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Let G be a locally compact, noncompact group and π a
weakly continuous, uniformly bounded representation of G on a
Hubert space H. Suppose there exists a non-zero ξ in H such
that the function x-~>(π(x)ξ,ξ) vanishes at infinity, Then π is
not algebraically irreducible when lifted to a representation of
Li(G). This implies that the left regular representation of
Lj(G), for G noncompact, contains no algebraically irreducible
subrepresentations.

We investigate irreducible representations of locally compact, non-
compact groups which lift to algebraically irreducible representations of
LX{G). Algebraically irreducible representations lie somewhere between
the irreducible finite dimensional ones and the topologically irreducible
ones, not necessarly coinciding with either. A theorem of R. Kadison
[6] shows that the topologically irreducible ^representations of a C*-
algebra are all algebraically irreducible. Although (by a result of L. T.
Gardner [4]) Lλ{G) is never a C*-algebra unless G is finite, algebraically
irreducible representations occur quite naturally in several classes of
Banach *-algebras. Also given their nice properities (see the paper by
B. Barnes [1]) it would be interesting to know if LX{G) has any non-finite
dimensional ones, and where in the representation theory of G they are
located.

A. Weil [10, pp. 69-70] has shown that noncompact groups have no
finite dimensional square integrable representations and a result of M.
Rieffel [9, Corollary 5.12] shows that an infinite discrete group has no
irreducible square integrable representations. Our main result
(Theorem 5) is that for locally compact, non-compact groups, representa-
tions of Li(G) which belong to a class containing the square integrable
ones are never algebraically irreducible.

Notation and Preliminaries. Let G be a locally compact
topological group with left Haar measure μ. Let LX{G) denote the
equivalence classes of integrable functions on G with repect to μ, L2(G)
the equivalence classes of square-integrable functions on G with respect
to μ and Loo(G) the equivalence classes of essentially bounded functions
on G with respect to μ. Let C0(G) denote the set of continuous
functions on G which vanish at infinity and Cω(G) the set of continuous
functions on G with compact support.
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The Lλ{G) norm is denoted by || ||l9 the L2(G) norm is denoted by
|| ||2 and the uniform norm on C0(G) is denoted by || ||M.

If / is a function on G and x is in G then the function xf is defined
by xf(y) = f(xy) for all y in G.

Let H be a Hubert space and let B(H) denote the set of bounded
operators on H. If T is a bounded operator on H then T* denotes its
adjoint. By a representation of G on H we mean a homomorphism of
G into the group of invertible operators in B(H). We call TΓ weakly
continuous if TΓ is continuous into B(H) with the weak-operator
topology. We say that π is uniformly bounded if

sup{||τr(jc)||: JCGG}<OO

and denote this number by || TΓ ||.
Let π be a weakly continuous uniformly bounded representation of

G on a Hubert space H. Then π may be lifted to a continuous
representation of Lλ(G) by the following formula

ί
JG

f(x)(τr(x)ξ,η)dμ(x)

for all / in LX(G) and ξ,η in H. If in addition π is a unitary
representation of G then TΓ lifts to a "^representation of Lι(G). If K is
a subset of fί, the closure of K is denoted by cl K and the linear span of
K is denoted by sp K. Let £ be in H, M a subset of G and S a subset of
U{G). Then

and

= {π(f)ξ:fES}.

We call TΓ topologically irreducible if

clsp τr(G)£ = H

for all nonzero ξ in H. This is equivalent to

cl T Γ C L ^ G ) ^ = H

for all nonzero ξ in H. We call TΓ an algebraically irreducible represen-
tation of LX(G) if

<π{Lx(G))ξ = H

for all nonzero £ in H.
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The Main Result. Throughout this section, unless otherwise
specified, G denotes a locally compact, noncompact group and 7r
denotes a weakly continuous, uniformly bounded representation of G on
a Hubert space H.

LEMMA 1. Suppose π is irreducible and the function p(x) =
(ττ(x)ξ, y) belongs to C0(G) for some nonzero ξ and y in H. Then the
functions

belong to C0(G) for all η and ψ in H.

Proof We first show that

clspπ(G)*ξ = H.

Suppose for some ζ in H we have (ζy π(x)* ξ) = 0 for all x in G. Then
(TΓ(JC)££) = O for all x in G and since ΊT is irreducible we must have

£ = o.
Let g(x) = (π(x)η, φ) and β >0. Choose xu--,xn in G and

scalars λl5 , λn such that

Now choose yu ' , ym in G and scalars βu - , βm such that

Let r(jc) = ΣΓ=1Σ;

m

=1λιβ/p(yyxxt). Then r(x) belongs to C0(G) and

\g(x)-r(x)\ = (τr(x)η, φ)~ ,)& Ύ>

\.iir(χt)ξ, Σ βiπ(yi)*y
7 = 1

+ Σ λί7r(χ,)^ Ψ - Σ ftττ(y/
i l / 1
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+ Ik IIIΣ *M*i)4 \\ψ~Σ βrty,)* Ύ\\
II i = i II II 7 = 1 II

This completes the proof of the lemma.

LEMMA 2. Let π be an irreducible representation of G on an infinite
dimensional Hubert space H and let ξ be a nonzero vector in H. Then
given any compact subset M of G and elements xu , xn in M there exists
xn+ί in G\M such that π(xn+ι)*ξ is linearly independent from the set
M x 1 ) * £ ,τr(xn)*f}.

Proof. By the first part of the proof of Lemma 1 we have that

clspτr(G)*£ = H.

If clsp π(M)*ξ?έ H we are done.
Suppose clsp π(M)*ξ = H. We claim that clsp π(G\M)*ξ =

H. To see this suppose there is a η in H such that

for alt x in G \ M . Since G is not compact there exists an x0 in
B\M~1M. Then Mx0 is disjoint from M. So we have

(ττ(xo)η, τr(x) * ξ) = <τj, 7r(xx0) * ξ) = 0

for all x in M. But then it follows that π(xo)η=0 and so η =
7r(jCo)~1'Π"(*o)i7 =0. Therefore we may assume that clsp (G\Af)* ^ =
H. But now we are done since

is finite dimensional.

LEMMA 3. Let h E C0(G) and let Y be the closed subspace of C0(G)
generated by the left translates of h by elements of G. Suppose there exists
an inner product (-, ) on Y such that the norm \\ || determined by it is
equivalent to the uniform norm on Y and the functions

χ-+(χf,g)
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belong to C0(G) for all f and g in Y. Then there exists a compact subset
Mo of G and elements xu , xn in Mo such that

xh Esp{xιh, -,xnh}

for all x in G\M0.

Proof. Suppose the contrary. Then given any compact subset M
of G and elements xu , xn in M, there exists xn+ί in G\M such that
xn+ιh is linearly independent from {xλh, , xnh). In particular Y is
infinite dimensional.

There exists a constant K > 1 such that

for all / in Y.
Let yι = h. Having chosen xu ,xn in G and γi, -- ,γ n in

sp{jCiΛ, , xji} such that
(1) the set {γu , γπ} is orthogonal

(2) | |γ 1 + + γ n | | H ^ ( l + 2-1 + + 2-' +1)l|Λ|L
and

(3) \\γk\\=£(K-2-2-k)\\h\\, for k = 1, ,n we choose yn+ι.
Let φk(x) = (xγ1, γk) for k = 1, , n. Then φk belongs to

Co(G). Let

fc=i

and

Then since all functions concerned are in C0(G), the M, are
compact. Let Mo = Ut=i M and M = M o U Mo1. Then M and hence
M 2 are compact. So there exists xn+i in G\(M2 U M) such that xn+ίh is
linearly independent from {γi, ••*, γ«}. Note that x~n\ιM is disjoint
from M. Let

n

γn+ι = x n + 1 h - X φ k (*n+i) II Jk II"
2
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Since φk(x) = (xh,γk), the γum",γn+i are orthogonal by the Gram-
Schmidt process.

Next we verify (2) of the inductive hypothesis. We claim that

fc=i lU

To see this suppose that for some x in G

h(xn+ίx)+Σ Ύk
fc = l

Then either

(i) \h(xn+1x)\>2-1

or
(ii)

Suppose (i) holds. Then xn+1xGM3 and so xExn^M. Therefore
x f£ M2 and so

< 2- n - l

But then

»+i*)+Σ Ύk(x)

^ (1 + 2"1 + + 2~n+I + 2-"-\

Next suppose (ii) holds. Then x E M2 and so xf£xn\ιM. Therefore
jcn+iJC £ Mi and so

But then

γk(x) < .+ ri +

= (1 + 2"1 + + 2-"+1 + 2""-'
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Therefore

| | γ i+ + %+illu = |L + iΛ - Σ Φk(xn+i) \\γk |Γ
2γk +

II *

Σ | Σ
II k=\ \\u fc=i

(xΛ+1 ί£ M,) g (1 + 2"1 + + 2- + 1 + 2-"-') || fc ||B + 2—'

which verifies (2).
Now we check (3). First note that for any x E G v/e have

^K\\h\\u=K\\xh\\u^K>\\xh\\.

So

This verifies (3).
Choose N such that 2~N~' < X"2. Then for n > N we have

Let ψ ; = Σ t _ N + , γ t . Then

by (2).

But since the yk are orthogonal,
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Σ
k=N+\

n

Σ

I I * IF
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>

-2k)K

Therefore for n> K2 + N,

which is impossible if || ||u and || || are equivalent on Y. This contradic-
tion proves the lemma.

LEMMA 4. Suppose π is irreducible and there exists a nonzero ξ in H
such that the function p(x) = (π(x)ξ,ξ) belongs to C0(G). Then H is
infinite dimensional.

Proof. Suppose H is finite dimensional. Let Γ be the closure of
τr(G) in B(H). We show that Γ is a compact group. Since π is
uniformly bounded, Γ is compact.

Now let 5 and T be in Γ. Choose sequences {xn}n=\ and {yn}"=i in G
such that

π(xn)->S &ndπ(yH)-+T.

Since ||τr(xny
ι\\ = | |^(x; 1 )! ! = IkII for all n, by Dunford and Schwartz [3,

VII 8.1 and VII 6.1] S is invertible and π(x~ι) = T Γ ^ ) ' 1 - ^ S~ι. SO

πix-'y^-^S^T and therefore S^TEΓ.
It follows from Dixmier [2, 16.1.1 and 16.2.1] that we must have

{xp: x E G} relatively compact in the set of bounded continuous func-
tions on G. But this is impossible for pj^ 0 and p E C0(G). Because
we can choose p0 E Coo(G) such that \\p - po\\u < 4 - 1 | |p \\u. Let K be the
support of po and xί = e. Having chosen xl9 — -,xn in G such that
xλK, - ,xnK are pairwise disjoint, choose xn+i in
G\(U"=ιXjKK~1). This can be done since G is not compact. It
follows by the choice of jcn+1 that the sets xλK, ,xn+\K are pairwise
disjoint. Now let x be in K such that | p o ( * ) | = ||po||« Then for i/ j we
have x^XjX^K and so

Wxj'po-X^PoWu ^ \xJ1po{XjX)-Xϊ1po(xix)\

= \Po(x)\
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Therefore

Wxj'p-Xi'pWu ^ Wxj'po-xϊ'poWu - Wxj'p-Xj'PoWu- Wxϊ'p ~ X7lpo\\u

This contradiction proves the lemma.
We are now ready to prove the main result.

THEOREM 5. Let π be a weakly continuous uniformly bounded
representation of a locally compact, noncompact group G on a Hilbert
space H. Suppose there exists a nonzero vector ξ in H such that the
function p(x) = (π(x)ξ, ξ) belongs to C0(G). Then π is not algebraically
irreducible when lifted to a representation of LX(G).

Proof. Suppose π is algebraically irreducible on Lλ{G). For any η
in H and / in LX(G) we have

= ί f(x)π(x)ηdμ(x).
JG

Let $ = {/ G U(G): π(f)ξ = 0}. Then $ is a closed left ideal of
U(G). Since τr(U{G))ξ = H the map

defined by

is one-to-one and onto. We claim that θ is also continuous. To see this
let / be in Lι(G) and g in β. Then

\f(x)-g(x)\dμ(x)

and so

ω
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By the open mapping theorem there exists a constant K > 0 such that

for all / in U{G).
By the above inequality it follows that the adjoint map

is a bicontinuous isomorphism. Now (Li(G)//)* may be naturally
identified with £L, the annihilator of β in L«,(G), see Dunford and
Schwartz [3, 114.18b].

(i.e. f = { l i G U(G): £ f{x)ϊΰ^)dμ{x) = 0 for all / in

Therefore $L is equivalent to a Hubert space in the norm induced from
the inner product.

for / and g in β1.
For η in //* we determine 'θ(η) explicitly: Let / be in

L,{G). Then

ί
JG

ί f(x)(ir(x)ξ,r,)dμ(x)
JG

ί f(x)(η,π(x)ξ)dμ(x).
JG

Therefore

a.e.

In particular tθ(ξ) = p. It follows from Lemma 1 that

$L C Co(G).
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Also if y is in G, then

= (η,τr(yx)ξ)

So β1 is closed under left translates.
Let / be in β1 and x in G. Then

= xf

and so

Then for / and g in β1 and x in G

This implies by Lemma 1 that the functions

belong to C0(G) for all / and g in $L.
Let Y be the closed subspace of $L generated by the left translates

of p. Then Y and p satisfy the hypothesis of Lemma 3 with h = p. We
show that the conclusion of Lemma 3 is not satisfied. By Lemma 4, H is
infinite dimensional. So the contradiction follows from Lemma 2 since

for all x in G and 'θ is one to one. This proves the theorem.

COROLLARY 6. The left regular representation of LX{G), for G
noncompact, contains no nontriυial algebraically irreducible sub-
representations.
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Proof. Let λ: G -> B(L2(G)) denote the left regular representation
of G. By Hewitt and Ross [6, 32.43(e)] the functions

x-*(λ(x)f,f)

belong to C0(G) for all / in L2(G). Therefore Theorem 5 applies.
The next lemma, when G is unimodular and π is a continuous

unitary representation of G, is a special case of a result due to R. A.
Kunze [8, Theorem 1]. His proof also works in the more general case
below.

LEMMA 7. Let G be a locally compact group and π a weakly
continuous, uniformly bounded representation of G on a Hubert space
H. Suppose the functions

belong to L2(G) for all ξ and η in H. Then there exists a constant K>0
such that

for all f in Cω(G).

Before proving the next corollary we will need the following
elementary fact from measure theory:

LEMMA 8. Let f be in LX(G) Π L2(G) and e > 0. Then there exists
g in Coo(G) such that \\f-gl<eand | | / - g | | 2 <€ .

Proof. By Hewitt and Ross [6, 32.30 and 32.33(b)] there exists h in
Coo(G) such that \\f-f*h\\ι<3-1e and | | / - / * h | j I < 3 - 1 e . Choose a
compact subset K of G such that | | ( / * /ι)|G\κ||i < 3 - 1 e and

Let U be open such that K C U and [μ(U\K)f" <
[6{ || f * h \\u + l}γxe for p = 1 and 2. Pick k in CM(G) such that k = 1 =

u on K and fe = 0 on G\U. Then for p = 1 and 2 we have

<3-ιe+2\\f*h\\u[μ(U\K)r'

< 3-'e + 3-'e.

So iίg=(f*h)k we have g £ CW{G) and \\f - g||, < e a n d | / - g | | 2 < €.
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COROLLARY 9. Let G be a locally compact, noncompact group and
TT a weakly continuous uniformly bounded representation of G on a Hilbert
space H. Suppose the functions

belong to L2(G) for all ξ and η in H. If π lifts to an algebraically
irreducible represetntation of Lλ{G), then π = 0.

Proof. Suppose TT is algebraically irreducible on LX(G) and
Hέ{0}. Let / be in LX{G) and g in Lι(G)ΠL2(G). Then since
ll/*g||2^ll/l|il!g||2 we'have that / * g is in L1(G)ΠL2(G).

Let ξ be in H with ||f|| = l. Then π(Lι(G)Π L2(G))ξ is an
invariant subspace for π(Li(G)). Since L1(G)ΠL2(G) is dense in
Lλ(G) and π is algebraically irreducible we must have that

(1) ττ(L1(G)ΠL2(G))ξ = H.

Let K be the constant in Lemma 7. So || π(/)|| ^ K \\|| /1|2 for all / in
Coo(Cr). By the density of Cm(G) in L2(G) we may extend π to a
continuous map π of L2(G) into B(H). Let / G Lλ{G) Π L2(G). We
show that π(f)= ^(/). By Lemma 8 there exists a sequence {gn}n=i£

such that HZ-gnlli-^O and | | /-g n | |2-*0. So \\ττ(f)-
θ Therefore

= lim||7r'(/)-7f(gn

^limK\\f-gn\\2

= 0.

By (1) we must have that

rr(L2(G))ξ = H.

Let M = {/ G L2(G): π(f)ξ = 0}. Then ^(M 1 )^ = H. Since the sub-
space M is closed in L2(G), the continuous map

of M 1 onto H is one to one. So by the open mapping theorem there
exists a constant C>0 such that
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for all / in M.
Let A: L|(G)->B(L2(G)) denote the left regular representation of

Let / be in LX(G) and g in M \ Choose {gπ};=, C CJG) such that
| |g-gπ | |2->0. Then

||π(/)7r(g)-7r(/*g)|| = li
n

= lim||-π (/*gπ)-7ϊ(/*g)||
n

= lim||7r(/*gπ)-7r(/*g)||

^ϊim K\\f*gn-f*g\\2

^\imK\\fl\\gn-g\\2

= 0.

And so we have

Hence

for all / in U{G).
Let CΪ(G) denote the C* enveloping algebra of λ{Lx{G)) in

J3(L2(G)). Then by the above inequality we may extend π from LX(G)
to a representation of C*(G) on H. Moreover, π is algebraically
irreducible on Ct(G) since it is on Lλ{G). A result of Barnes [1,
Theorem 4.1] implies that π is similar to a "^representation of C*(G) on
H. So there exists a positive invertible operator V in B(H) such that
the map
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α-> V'ιπ(a)V

is a ^representation of Ct(G) on H. Therefore the map

x-*V'ιπ(x)V

is a continuous unitary representation of G on H. Let

> = <τr(x)Vfe V"1^).

Then p is a continuous positive definite function on G and p belongs to

L2(G). So by Godement ' s Theorem [2, p. 269, 13.8.6], p = q*q = q*q

where q G L2(G) and q(jc) = <f (JC" 1 ). But then by [5, Theorem 20.16] p

belongs to C0(G). This is a contradiction by Lemma 1 and Theorem 5.
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