalized integrals” from vector lattices to vector lattices
and prove the generalizations of the monotone convergence theorem,
Fatou’s lemma, and the dominated convergence theorem. In order to
prove these results we must make additional assumptions about the
domain and range. We assume that V is a Dedekind o-complete
vector lattice (i.e. countable upper bounded families have a least upper
bound). We also assume that, if y# z in Y, then there is a real valued
nonsequential Daniell function B defined on Y such that
B(y) #B(z). We say that Y is a Q-space if it is monotpone Dedekind
complete and has this property. An example of a Q-space is furnished
by the space of all real valued functions on any set in the usual
pointwise order. Another example is the space of self-adjoint
operators on a Hilbert space.

THEOREM 6.1. Let a be a Daniell (resp. nonsequential Daniell)
function from a sublattice G of a Dedekind a-complete vector lattice V to
a Q-space Y. Let B=as (resp. B=ax) and let W =S (resp.
W =N). Then, if h, sz h =g € WNdmnB and if h, € dmnB, we

have sup,B(h,) = B(h).

Proof. By Theorem 5.3 dmnp is a sublattice of V. Hence, since
Y is monotone Dedekind complete, we see that h and h, for all
n=1,2, - are elements of dmnB. Also sup,B(h,) exists in Y and is
less than or equal to B(h). If these elements were not equal there
would be a non-sequential Daniell function D such that
D(B(h)) # D(sup, B(h,)). We will show that this leads to a contradic-
tion by adapting an argument appearing in [2; p. 110].
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First note that if y, 1 y, then D(y,) 1 D(y). This follows since
AEA AEA

D(y) is an upper bound by positivity of D and since {D(y — y,): A € A}
has only negative lower bounds in R. Thus D(B(h)) = inf{D(B(f)):
h =f &€ dmnpB} and

D (sgp E(h,,)) = sup {inf {D(B(m)): h, =m € dmnB}}.

By W-approximation, for each n=1,2,--- we can choose
& E€EWndmnB such that g,=h, and D(B(g))—€-2"<
D(E (h,)). We can also assume that g, =g for all n by taking g, A g if
necessary since W is a sublattice of V. Now let g,=
giv---vg.€EWNnNdmnB. If we note that g +(giAgu)=

(gnV 8ns) + (80 A 8ns1) =g+ guet We have

- D(B(g11) = D(B(g1) + D(B(gns1)) — D(B(g A gns1))
= D(B(g") + D(B(g+1)) — D(B(h.))
= D(B(g.) + D(B(hu.)) — D(B(h,)) + € - 270,

Subtracting D(B(g,) and adding we find D(B@Ew))<
D(B(h,.))+e. Nowg.=gforalln =1,2,--- implies that g,= sup,g.
exists in V since V is assumed Dedekind o-complete. By Theorem 5.2
(or its nonsequential version) g, €E WNdmnB and pB(g)=
sup,B(g.). Clearly go=h so we see that D(Bh)=D(B(gy) =
sup, D(B(g.) = D(sup,B(h,)) + €. _ _

Since € was arbitrary we see that D(B(h)) = D(sup,B(h,)). The
other inequality follows by positivity so we have the desired contradic-
tion.

THEOREM 6.2. Let a be a Daniell (resp. nonsequential Daniell)
function from a sublattice G of a Dedekind o-complete vector lattice V to
a Q-space Y. Let B =as (resp. B =ay) and H =dmnB. Suppose
dmnBy g, 1 g and sup,Bu(g,) existsin Y. Then g € dmnpy and

1,2,

n=1,z,

Bu(g) = sup, Bu(g.).

Proof. By replacing {g,} if necessary by {g, — g,} we can assume
that g,=0. In light of Theorems 2.2 and 4.2 we need only show that
g€ UNdmnB and B(g)=sup,Bu(g.). Given any h in dmnf it is

clear that g, Ah 1 g ah. By the previous theorem B(g Ah)=

=12,

sup, B(g. A h) = sup,Bu(g. A h) =sup,Bu(g.). Since sup,By(g, A h)=

sup,B(g. A h) = B(g A h) we conclude that B(g A h) =B(g-Ah). Thus
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g AnhedmnB for all h €dmnB by Theorem 3.2, and B(g Ah)=
sup, Bu(g.). This shows that g € U N dmnB and then we conclude by
Theorem 4.2 that g € dmnBy and By(g) = B(g) = sup, Bu(g.).

In addition to this monotone convergence theorem we can prove,
with the same hypotheses, the corresponding generalizations of Fatou’s
lemma and the dominated convergence theorem. We use the standard
vector lattice definitions of lim and lim and order limit and the proofs
follow from the monotone convergence theorem above just as they do
in the chapter on the Daniell integral in [9].

Given a subspace H of a vector lattice V we define o (H) to be the
set of f € V such that |f|=sup,(|f|A h.) for some sequence {h,} in
H. If as is the sequential extension of a Daniell function a, then we
call the restriction of ag, to o(dmnas) the Daniell extension of a and
denote it by ap. If @ has the nonsequential Daniell property then we
denote ayy restricted to o(dmnay) by as and call it the Bourbaki
extension of c.

It is easy to see that o(H), for any H, is closed under countable
sups and infs and sequential order limits. From this fact it is obvious
that the convergence theorems of this section still hold for the Daniell
and Bourbaki extensions. These extensions can also be characterized
in another way. From the monotone convergence theorem it is easy to
see that as and ax are Daniell functions. If we take the sequential
extensions of these functions we can prove without much difficulty that
we obtain just the Daniell and Bourbaki extensions we have just
defined. Finally the monotone convergence theorem shows that we get
nothing new if we attempt to take yet another sequential extension.

7. Relations with Bourbaki and Daniell integrals. In
[2] integration is defined in the following situation. Let X be a locally
compact Hausdorff space, let V be the space of real-valued functions
on X, and let G = Cy(X), the space of continuous functions defined on
X having compact support. If a is a positive linear functional defined
on G then an extension I, of «, is defined. This extension has the
property that I(f)=a(f) for all f€ N(G). (In this situation the
functions in N are lower semicontinuous as can easily be seen. They
do not include all lower semicontinuous functions, however, since they
are bounded below and assume only finite values.) Dini’s theorem
shows that a has the nonsequential Daniell property so it is possible to
define ay, ap, and any.

THEOREM 7.1. Let X be alocally compact Hausdor{f space and let
V be the space of all real-valued functions on X. Suppose that G is the
space of continuous real-valued functions on X with compact support
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and let a be any positive linear functional on G. Then ag is the integral
I, of Bourbaki, restricted to finite-valued functions.

Proof. Let f be in dmnas. Since dmna; is a sublattice we can
assume that f is positive. There exists a sequence {g,} in dmnay such
that f =sup{fAg.: n=1,2,---} and sup,an(f A g.) = an(f). But for
each n we have an(frg,) =inf{a(h): fAg.=h EN}=
sup{a@(p): fAng.=p € — N} by N-approximation and the fact that
ay =a on N. Hence by [2; p. 151] we see that each f A g, is integrable
in the sense of Bourbaki and I(fAg,) =an(fAg.,). Then the
monotone convergence theorem for the Bourbaki integral shows that
f € dmnl and I(f) = anx(f).

Conversely if f is a real-valued integrable function we assume first
that f is positive just as we did above. By [2; p. 151] for any € >0 we
can assume that there is g =0 in — N and h which is lower semi-
continuous and integrable (but not necessarily in N since it may assume
infinite values) such that g =f=h and I(h —g)<e. Now given any
positive integer n we have gAan=fan=han and
I((h An)—(g An))<e. Then h an belongs to N and the fact that
han is integrable implies that Ithan)=a(h an)=
an(h An). Similarly I(g An)=ax(g An). We conclude that
(an)(f An)=(an)(f An) which means that fan is in dmnay by
Theorem 3.2. It is then clear that ax(f A n) =I(f A n) for all n. Since
f =sup,(f A n) the monotone convergence theorem for ap gives the
result.

Bourbaki extends the integral I to an essential integral J in the
following way. In [2; p. 183] we see that a set X is locally of measure
zero if its intersection with every compact set is of measure
zero. Then in [3; p. 13] we see that a function f is essentially integrable
if and only if it can be written in the form f = g + h where g is integrable
and h is such that {x € X: h(x) # 0} is locally of measure zero. Under
the assumptions of the previous theorem it can be shown that ayy is the
essential integral.

Now consider the case when V is the space of real-valued
functions defined on a set X. Let G be a vector sublattice of V such
that fac and fv(—c) are in G for all f in G and all positive real
numbers ¢. Let a be a positive linear functional defined on G with the
Daniell property. The Daniell integral is defined by Segal and Kunze in
[10] as follows. Let S* be the set of all extended-real-valued functions
f such that f is the sup of a sequence of functions from G. Now define
G* to be the set of all f in V such that infa((f+ V)N (S*) =
supa((f — V)N (— S*)) = (afinite value). Then the Daniell integral of
f, I(f), is equal to this value for any f in G*.
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THEOREM 7.3. Let V be the space of real-valued functions defined
on a set X. Let G be a vector sublattice of V such that f A ¢ and
fv(—c)arein G for all fin G and all positive real numbers c. Let a be
a positive linear functional defined on G with the Daniell
property. Then ap is the Daniell integral as defined above.

Proof. Let f be in dmna, and suppose as usual that f =0. Then
by definition there is a sequence {h,} in dmnas such that f A h, is in
dmnas for all n and f = sup,f A h,. By S-approximation as(f A h,) =
mfa((frh, +VHINS)=supa((f A h, — V)IN(—S))so we conclude
that f A h, is in G* for all n and I(f A h,) = as(f A h,). But then the
monotone convergence theorems for ap and the Daniell integral show
that f is in G* and ap(f) = I(f).

If f 1sin G* and f = 0 then the condition on G allows us to say that
f Aan isin G* for all positive integers n. Since f A n is bounded it is
easy to see that fan is in dmnas for all n and I(fan)=
as(f A n). Because f = sup,f A n the monotone convergence theorems
for ap and for I give the result.

In a fashion analogous to the procedure in the definition of the
essential integral we can define a set A to be of local measure zero if the
characteristic function of A N E has integral zero for every set E with
integrable characteristic function. A function f is said to be zero
locally almost everywhere if {x: f(x)# 0} is a set of local measure
zero. A function f is said to be extendedly integrable with integral J(f)
if there is an integrable function g such that f =g locally almost
everywhere and then J(f) is defined to be I(g). It can be shown that
this extended Daniell integral [10] restricted to finite-valued functions is
just asy.

8. The Choquet-Bishop-de Leeuw theorem in vector
lattices. In this section we will apply our previous results to a proof of
a generalization of the Choquet-Bishop-de Leeuw theorem on integral
representations.

Let V be a vector lattice and let G be a subspace of V and let « be
a real-valued positive linear function defined on G. To use the theory
of previous sections we need a positive linear function defined on a
sublattice of V. Thus it is natural to first extend a to a monotonic
linear functional @ defined on the smallest vector sublattice containing
G.

Let C be the wedge of finite infs from G. Then it is clear that
C —C is a subspace contained in all vector sublattices containing
G. Butifa,b €C then(a —b) =a —(a A b),an element of C — C, so
we see that C — C is the smallest vector sublattice containing G. Since
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C is a wedge we can apply our basic theorem and take a C-maximal
extensiona of a. If CC(G + V*)N(G — V*) then dmna D C — C for
all positive linear functionals . If G CG*— G" it is easy to see that
CCc(G+VHN(G - V") so we will assume for the remainder of this
section that G CG*—G*. If a has the Daniell property we can
consider (&), and this will be the generalization of the measure whose
existence is asserted in the Choquet-Bishop-de Leeuw theorem.

Let X be a compact Hausdorff space, let V = R*, and let G be a
subspace of C(X) which contains constants and separates points of
X. We define the Choquet boundary corresponding to G to be the set
dG of elements of X with the property that the corresponding linear
functional €,: G — R defined by ¢, (f) = f(x) has a unique positive linear
extension to C(X). If we let W be the wedge of increasing sequential
sups from the wedge C of finite infs from G then Bauer’s minimum
principle [8, p. 225] shows that, if f € W and f(x) >0 for all x € 4G,
then f(x) >0 for all x € X.

Now if a is any positive linear functional on G then, from the
Stone-Weierstrass theorem and maximality, it is clear that dmna D
C(X) for any maximal C-extension & of a. If we let B be the
restriction of @ to C(X) then B is C-approximated and B is a Daniell
function by Dini’s theorem. If we can show that B8, is W-approximated
where B, is the restriction of B, to bounded functions, then the
Choquet-Bishop-de Leeuw theorem will be proved. Indeed, if f is the
characteristic function of a Baire set disjoint from 4G and if f=
g € — W, then Bauer’s minimum principle shows that g =0. Since f is
a Baire function it is integrable by any measure so B, is defined on f and
then W-approximation gives B,(f) =supB((f—VHN(—-W))=0 so
Bi(f) =0. We conclude that any positive linear functional on G can be
extended to a measure which assigns measure zero to any Baire set
disjoint from dG. From the following theorem it will be clear that B, is
W -approximated.

THEOREM 8.1. Let H be a sublattice of a Dedekind o-complete
vector lattice V and suppose that « is a positive linear functional on H
with the Daniell property. Let W be a wedge in S(H) such that « is
W-approximated and such that W is closed under increasing sequential
sups and finite infs. Let B be the restriction of ap to (W —-V*)N
(=W+V?*). Then B is W-approximated.

Proof. First consider f € (— S) N (dmnB). We adapt a technique
due to Choquet [8 p. 233] to show that pB(f)=
supB((f —VY)N(—W). Since f is in dmnB there is h € — W such
that h = f. Because f € (— S) there is a sequence {f, } of elements of H
such that f, llz f and a(f,) 1],2 B(f). Choose g,€(— W)N H such



POSITIVE LINEAR FUNCTIONS, INTEGRATION, AND CHOQUET'S THEOREM 293

that g,=f, while a(g)=a(f))—32e. We inductively define g, €
(-W)NH such that g, =g, Af, while a(g)Za(f, Agw1)—
€ -27". Since — W is closed under finite sups we can assume g, = h for
all n by taking g, v h if necessary. Then:

a(fn _gn) = a(fn - (fn A gn—~l)) + a((fn A gn—l) —gn)
Salfii—g-)te-2"

Adding, we find that a(f, —g,)<¢€ for all n. Let g =inf,g, =
h. Then g€ — W since the g,’s form a decreasing sequence and
Theorem 6.2 shows that g is in dmnB. Clearly f=g while B(g)=
inf,a(g,) = B(f) —e. This shows that B(f)=supB({(f— V" )N(-W).

Now assume that f is any element of dmnB. If f=
g €E(—S)Ndmnap choose h € — W such that f=h. Then f=gvh
and it is easy to see that g vh €(—S)N(dmnB). Hence ap(g)=
B(gvh)y=supB((gvh—-V)IN(—W)). Thus

B(f)zsupB((f = VHIN(=W))=supa,(f — V)N (= S)) = B(f).
We conclude that 8 is W-approximated.

9. Vector integrals. In this section we indicate how the
methods of previous sections may be applied to define integrals with
values in locally convex spaces. Let Y be a vector space with a locally
convex topology determined by a family P of seminorms. Changing
slightly the method used by DeMarr in [5], we define P(Y) to be the
product space R” X Y with a relation “ =" defined by:

(hi, y) = (hy, y))if and only if p(y.— y)) = hy(p) — hi(p)
forallp € P.

THEOREM 9.1. The space P(Y) with relation *“ = is a preordered
vector space which is antisymmetric if and only if Y s
Hausdorff. Givenp € P, if we define f, on P(Y) by f,(h,y) = h(p), then
f, is a nonsequential Daniell function.

Proof. The first statement is easily verified. As for the second,
given p € P, if we define f, by f,(h,y) = h(p), then it is clear that f, isa
monotonic linear functional. Suppose {(h,,y.): a € A} is a decreasing
lower bounded family in P(Y) with only negative lower bounds. Let
(g,z) be a lower bound for the family. Since {h,(p): a € A} is lower
bounded by g(p) we see that the family decreases to an infimum m(p)
for each p in P. Suppose there exists g in P such that m(q)>
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0. Then if we choose b in A such that h,(q) <(3/2)m(q) and define
the function n by; n(q)=4m(q) and n(p)=2m(p)—h,(p) for p#q
we will contradict the assumption m(q) >0 by showing that (n, y,) is a
nonnegative lower bound for {(h,, y.): a € A}.

Given any a in A such that (h,y,)=(hs,y,) and any p in P
different from q we have;

P Y) =P —Y)=h(p)—hs(P) = hy(p)—m(p)

=(h(p)+(h.(p)—m(p)))—m(p)=h.(p)—n(p),
while

aq(¥a—¥)=q(ys — Ya) =hy(q) — ha(q) =3m(q) = h.(q) — n(q)

since h,(q) and h,(q) are both in [m(q), (3/2)m(q)]. Thus (n,y,) =
(h,, y.) and since we are dealing with a decreasingly directed family we
conclude that (n,y,) is the required nonnegative lower bound.

THEOREM 9.2. If Y is a quasi-complete locally convex space (i.e.,
Y is Hausdorff and every closed, topologically bounded subset of Y is
complete) then P(Y) is a Q-space.

Proof. We first show that P(Y) is monotone Dedekind
complete. Let {(h,y,): a € A} be an increasingly directed family,
upper bounded by an element (g,z). Since the family is increasingly
directed we can assume that (h,, y,) =(g,,z,) for all a € A. Then for
any p € P we have:

p(y.)=p(iz—-y.)+p()=g(p)—h.(p)+p(2)
=g(p)—g)+p2)

so the family is topologically bounded. Let f € R* be defined by
f(p)=sup,h,(p). Given any p € P and € >0 choose b € A such that
f(p)—h,(p)<e. Then for any a € A such that (h,,y,) = (hy, y») We
have p(y. — y,) = h.,(p)—h,(p)<e. Thus the family {y,:a EA}is a
Cauchy net and since it is topologically bounded we can find a limit
y€Y. Then (f,y) is the least upper bound of {(h,y.):a€
A}. Indeed, for any p EP and a € A we have, for any b € A such
that (s, y») = (ha, y.):

hy(p)— ha(P) Z p (¥ — ¥a).
If we take the limit over b we find that f(p)— h,(p)Zp(y —y.) so (f, y)

is an upper bound. A similar limit argument shows that it is the least
upper bound.



POSITIVE LINEAR FUNCTIONS, INTEGRATION, AND CHOQUET’S THEOREM 295

To complete the proof we need to demonstrate the existence of a
separating family of nonsequential Daniell functionals. Given any
(h,y) € P(Y) if (h,y) # 0 then either there is p, € P such that h(p,) #0
or else h=0 and y#0. In the first case we see that the linear
functional f,, defined in the previous theorem sends (h, y) to a nonzero
value. If h =0 we note that there must be a p € P such that
p(y)#0. Let g be a linear functional on Y which is dominated by p
and which sends y to a nonzero value. Then if we define G, on P(Y)
by G,(k,x)=k(p)—g(x) it is easy to see that G, is a positive linear
functional. Since G, =2f, we see that G, is a nonsequential Daniell
function. Finally G, (h,y)= —g(y) # 0 gives the result.

THEOREM 9.3. Let a be a continuous linear function from Cy(X),
X a locally compact Hausdorff space, to Y, Y as in 9.2. Then there
exists a Daniell function a#: Co(X)— P(Y) such that a#(x)=
(h, a(x)) foreach x € Cy(X), if and only if « has the following property:

(I) For each p & P there exists a positive linear functional B, on
Co(X) such that p(a(x))=B,(x) for all x € Co(X)".

Proof. If a# exists then it is clear that, if we define 8, on Cy(X)
by B,(x)=f(a#(x)), then for x € Cuw(X)" we have B,(x)=
fr(@#(x)) = p(a(x)).

Conversely if such a B, exists for each p € P we define a #(x) =
(h,a(x)) where h(p) = B,(x) for all x € X. Then it is clear that a # is
monotonic and linear and the Daniell property follows from Dini’s
theorem.

Now suppose that we are given a continuous linear function « from
Cw(X) to a quasi-complete locally convex space Y. If a has property
(I) of the previous theorem (note that this property appears in [4]) then
we can define the mapping a # and can consider (a #),. It is easy to
see that this mapping will possess all the convergence properties
mentioned in §6. If we let o, =pr.,o(a#)p, then «, is a vector-valued
integral which extends « and which has the property that if {x,} is a
sequence in dmna,, |x,|=y € dmna, and x, = x then x € dmna, and
a(x) = lim, a,(x,).
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