ON THE EXISTENCE OF GLOBAL CLASSICAL SOLUTION OF
INITIAL-BOUNDARY VALUE PROBLEM FOR $\Box u - u^3 = f$

Yukiyoshi Ebihara, Mitsuhiro Nakao and Tokumori Nanbu
ON THE EXISTENCE OF GLOBAL CLASSICAL
SOLUTION OF INITIAL-BOUNDARY VALUE
PROBLEM FOR $\Box u - u^3 = f$

YUKIYOSHI EBIHARA, MITSUHIRO NAKAO AND TOKUMORI NANBU

In this paper we shall give a sufficient condition under which
an initial-boundary value problem for $\Box u - u^3 = f$ has a global
classical solution.

1. Introduction. Let $\Omega \subset \mathbb{R}^3$ be an open bounded domain
with sufficiently smooth boundary $\partial \Omega$. In this note we are concerned
with the existence of a global solution of the initial-boundary value problem:

$$\frac{\partial^2}{\partial t^2} u - \Delta u + \gamma u^3 = f(x, t) \quad \text{for } x \in \Omega, t > 0,$$

(*)

$$u(x, 0) = u_0(x), \quad \frac{\partial}{\partial t} u(x, 0) = u_1(x), x \in \Omega,$$

and

$$u(x, t)|_{\partial \Omega} = 0 \quad \text{for } t \geq 0,$$

where Δ is the Laplacian in \mathbb{R}^3 and $\gamma = -1$.

For the equation (*) with $\gamma = +1$ instead of -1, as is well known,
the existence of a global classical solution was proved by J. Sather [4]. His method, however, depends largely on the monotonically in-
creasingness of the term u^3, and is not applicable to our problem in its
original form.

On the other hand D. H. Sattinger [5] introduced the concept of
potential well (stable set) to show the existence of global but generalized
solutions of the initial-boundary problems of hyperbolic equations with
non-monotonic nonlinear terms, though in the case $f(x, t) \equiv 0$. The
method of potential well is useful also for nonlinear partial differential
equations of other types (Lions [2], Tsutsumi [6]).

Now, a local existence of a classical solution for (*) is known
(Ebihara [1]), but that of a global one seems to be unknown and the aim
of this note is to give it by combining the method of Sather's with the one
of Sattinger's.

Roughly speaking our result is: Let $\{u_0, u_1\}$ belong to the stable set
and be sufficiently smooth, and moreover let f have small norm and be
smooth. Then (*) admits a global classical solution.
Though we treat only a typical equation with also typical nonlinear term, our method should be applicable to more general ones.

2. Preliminaries. Throughout this paper the functions considered are all real valued and the notations are as usual (e.g. Lions [2], Mizohata [3]). In this section we offer some lemmas which will be used later.

Lemma 1 (Sobolev). (i) If $1 \leq q \leq 6$, we have

$$|u|_{L^q(\Omega)} \leq C_q(q, \Omega) |u|_{H^1(\Omega)} \quad \text{for } u \in \dot{H}^1(\Omega).$$

(ii) If k is a nonnegative integer, we have

$$|u|_{C^k(\Omega)} \leq C(k, \Omega) |u|_{H^{2+k}(\Omega)} \quad \text{for } u \in H^{2+k}(\Omega).$$

For brevity we use the notations $|\cdot|_q \equiv \|\cdot\|_{L^q(\Omega)}$, $|\cdot|_{L^q(\Omega)}$, $|\cdot|_{L^q(\Omega)}$ respectively.

We define 'kinetic' and 'potential' energies associated with our equation by the functionals

$$K(u) = \int_{\Omega} \frac{1}{2} |u_t(x, t)|^2 \, dx = \frac{1}{2} |u_t(t)|^2$$

and

$$J(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u(x, t)|^2 - \frac{1}{4} u^4 \right) \, dx = \frac{1}{2} \|u(t)\|^2 - \frac{1}{4} |u(t)|^4,$$

and according to [5] we put

$$d = \inf_{\lambda \in R^{+}(\Omega)} J(\lambda u),$$

where $\lambda = \lambda_1(u) (\geq 0)$ is the first value of $\lambda \geq 0$ at which $J(\lambda u)$ begins to decrease. Then with the aid of Lemma 1, we have (see also Tsutsumi [6]):

Lemma 2. The number d satisfies

$$0 < \frac{1}{4C_0^2(4, \Omega)} \leq d < \infty.$$
Now the potential well W is defined as

$$W = \{ u \in \dot{H}^1(\Omega) \mid 0 \leq J(\lambda u) < d \text{ for } 0 \leq \lambda \leq 1 \}.$$

Then we have:

Lemma 3 (Sattinger). *The set W is bounded in $\dot{H}^1(\Omega)$.*

For convenience we say the initial data $\{u_0, u_1\}$ belongs to the stable set if

$$u_0 \in W \text{ and } K(u_1) + J(u_0) < d.$$

Here we state our hypotheses on the initial values u_0, u_1, and inhomogeneous term f. For this, let us consider the eigenfunctions $\{\psi_k\}$ for the Laplacian Δ with zero boundary condition:

$$\psi_k \in \dot{H}^1(\Omega) \text{ and } \Delta \psi_k = \mu_k \psi_k \text{ in } \Omega \quad (k = 1, 2, \ldots),$$

where μ_k is the eigenvalue for ψ_k.

With respect to the regularity of ψ_k, it is well known that $\{\psi_k\}$ is involved in $H^6(\Omega)$ (recall $\partial \Omega$ is sufficiently smooth).

We introduce the spaces of the admissible initial data as follows:

$$V_j = \{\text{closed linear extension of the eigenfunctions } \{\psi_k\} \text{ in } H^{6-2j}\},$$

$$j = 0, 1,$$

and assume

$$A_1. \quad u_0 \in V_0 \cap W \text{ and } u_1 \in V_1.$$

Regarding the energy source function it is required that

$$A_2. \quad f \in C^4([0, \infty); L^2) \cap \bigcap_{k=1}^{4} C^{4-k}([0, \infty); H^k \cap \dot{H}^{k-1}).$$

Finally we assume $f \in L^1([0, \infty); L^2)$ and

$$A_3. \quad E_0 + 2 \sqrt{E_0 + \left(\int_0^\infty |f(t)| dt\right)^2} \int_0^\infty |f(t)| dt < d,$$

where

$$E_0 = K(u_1) + J(u_0) \quad \text{(total energy of the initial data)}.$$
Note that A_1 and A_3 imply $\{u_0, u_1\}$ belongs to the stable set.

3. Theorem. In this section we prove:

Theorem. Under the assumption A_1, A_2, and A_3, the problem (*) has a classical solution $u(x, t) \in C^2(\bar{\Omega} \times [0, \infty))$.

Proof. The Galerkin’s method is employed. Let $\{u_{0m}\}$ and $\{u_{1m}\}$ be sequences such that

$$u_{0m} = \sum_{i=1}^{m} \alpha_{im} \psi_i \to u_0 \quad \text{in} \quad H^6 \cap H^1,$$

(1)

and

$$u_{1m} = \sum_{i=1}^{m} \beta_{im} \psi_i \to u_1 \quad \text{in} \quad H^4.$$

This is possible by the assumption A_1. By A_1, A_3, and the continuity of $K(u)$ and $J(u)$ with respect to H^1-topology, we may assume

(2) \quad $u_{0m} \in W$

and

(3) \quad $K(u_{1m}) + J(u_{0m}) + 2 \sqrt{K(u_{1m}) + J(u_{0m}) + \left(\int_0^\infty |f| \, dt \right)^2} \int_0^\infty |f| \, dt < d.$

Let us consider the approximate solutions:

(4) \quad $u_m(t) = u_m(\cdot, t) = \sum_{k=1}^{m} \lambda_k^m(t) \psi_k \quad (k = 1, 2, \cdots, m)$

which are determined by the following system of ordinary differential equations:

(5) \quad $\left(D_t^2 u_m(t), \psi_k \right) + \left((u_m(t), \psi_k) - (u_m^3(t), \psi_k) \right) = (f(t), \psi_k)$

with initial values

(6) \quad $\begin{cases}
 u_m(0) = u_{0m} \\
 D_t u_m(0) = u_{1m},
\end{cases}$

where (\cdot, \cdot) denotes L^2-innerproduct and $((\cdot, \cdot))$ denotes $(\nabla \cdot, \nabla \cdot)$.
Clearly $u_m(t)$ exists in some interval, say, in $[0, t_m]$, $t_m > 0$. Multiplying (5) by $\lambda_k = D, \lambda_k$ and summing over k from 1 to m, we obtain

$$
(7) \quad K(u_m(t)) + J(u_m(t)) = K(u_{1m}) + J(u_{0m}) + \int_0^t (f(\tau), u_m'(\tau))d\tau
$$

for $t \in [0, t_m]$, where $'$ denotes D_t.

By use of this equation we verify:

$$
(8) \quad u_m(t) \in W \quad \text{for } \forall t \in [0, t_m].
$$

Indeed, suppose that (8) is false and let t^* be the smallest time for that $u_m(t^*) \notin W$. Then in virtue of the continuity of $u_m(t)$ we see $u_m(t^*) \in \partial W$ and hence we have ([2], [5], [6])

$$
(9) \quad J(u_m(t^*)) = d.
$$

On the other hand, setting $M = \sup_{0 \leq t \leq t^*} |u_m'(t)|$, (7) implies

$$
\frac{1}{2} M^2 \leq K(u_m) + J(u_{0m}) + M \int_0^\infty |f(t)| dt.
$$

Here we have used the fact that $J(u) \geq 0$ if $u \in W$. From this we have

$$
M \leq 2 \sqrt{K(u_{1m}) + J(u_{0m}) + \left(\int_0^\infty |f(t)| dt \right)^2}.
$$

Hence,

$$
J(u_m(t^*)) \leq K(u_m'(t^*)) + J(u_m(t^*))
$$

$$
= K(u_{1m}) + J(u_{0m}) + \int_0^{t^*} (f(\tau), u_m'(\tau))d\tau
$$

$$
\leq K(u_m) + J(u_{0m}) + M \int_0^\infty |f(t)| dt
$$

$$
\leq K(u_{1m}) + J(u_{0m})
$$

$$
+ 2 \sqrt{K(u_{1m}) + J(u_{0m}) + \left(\int_0^\infty |f(t)| dt \right)^2} \int_0^\infty |f| dt
$$

$$
< d \quad \text{(by A3)},
$$

which is a contradiction to (9). Thus (8) is valid.
By (8) and Lemma 3, $|u^m|$ and $\|u^m\|_{L^2}$ are in fact majorized by a constant independent of m and we conclude that $u_m(t)$ exists in $[0, \infty)$ and the inequality

$$|D^1 u_m(t)|^2 + \|u_m(t)\|^2 \leq C_0 \quad \text{for} \quad t \in [0, \infty) \tag{10}$$

holds.

This is the key estimate for our arguments and the estimations of higher derivatives of u_m are carried out on the basis of (10). For the problem (*) with $\gamma = 1$, we note, this is easily derived from the monotone increasingness of u^1.

Now we proceed to consideration of higher derivatives of u_m, which is the same as Sather’s [4] and sketched briefly.

For arbitrarily fixed $T > 0$, the estimations

$$\|D^{k+1}_t u_m(t)\|^2 + \|D^k u_m(t)\| \leq C_k(T) \tag{11}$$

for $k = 1, 2, 3, 4$ and $t \in I = [0, T]$, hold, where $C_k(T)$ are constants depending on T but independent of m. Indeed by the linearity of (5) with respect to ψ_k we obtain

$$\left(\frac{d}{dt}\right)\left(|D^j_t u_m(t)|^2 + \|D_t u_m\|^3\right) = 2(3u^2_m D_t u_m, D^j_t u_m) + 2(D_t f, D^j_t u_m) \tag{12}$$

(12) with $j = 1$ implies

$$\frac{d}{dt}\left(|D^1_t u_m(t)|^2 + \|D_t u_m\|^3\right) = 2(3u^2_m D_t u_m, D^1_t u_m) + 2(D_t f, D^1_t u_m)$$

$$\leq 3(|u^2_m D_t u_m|^2 + |D^1_t u_m|^2) + (|D_t f|^2 + |D^1_t u_m|^2)$$

$$\leq \text{const.} \left(|u_m|^2 \|D_t u_m\|^2 + |D^1_t u_m|^2 + |D_t f|^2\right)$$

$$\leq \text{const.} \left(|D^1_t u_m|^2 + \|D_t u_m\|^3\right) + |D_t f|^2$$

here we used Hölder’s inequality, Lemma 1 and (10). Applying the Gronwall’s lemma we get

$$|D^1_t u_m(t)|^2 + \|D_t u_m(t)\|^2 \leq \left\{ (|D^1_t u_m|)^2 + \|(D_t u_m)_0\|^2 + \int_0^T |D_t f|^2 dt \right\} e^{\text{const.} T} \quad \text{for} \quad \forall \, t \in I, \tag{13}$$

where $(D^\kappa_t u_m)_0$ denotes the value of $D^\kappa_t u_m(x, t)$ at $t = 0$.

\[
\| (D, u_m)_0 \| \text{ is obviously uniformly bounded in } m. \text{ For the bound of } \| (D^2, u_m)_0 \|, \text{ set } t = 0 \text{ in (5) to get }
\]

\[
((D^2, u_m)_0 - (\Delta u_m)_0 - (u^3_m)_0 - (f), \psi_k) = 0, \quad 1 \leq k \leq m,
\]

and hence

\[
(\| (D^2, u_m)_0 \| = |\Delta u_m_0 + P_m f_0 + P_m u^{3}_m|,
\]

where \(P_m \) is the orthogonal projection onto the \(m \)-dimensional subspace of \(L^2 \) with basis \(\{ \psi_1, \psi_2, \cdots, \psi_m \} \). This implies, with the aid of Lemma 1, the uniformly boundedness of \(|(D^2, u_m)_0| \).

Combining these uniform estimates of initial values with (13), we obtain (11) for \(k = 1 \).

The succession of similar procedure gives (11) for \(k = 2, 3, 4 \).

Now by the standard arguments of the approximate solutions we conclude, after the extraction of suitable subsequence if necessary, the following:

\[
D^k u_m \to D^k u \text{ in } L^2(\Omega \times I) \text{ for } 0 \leq k \leq 4,
D^k u_m(t) \to D^k u(t) \text{ in } L^2(\Omega) \text{ uniformly for } t \in I, 0 \leq k \leq 3,
D, D^k u_m(t) \to D, D^k u \text{ weakly in } L^2, 0 \leq j, k \leq 3, t \in I,
\]

where \(D_i \) denotes \(\frac{\partial}{\partial x_i} \),

\[
D^k u(t) \in \tilde{H}^i, \quad 0 \leq k \leq 3,
D^k u_m(t) \to D^k u(t) \text{ weakly in } L^2, t \in I,
|D^k u(t) - D^k u(\tau)| \leq \text{const. } |t - \tau|,
|D_j D^k u(t) - D_j D^k u(\tau)| \leq \text{const. } |t - \tau|, \quad 0 \leq j, k \leq 3,
|D^k u_m(x, t)| \leq \text{const. } 0 \leq k \leq 3, \quad (x, t) \in \bar{\Omega} \times I,
\]

and

\[
D^k u^3_m(t) \to D^k u^3(t) \text{ in } L^2 \text{ uniformly in } t \in I, 0 \leq k \leq 2.
\]

The limit-function \(u \) satisfies of course:

\[
(D^{2+j} u^*(t), v) + ((D^j u(t), v)) - (D^j u^3(t), v) = (D^j f, v)
\]

for \(\forall v \in H^j, \forall t \in I, 0 \leq \forall j \leq 2. \)
Moreover applying the well-known regularity results concerning weak solution of elliptic equation, we obtain finally

\[u \in C^4(I, H_0) \bigcap_{k=1}^{4} C^{4-k}(I, H^k \cap \dot{H}^1). \]

Since \(\bigcap_{k=0}^{2} C^k(I, H^{4-k}(\Omega)) \subset C^2(\tilde{\Omega} \times I) \) holds (c.f. Lemma 1, (ii)), we conclude that \(u \) belongs to the class \(C^2(\tilde{\Omega} \times I) \) and is the classical solution on \(\tilde{\Omega} \times I \) of the problem (*).

From the arbitrariness of \(T \) and the uniqueness of the classical solution on \([0, T] \) (it is obvious) we can construct, as is usual, the classical solution \(u \) on \(\tilde{\Omega} \times [0, \infty) \). The proof of theorem is now completed.

REFERENCES

Received July 17, 1974.

FUKUOKA UNIVERSITY,
KYUSHU UNIVERSITY,
AND
KYUSHU UNIVERSITY.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waleed A. Al-Salam and A. Verma</td>
<td>A fractional Leibniz q-formula</td>
<td>1</td>
</tr>
<tr>
<td>Robert A. Bekes</td>
<td>Algebraically irreducible representations of $L_1(G)$</td>
<td>11</td>
</tr>
<tr>
<td>Thomas Theodore Bowman</td>
<td>Construction functors for topological semigroups</td>
<td>27</td>
</tr>
<tr>
<td>Stephen LaVern Campbell</td>
<td>Operator-valued inner functions analytic on the closed disc II</td>
<td>37</td>
</tr>
<tr>
<td>Leonard Eliezer Dor and Edward Wilfred Odell, Jr.</td>
<td>Monotone bases in L_p</td>
<td>51</td>
</tr>
<tr>
<td>Yukiyoshi Ebihara, Mitsuhiro Nakao and Tokumori Nanbu</td>
<td>On the existence of global classical solution of initial-boundary value problem for $cmu - u^3 = f$</td>
<td>63</td>
</tr>
<tr>
<td>Y. Gordon</td>
<td>Unconditional Schauder decompositions of normed ideals of operators between some l_p-spaces</td>
<td>71</td>
</tr>
<tr>
<td>Gary Grefsrud</td>
<td>Oscillatory properties of solutions of certain nth order functional differential equations</td>
<td>83</td>
</tr>
<tr>
<td>Irvin Roy Hentzel</td>
<td>Generalized right alternative rings</td>
<td>95</td>
</tr>
<tr>
<td>Zensiro Goseki and Thomas Benny Rushing</td>
<td>Embeddings of shape classes of compacta in the trivial range</td>
<td>103</td>
</tr>
<tr>
<td>Emil Grosswald</td>
<td>Brownian motion and sets of multiplicity</td>
<td>111</td>
</tr>
<tr>
<td>Donald LaTorre</td>
<td>A construction of the idempotent-separating congruences on a bisimple orthodox semigroup</td>
<td>115</td>
</tr>
<tr>
<td>Pjek-Hwee Lee</td>
<td>On subrings of rings with involution</td>
<td>131</td>
</tr>
<tr>
<td>Marvin David Marcus and H. Minc</td>
<td>On two theorems of Frobenius</td>
<td>149</td>
</tr>
<tr>
<td>Michael Douglas Miller</td>
<td>On the lattice of normal subgroups of a direct product</td>
<td>153</td>
</tr>
<tr>
<td>Gratтан Patrick Murphy</td>
<td>A metric basis characterization of Euclidean space</td>
<td>159</td>
</tr>
<tr>
<td>Roy Martin Rakestraw</td>
<td>A representation theorem for real convex functions</td>
<td>165</td>
</tr>
<tr>
<td>Louis Jackson Ratliff, Jr.</td>
<td>On Rees localities and H_l-local rings</td>
<td>169</td>
</tr>
<tr>
<td>Simeon Reich</td>
<td>Fixed point iterations of nonexpansive mappings</td>
<td>195</td>
</tr>
<tr>
<td>Domenico Rosa</td>
<td>B-complete and B_r-complete topological algebras</td>
<td>199</td>
</tr>
<tr>
<td>Walter Roth</td>
<td>Uniform approximation by elements of a cone of real-valued functions</td>
<td>209</td>
</tr>
<tr>
<td>Helmut R. Salzmann</td>
<td>Homogene kompakte projektive Ebenen</td>
<td>217</td>
</tr>
<tr>
<td>Jerrold Norman Siegel</td>
<td>On a space between BH and $B_{∞}$</td>
<td>235</td>
</tr>
<tr>
<td>Robert C. Sine</td>
<td>On local uniform mean convergence for Markov operators</td>
<td>247</td>
</tr>
<tr>
<td>James D. Stafney</td>
<td>Set approximation by lemniscates and the spectrum of an operator on an interpolation space</td>
<td>253</td>
</tr>
<tr>
<td>Árpád Száz</td>
<td>Convolution multipliers and distributions</td>
<td>267</td>
</tr>
<tr>
<td>Kalathoor Varadarajan</td>
<td>Span and stably trivial bundles</td>
<td>277</td>
</tr>
<tr>
<td>Robert Breckenridge Warfield, Jr.</td>
<td>Countably generated modules over commutative Artinian rings</td>
<td>289</td>
</tr>
<tr>
<td>John Yuan</td>
<td>On the groups of units in semigroups of probability measures</td>
<td>303</td>
</tr>
</tbody>
</table>