BROWNIAN MOTION AND SETS OF MULTIPLICITY

ROBERT P. KAUFMAN
BROWNIAN MOTION AND SETS OF MULTIPLICITY

ROBERT KAUFMAN

\[X(t) \] is Brownian motion on the axis \(-\infty < t < \infty, \) with paths in \(R^n, n \geq 2. \) \(X(t) \) leads to composed mappings \(f \circ X, \) where \(f \) is a real-valued function of class \(\Lambda^\alpha(R^n), \) whose gradient never vanishes. To define the class \(\Lambda^\alpha(R^n), \) when \(\alpha > 1, \) take the integer \(p \) in the interval \(\alpha - 1 \leq p < \alpha \) and require that \(f \) have continuous partial derivatives of orders \(1, \ldots, p \) and these fulfill a Lipschitz condition in exponent \(\alpha - p \) on each compact set; to specify further that \(\text{grad } f \neq 0 \) throughout \(R^n, \) write \(\Lambda^\alpha. \) Then a closed set \(T \) is a set of "\(\Lambda^\alpha \)-multiplicity" if every transform \(f(T) \subseteq R^1(\ f \in \Lambda^\alpha) \) is a set of strict multiplicity—an \(M_0 \)-set (see below). Henceforth we define \(b = \alpha^{-1} \) and take \(S \) to be a closed linear set.

THEOREM 1. In order that \(X(S) \) be almost surely a set of \(\Lambda^\alpha \)-multiplicity, it is sufficient that the Hausdorff dimension of \(S \) exceed \(b. \) It is not sufficient that \(\text{dim } S = b. \)

An \(M_0 \)-set in \(R \) is one carrying a measure \(\mu \neq 0 \) whose Fourier-Stieltjes transform vanishes at infinity; the theory of \(M_0 \)-sets is propounded in [1, p. 57] and [8, pp. 344, 348, 383] and Hausdorff dimension is treated in [1, II—III]. Theorem 1 reveals a difference between multi-dimensional Brownian motion and the linear process; for linear paths the critical point is \(\text{dim } S = \frac{1}{2} b \) [5]. Theorem 2 below contains a sharper form of the sufficiency condition.

THEOREM 2. Let \(S \) be a compact set, carrying a probability measure \(\mu \) for which

\[h(u) = \sup \mu(x, x + u) = o(u^b) \cdot |\log u|^{-1}. \]

Then \(X(S) \) is almost surely a set of \(\Lambda^\alpha \)-multiplicity.

1. (Proof of Theorem 2) We can assume that \(S \) is mapped by \(X \) entirely within some fixed ball \(B \) in \(R^n \) and that all elements \(f \) appearing below are bounded in \(\Lambda^\alpha \)-norm over \(B \) (defined in analogy with the norms in Banach spaces of Lipschitz functions). Moreover we can assume that all gradients fulfill an inequality \(||\nabla|| \geq \delta > 0 \) on all of \(B, \) and even on all of \(R^n. \)
(a) There is a function $\xi(u) > 0$ of u so that $\lim u^{-1} \xi(u) = +\infty$ and $h(\xi(u)) = o(u^b) |\log u|^{-1}$ as $u \to 0 +$. In proving that all sets $f \circ X(S)$ are M_0-sets, we study integrals $\int \exp -2\pi iy f \circ X(s) \cdot \mu(ds)$, since these are the Fourier-Stieltjes transforms of probability measures carried by $f \circ X(S)$. Our plan is to estimate the probability of an event $|f| > \eta$ for an individual f and y, and then combine a large enough number of these inequalities to obtain a bound for all functions f in question. The individual estimations are obtained as in [5, pp. 60–61], using the independence of increments of X. To obtain a uniform estimate on the expected values, similar to that in [5], we divide S into intervals of length rather larger than y^{-2}. The expected values are then integral involving the normal density in \mathbb{R}^n, and these are handled by integration first along straight lines approximately parallel to ∇f. For each $\eta > 0$ we find

$$P \{|\int \exp -2\pi iy f \circ X(s) \cdot \mu(ds)| > \eta\} < \exp -A(\eta) \psi(y) \log y \cdot y^{2b}$$

where $A(\eta) > 0$ and $\psi(y) \to +\infty$ with y.

(b) To each large y and $\eta > 0$ we shall find a determinate set $L(y)$ in Λ_η^*, with this property: there is a random number y_0, almost surely finite, and a random set S^\ast of μ-measure $1 - \eta$; to each function f in Λ_η^* there is a function f_1, in $L(y)$, such that $|f - f_1| \leq \eta y^{-1}$ on $X(S^\ast)$—all this for $y > y_0$. Moreover $L(y)$ contains at most $\exp A'(\eta) y^{2b} \log y$ elements f_1. When $L(y)$ has been secured, we let y tend to $+\infty$ along the sequence $1, \sqrt{2}, \ldots, k^{1/2}, \ldots$ for example, and use the Borel-Cantelli Lemma to estimate the integrals involving $f_1 \in L(y)$. The properties of $L(y)$ allow us to extend our almost-sure inequalities to all of Λ_η^*.

At the corresponding stage in the treatment of linear Brownian motion, Kolmogorov's estimates of entropy in the space $\Lambda_\eta^*[−1,1]$ are exploited; an interesting aspect of the argument below is the minor role of the dimension n. Compare [6, Ch. 9–10].

(c) In carrying out the program of (b) we let y increase through the sequence 2^{ka} ($k = 1, 2, 3, \ldots$) and observe that the sets $L(2^{ka})$ will serve for $2^{(k-1)a} \leq y \leq 2^{ka}$. To each $\eta > 0$ we can find a constant C_1 so large that the inequality $\|X(t)\| \leq C_1$, $0 \leq t \leq 1$, is valid with $P > 1 - \frac{1}{2} \eta$. We divide the t-axis into adjacent intervals I of length 4^{-k} and write μ^*_t for the total μ-measure of those t-intervals on which $X(t)$ oscillates more than $2C_1 \cdot 2^{-k}$. By the scaling of X, and by independence of increments, we find upper bounds for the mean and variance of μ^*_t, namely $E(\mu^*_t) \leq \frac{1}{2} \eta$ and $\sigma^2(\mu^*_t) \leq 0(1) h(4^{-k})$. By Chebyshev's inequality, $P\{\mu^*_t > \eta\} \leq 0(1) h(4^{-k})$, and from $\sum h(4^{-k}) < +\infty$ we conclude that $\mu^*_t < \eta$ for large k, almost surely. The complementary intervals now form S^\ast, so that $X(S^\ast)$ is contained in $0(4^\ast)$ subsets of \mathbb{R}^n, of diameter $C_1 \cdot 2^{1-k}$. (By our standing assumptions, $\|X(S^\ast)\| \leq B$). Let η_1 be a small constant, depending on η and the Lipschitz constants of the
functions \(f \), and let us cover the ball \(\|X\| \leq B \) with a grid of rectangles of side \(\eta_1 2^{-k} \); for large \(n \) the grid contains \(< 2^{(n+1)k} \) cells. Moreover \(X(S^*) \) is contained in \(C_2 4^k \) of these cells, and these cells can be chosen in at most \(\exp C_1 k 4^k \) different ways. For each set \(T_0 \), composed of \(C_2 4^k \) cells, we construct a “matching set” \(L(y, T_0) \subseteq \Lambda^* \) of the proper cardinality. As the sets \(T_0 \) are not too numerous, the join of all sets \(L(y, T_0) \in \Lambda^* \) will be our set \(L(y) \).

On each cell we replace each \(f \) by its Taylor expansion about the center, up to derivatives of order \(p \); if \(\eta_1 \) is sufficiently small, the Taylor expansion deviates from \(f \) by at most \(\frac{1}{8} \eta_1 2^{-ka} \), and the totality of functions so constructed has dimension \(\leq (p + 1)^n \cdot C_2 4^k \). At points common to two or more cells in \(T \), we replace the Taylor expansion by 0. Now we have a finite dimensional subspace of the Banach space of bounded functions on \(T \) — and by the inequality between “widths and entropy” [6, p. 164] the totality of approximating functions is contained in \(\exp C_4 k 4^k \) sets of diameter \(\frac{1}{8} \eta_1 2^{-ka} \). From elementary inequalities in metric spaces, we can cover all the functions \(f \) by the same number of balls, of radius \(\frac{1}{2} \eta_1 2^{-ka} \) in the uniform norm on \(T \), centered at functions \(f \). Now \(k 4^k = 0(1) y^{2b} \log y \) so the set \(L(y) \) is small enough to complete the proof of Theorem 2.

2. (Proof of Theorem 1). First we find a set \(S \) of Hausdorff dimension \(b_1 \), arbitrarily close to \(b \), such that \(X(S) \) is not a set of \(\Lambda^* \)-multiplicity.

Let \(\alpha \) and \(c \) be chosen so that \(b_1^{-1} > \alpha > \alpha^{-1} \alpha_1 \). Then let \(M \) be a sequence of positive integers \(m \) such that each set \(\{m \in M, m \leq k\} \) has at least \(b_1 k \) elements; then the set \(S = S_m \) of all sums \(\Sigma \pm 2^{-m} \) has Hausdorff dimension at least \(b_1 \). In addition, we assume that \(M \) contains infinitely many pairs of consecutive elements \(q, q_1 \) such that \(q_1 > \alpha_1 q \). Sequences \(M \) exist because \(\alpha_1 b_1 < 1 \). Each number \(q \) of this type determines a division of \(S \) into at most \(2^q \) subsets \(S_p \), based on the coordinates for \(m \in q \): each \(S_p \) has diameter \(< 4 \cdot 2^{-c} \), and the sets \(S_p \) have mutual distances \(\geq 2^{-q-1} \).

For large enough \(q \), the sets \(X(S_p) \) are dispersed in a sense to be made precise in a moment. Taking an integer \(s > 1 + (c - 1)^{-1} \) we investigate the event that \(s \) distinct sets \(S_p \) are mapped within \(d = 2^{-\sigma/\sigma} \) of each other. By a famous inequality of Paul Lévy, the sets \(X(S_p) \) have diameters \(o(q_12^{-q_1/2}) = o(d) \) for large \(q \), so we can simplify the calculation by taking \(t_p \in S_p \) and bounding the probability that \(s \) numbers \(t_p \) are mapped within \(2d \) of each other. We use the scaling property and independence of increments, with the observation that \(n = 2 \) is the least favorable case. An \(s \)-tuple leads to an event of probability \(0(1) \cdot \Pi d^2 |u_{i+1} - u_i|^{-1} \). We sum this for all \(s \)-tuples chosen from the numbers \(t_p \) and recall that \(u_1 \) takes at most \(2^q \) values. Each factor \(d^2 |u_{i+1} - u_i|^{-1} \) adds a factor \(2^q q \cdot d^2 \) to the sum. From the formula
\[d = 2^{-\alpha/2} \] and the inequality \((s - 1)c - (s - 1) > 1\), we find that the sum has magnitude \(2^{\delta q} \) for some \(\delta > 0\). The Borel–Cantelli Lemma then shows that the dispersion property holds for large \(q\), with probability 1.

Now \(X(S)\) is a union of sets of diameter \(< d_1 = q_12^{-\alpha_1} \) and at most \(s - 1\) sets \(X(S_p)\) have mutual distances \(< d\). Moreover \(d > d_1^6\) for some \(\beta < \alpha^{-1}\) because \(c < \alpha^{-1}a_1\). It is proved in [2, 5, p. 66] that \(f \circ X(S)\) is not an \(M_0\)-set (nor even an \(M\)-set) for all \(f\) in \(\Lambda^a\) except a set of first category. Of course \(\Lambda^a\) is an open subset of \(\Lambda^a\) so the same is true of \(\Lambda^a\).

To finish the proof of the negative statement in Theorem 1, we let \(b_1\) increase to \(b\) along a sequence and choose a union of sets \(S_M\), wherein \(M\) depends on \(b_1\). As the union is countable, the union of the meager sets obtained for each \(S_M\) is again meager, and it is classical that, for measures \(\mu\) such that \(\hat{\mu}(\infty) = 0\), the entire space \(L^1(\mu)\) inherits this property. This completes the proof of the second assertion in Theorem 1.

The positive assertion is a consequence of Theorem 2: by a theorem of Frostman [1, II–III] any closed set of Hausdorff dimension \(> b\) carries a measure \(\mu\) fulfilling the inequalities of Theorem 2.

A problem that appears much more difficult is the behavior of sets \(S\) with "strong dimension" \(b\): \(S\) is not the union of a sequence \(U S_m\), \(\dim S_m < b\). These sets can be characterized in the theory of Hausdorff measures [7]. Some of the analysis is done in [3,4].

References

Received December 11, 1973 and in revised form March 15, 1974. Alfred P. Sloan Fellow.

University of Illinois
Waleed A. Al-Salam and A. Verma, *A fractional Leibniz q-formula* ... 1
Robert A. Bekes, *Algebraically irreducible representations of \(L_1(G) \) ... 11
Thomas Theodore Bowman, *Construction functors for topological semigroups* ... 27
Stephen LaVern Campbell, *Operator-valued inner functions analytic on the closed disc. II* ... 37
Leonard Eliezer Dor and Edward Wilfred Odell, Jr., *Monotone bases in \(L_p \) .. 51
Yukiyoshi Ebihara, Mitsuhiko Nakao and Tokumori Nanbu, *On the existence of global classical solution of initial-boundary value problem for \(cmu - u^3 = f \) .. 63
Y. Gordon, *Unconditional Schauder decompositions of normed ideals of operators between some \(l_p \)-spaces .. 71
Gary Grefsrud, *Oscillatory properties of solutions of certain nth order functional differential equations* .. 83
Irvin Roy Hentzel, *Generalized right alternative rings* .. 95
Zensiro Goseki and Thomas Benny Rushing, *Embeddings of shape classes of compacta in the trivial range* 103
Emil Grosswald, *Brownian motion and sets of multiplicity* .. 111
Donald LaTorre, *A construction of the idempotent-separating congruences on a bisimple orthodox semigroup* .. 115
Pjek-Hwee Lee, *On subrings of rings with involution* .. 131
Marvin David Marcus and H. Minc, *On two theorems of Frobenius* .. 149
Michael Douglas Miller, *On the lattice of normal subgroups of a direct product* .. 153
Grattan Patrick Murphy, *A metric basis characterization of Euclidean space* 159
Roy Martin Rakestraw, *A representation theorem for real convex functions* .. 165
Louis Jackson Ratliff, Jr., *On Rees localities and \(H_l \)-local rings* .. 169
Simeon Reich, *Fixed point iterations of nonexpansive mappings* .. 195
Domenico Rosa, *B-complete and \(B_r \)-complete topological algebras* .. 199
Walter Roth, *Uniform approximation by elements of a cone of real-valued functions* .. 209
Helmut R. Salzmann, *Homogene kompakte projektive Ebenen* .. 217
Jerrold Norman Siegel, *On a space between \(BH \) and \(B_\infty \) .. 235
Robert C. Sine, *On local uniform mean convergence for Markov operators* .. 247
James D. Stafney, *Set approximation by lemniscates and the spectrum of an operator on an interpolation space* .. 253
Árpád Száz, *Convolution multipliers and distributions* .. 267
Kalathoor Varadarajan, *Span and stably trivial bundles* .. 277
Robert Breckenridge Warfield, Jr., *Countably generated modules over commutative Artinian rings* .. 289
John Yuan, *On the groups of units in semigroups of probability measures* .. 303