ON TWO THEOREMS OF FROBENIUS

MARVIN MARCUS AND HENRYK MINC

This note contains simple proofs of two classical theorems of Frobenius, on nonnegative matrices. These concern powers of a primitive matrix and the maximal root of a principal submatrix of an irreducible matrix.

The purpose of this note is to give simple and straightforward proofs for two classical theorems of Frobenius [1].

A matrix \(A \) is said to be nonnegative (positive) if all its entries are nonnegative (positive); we write \(A \geq 0 \) (\(A > 0 \)). A nonnegative square matrix is called reducible if there exists a permutation matrix \(P \) such that

\[
P A P^T = \begin{bmatrix} B & 0 \\ C & D \end{bmatrix},
\]

where \(B \) and \(D \) are square; otherwise \(A \) is irreducible.

It was shown by Frobenius [1] that a nonnegative square matrix has a real maximal root \(r \) such that \(r \leq |\lambda_i| \) for every root \(\lambda_i \) of \(A \) and that to \(r \) corresponds a nonnegative characteristic vector. Moreover, if \(A \) is irreducible, then the maximal root \(r \) of \(A \) is simple and there is a positive characteristic vector corresponding to it. An irreducible matrix is said to be primitive if its maximal root is strictly greater than the moduli of the other roots.

We prove the following remarkable two results due to Frobenius (see [1]; also Theorem 8 and Proposition 4, p. 69, in [2]).

Theorem 1. If \(A \) is primitive then

\[
A^m > 0
\]

for some positive integer \(m \).

Theorem 2. The maximal root of an irreducible matrix is greater than the maximal root of any of its principal submatrices.

Proof of Theorem 1. Let \(A \) be a primitive matrix with maximal root \(r \). Then the matrix \(1/r A \) is primitive as well, its maximal root is 1, and all its other roots have moduli less than 1. Let

\[
S^{-1} \left(\frac{1}{r} A \right) S = 1 + B,
\]

(1)
where \(1 + B \) is, e.g., the Jordan normal form of \(1/rA \). We can deduce immediately from (1) that:

(i) the moduli of all roots of \(B \) are less than 1 and therefore \(\lim_{t \to \infty} B^t = 0 \);
(ii) the first column of \(S \) is a character vector of \(A \) corresponding to the maximal root 1 and therefore has no zero coordinates;
(iii) the first row of \(S^{-1} \) is a characteristic vector of the transpose of \(1/rA \) corresponding to its maximal root and thus cannot have zero coordinates.

Now,

\[
\lim_{t \to \infty} \left(\frac{1}{r} A \right)^t = \lim_{t \to \infty} (S(1 + B)S^{-1})^t = S(1 + (\lim_{t \to \infty} B^t))S^{-1} = S(1 + 0)S^{-1}
\]

is a nonnegative matrix. But the \((i, j)\) entry of \(S(1 + 0)S^{-1} \) is the nonzero product \(S_{1i}(S^{-1})_{ij} \). Hence \(S(1 + 0)S^{-1} \) must be strictly positive, i.e.,

\[
\lim_{t \to \infty} \left(\frac{1}{r} A \right)^t > 0.
\]

It follows that for sufficiently large integer \(m \),

\[
\left(\frac{1}{r} A \right)^m > 0,
\]

and therefore

\[
A^m > 0.
\]

In order to prove Theorem 2 we require the following lemma obtained in a more general form by Wielandt [3]:

*Let \(A \) be an \(n \times n \) irreducible matrix with maximal root \(r \). If \(x \) is a nonnegative \(n \)-tuple, \(x \neq 0 \), and \(k \) a nonnegative number satisfying

\[
Ax - kx \geq 0,
\]

then

(2) \(k \leq r \).

Equality can hold in (2) only if \(x > 0 \).
Proof of Theorem 2. We can assume without loss of generality that the principal submatrix in question lies in the first t rows and first t columns, i.e., that

$$A = \begin{bmatrix} B & C \\ D & E \end{bmatrix},$$

where B is the principal $t \times t$ submatrix. Let r and k be the maximal roots of A and B, respectively. Let y be a nonnegative characteristic vector of B corresponding to k and let

$$x = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

be the n-tuple whose first t coordinates are those of y and whose last $n - t$ coordinates are 0. Then

$$Ax = \begin{bmatrix} By \\ Dy \end{bmatrix} = k \begin{bmatrix} y \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ Dy \end{bmatrix},$$

$$Ax - kx = \begin{bmatrix} 0 \\ Dy \end{bmatrix} \geq 0.$$

It follows immediately by the preceding lemma that

$$k < r.$$

References

Received September 30, 1974. Department of Mathematics, University of California, Santa Barbara, 93106. The research of both authors was supported by the Air Force Office of Scientific Research under Grant AFOSR-72-2164.

University of California, Santa Barbara
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate, may be sent to any one of the four editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 Issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Jerusalem Academic Press, POB 2390, Jerusalem, Israel.

Copyright © 1975 Pacific Journal of Mathematics
All Rights Reserved
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waleed A. Al-Salam and A. Verma, A fractional Leibniz q-formula</td>
<td>1</td>
</tr>
<tr>
<td>Robert A. Bekes, Algebraically irreducible representations of $L_1(G)$</td>
<td>11</td>
</tr>
<tr>
<td>Thomas Theodore Bowman, Construction functors for topological semigroups</td>
<td>27</td>
</tr>
<tr>
<td>Stephen LaVern Campbell, Operator-valued inner functions analytic on the closed disc. II</td>
<td>37</td>
</tr>
<tr>
<td>Leonard Eliezer Dor and Edward Wilfred Odell, Jr., Monotone bases in L_p</td>
<td>51</td>
</tr>
<tr>
<td>Yukiyoshi Ebihara, Mitsuiro Nakao and Tokumori Nanbu, On the existence of global classical solution of initial-boundary value problem for $cmu - u^3 = f$</td>
<td>63</td>
</tr>
<tr>
<td>Y. Gordon, Unconditional Schauder decompositions of normed ideals of operators between some l_p-spaces</td>
<td>71</td>
</tr>
<tr>
<td>Gary Greferud, Oscillatory properties of solutions of certain nth order functional differential equations</td>
<td>83</td>
</tr>
<tr>
<td>Irvin Roy Hentzel, Generalized right alternative rings</td>
<td>95</td>
</tr>
<tr>
<td>Zensiro Goseki and Thomas Benny Rushing, Embeddings of shape classes of compacta in the trivial range</td>
<td>103</td>
</tr>
<tr>
<td>Emil Grosswald, Brownian motion and sets of multiplicity</td>
<td>111</td>
</tr>
<tr>
<td>Donald LaTorre, A construction of the idempotent-separating congruences on a bisimple orthodox semigroup</td>
<td>115</td>
</tr>
<tr>
<td>Pjek-Hwee Lee, On subrings of rings with involution</td>
<td>131</td>
</tr>
<tr>
<td>Marvin David Marcus and H. Minc, On two theorems of Frobenius</td>
<td>149</td>
</tr>
<tr>
<td>Michael Douglas Miller, On the lattice of normal subgroups of a direct product</td>
<td>153</td>
</tr>
<tr>
<td>Grattan Patrick Murphy, A metric basis characterization of Euclidean space</td>
<td>159</td>
</tr>
<tr>
<td>Roy Martin Rakeshaw, A representation theorem for real convex functions</td>
<td>165</td>
</tr>
<tr>
<td>Louis Jackson Ratliff, Jr., On Rees localities and H_1-local rings</td>
<td>169</td>
</tr>
<tr>
<td>Simeon Reich, Fixed point iterations of nonexpansive mappings</td>
<td>195</td>
</tr>
<tr>
<td>Domenico Rosa, B-complete and B_τ-complete topological algebras</td>
<td>199</td>
</tr>
<tr>
<td>Walter Roth, Uniform approximation by elements of a cone of real-valued functions</td>
<td>209</td>
</tr>
<tr>
<td>Helmut R. Salzmann, Homogene kompakte projektive Ebenen</td>
<td>217</td>
</tr>
<tr>
<td>Jerrold Norman Siegel, On a space between BH and B_∞</td>
<td>235</td>
</tr>
<tr>
<td>Robert C. Sine, On local uniform mean convergence for Markov operators</td>
<td>247</td>
</tr>
<tr>
<td>James D. Stafney, Set approximation by lemniscates and the spectrum of an operator on an interpolation space</td>
<td>253</td>
</tr>
<tr>
<td>Árpád Száz, Convolution multipliers and distributions</td>
<td>267</td>
</tr>
<tr>
<td>Kalathoor Varadarajan, Span and stably trivial bundles</td>
<td>277</td>
</tr>
<tr>
<td>Robert Breckenridge Warfield, Jr., Countably generated modules over commutative Artinian rings</td>
<td>289</td>
</tr>
<tr>
<td>John Yuan, On the groups of units in semigroups of probability measures</td>
<td>303</td>
</tr>
</tbody>
</table>