ON THE GROUPS OF UNITS IN SEMIGROUPS OF PROBABILITY MEASURES

JOHN YUAN
ON THE GROUPS OF UNITS IN SEMIGROUPS OF PROBABILITY MEASURES

JOHN YUAN

We generalize Pym's decomposition \(w = \mu_E * w_H * \mu_F \) of idempotent probability measures to the decomposition \(\mu_E * \mathcal{H}(w_H) * \mu_F \) of the maximal groups of units in semigroup of probability measures on a compact semitopological semigroup. We also prove that \(\mathcal{H}(w) \equiv \mathcal{H}(w_H) \equiv N(H)/H \) algebraically and topologically. With these characterizations, we verify Rosenblatt's necessary and sufficient condition for the convergence of a convolution sequence \((\nu^n)_{n \geq 1} \) of a probability measure \(\nu \) on a compact topological semigroup.

1. Introduction. Let \(S \) denote a compact semitopological semigroup (i.e., the multiplication is separately continuous) and \((C(S),\| \|) \) the Banach space of all bounded real-valued continuous functions on \(S \). Then \(M^b(S) \) which is defined as the norm dual of \(C(S) \) is a Banach algebra under \(\| \mu \| = \sup \{|\mu(f)| : \|f\| \leq 1\} \) and the convolution * which is defined via \(\mu * \nu(f) = \int f(xy)\mu(dx)\nu(dy) \) on \(C(S) \). Let \(P(S) \) be the totality of probability measures on \(S \), which consists of all positive measures with norm 1 in \(M^b(S) \). Then \(P(S) \) is a compact semitopological semigroup under * and the weak* topology which is the topology of pointwise convergence on \(C(S) \) [4]. If \(S \) is topological (i.e., the multiplication is jointly continuous), then \(P(S) \) is topological (Prop. 4, [9]).

It is known that every compact semitopological semigroup has a minimal ideal which is not necessarily closed except in the case \(S \) is topological [7]. We thus introduce the following definition:

A compact semitopological semigroup is called topologically simple if its minimal ideal is dense in it.

For a subsemigroup \(T \) of \(S \), we use \(E(S) \) and \(M(T) \) to denote the totality of idempotents and the minimal ideal in \(S \) respectively. For a subsemigroup \(A \) of \(P(S) \), we write \(D(A) = \cup \{\text{supp } \mu : \mu \in A\} \) and \(\text{supp } A = \overline{D(A)} \), where \(\text{supp } \mu \) denotes the support of \(\mu \).

In the remainder, \(S \) will always denote a compact semitopological semigroup except mentioned especially.
2. The structure of an idempotent probability measure.

Proposition 2.1. Let K be a compact topologically simple subsemigroup in S. Then

1. $E(M(K)) \neq \emptyset$

For $e \in E(M(K))$, we have

2. (a) $H = eKe$ is a compact topological subgroup with identity e

(b) $E = E(Ke)$ (resp. $F = E(eK)$) is a left (resp. right) zero compact topological subsemigroup

(c) $eE = Fe = e$, $FH = HE = H$ and $FE \subseteq H$

(d) $M(K) = EHF = [E, H, F]$ via

\[(x, g, y)(x', g', y') = (x, gyx'g', y')\]

(e) $Ke = (EHF)e = EH$ and $eK = e(EHF) = HF$

3. (a) $P(E)$ (resp. $P(F)$) is a left (resp. right) zero compact topological subsemigroup. In particular, $E(P(E)) = P(E)$ and $E(P(F)) = P(F)$

(b) $\delta_e^*P(E) = P(F)^*\delta_e = \delta_e$, where δ_e is the point-mass at e

(c) $P(F)^*P(E) \subseteq P(H)$. In particular,

$w_H * P(F)^*P(E) = P(F)^*P(E)^*w_H = w_H$

where $w_H^2 = w_H$ is the Haar measure on H

(d) $P(E) * w_H * P(F) \subseteq E(P(S))$.

Proof.

1. (See the proof of 3.4, p. 67, [1]).

2. (See p. 500, [7]; Thm. 2, p. 124, [3]).

3. (a) For $\mu, \nu \in P(E)$,

\[\mu * \nu(f) = \int f(xy)\mu(dx)\nu(dy) = \int f(x)\mu(dx)\nu(dy) = \mu(f).\]

Hence $P(E)$ is left zero. Furthermore, by 2(b) we see that $P(E)$ is a compact topological subsemigroup in $P(S)$.

(b) This follows from 2(c).

(d) Let $\mu = \mu_E * w_H * \mu_F \in P(E) * w_H * P(F)$. Then

\[\mu^2 = \mu_E * (w_H * \mu_F * \mu_E) * w_H * \mu_F = \mu_E * w_H * \mu_F.\]

Lemma A. $\text{supp}(\mu * \nu) = (\text{supp} \mu \text{ supp} \nu)$ in $P(S)$.

Proof. [4].

Proposition 2.2. Let $w^2 = w \in P(S)$. Then
1. supp \(w \) is a compact topologically simple subsemigroup
2. \(w = \mu_E \ast w_H \ast \mu_F \), where
 (a) \(H = e(\text{supp } w)e, E = E((\text{supp } w)e) \) and \(F = E(e(\text{supp } w)) \) for an \(e \in E(M(\text{supp } w)) \)
 (b) \(\mu_E \in P(E) \) with \(\text{supp } \mu_E = E \)
 (c) \(\mu_F \in P(E) \) with \(\text{supp } \mu_F = F \)
 (d) \(\omega_H = \omega_H \) is the Haar measure on \(H \)
3. \(w_H = \omega_H \ast \mu_F \ast \mu_E = \mu_F \ast \mu_E \ast \omega_H \)
4. \(w_H = w_H \ast \omega_H \ast \mu_F \ast \mu_E \ast \omega_H \)

Proof.
1. We refer it to (p. 500, [7]).
2. This is a result of 1 and Proposition 2.1.
3. This is a result of 3(c) in Proposition 2.1.
4. We prove the first equality only. As \(eE\omega_F \subseteq H \),

\[
w_H \ast \omega_H \ast \omega_H = w_H \ast (w_H \ast \mu_E \ast \omega_H \ast \mu_F \ast \omega_H) \ast \omega_H = w_H.
\]

Proposition 2.3. \(E(P(S)) = \bigcup \{P(E) \ast \omega_H \ast P(F) : K \text{ is a compact topologically simple subsemigroup}\} \).

3. A characterization of the maximal group of units. For \(e \in E(S) \) we denote by \(\mathcal{H}(e) \) the maximal group of units with identity \(e \) in the compact subsemigroup \(eSe \). We will see that \(\mathcal{H}(e) \) is in general a locally compact topological subgroup in the relative topology of \(S \) and \(\mathcal{H}(e) \) is closed and so compact in the case \(S \) is topological.

In this section, we maintain that \(w^2 = w = \mu_E \ast \omega_H \ast \mu_F \) is as in Proposition 2.2. In particular, \(H \) is a compact subgroup of \(\mathcal{H}(e) \).

Lemma B. \(\mathcal{H}(e) \) is a locally compact topological subgroup in the relative topology of \(S \). Furthermore, if \(S \) is topological, then \(\mathcal{H}(e) \) is a closed and hence compact subgroup.

Proof. As \(\mathcal{H}(e) \) is a topological subgroup in \(eSe \) (Cor. 6.3, pp. 282–283, [6]), \(\mathcal{H}(e) \) is a closed subsemigroup in \(eSe \) (3.1, p. 65, [1]). Without losing generality, we may assume that \(S = eSe = \mathcal{H}(e) \). Suppose that \(\mathcal{H}(e) \) is not locally compact. Then \(\mathcal{H}(e) \) is not open in \(S \). Thus if \(0 \) is an open neighborhood of \(e \) in \(S \), then \(0 \cap (S - \mathcal{H}(e)) \neq \emptyset \), for translation by an element of \(\mathcal{H}(e) \) is a homeomorphism of \(S \). Now, we choose a relatively compact open neighborhood \(U \) of \(e \) in \(S \). Then \((U \cap \mathcal{H}(e))^{-1} \) is open in \(\mathcal{H}(e) \) and contains \(e \), so there is an open neighborhood \(V \) of \(e \) in \(S \) so that \(V \cap \mathcal{H}(e) = (U \cap \mathcal{H}(e))^{-1} \). Then \(U \cap V \) is an open neighborhood of \(e \) in \(S \) so that \((U \cap V) \cap \mathcal{H}(e) \) is symmetric (i.e., \(h \in (U \cap V) \cap \mathcal{H}(e) \) iff \(h^{-1} \in (U \cap V) \cap \mathcal{H}(e) \)). Since \((U \cap V) \cap (S - \mathcal{H}(e)) \neq \emptyset \), there is an \(x \)}
in it. Hence there is a net \((h_\alpha)\) in \(\mathcal{H}(e)\) with \(h_\alpha \to x\). Since \(h_\alpha\) is eventually in \(U \cap V \subseteq \hat{U}\), there is an \(y \in U \cap V\) so that \(h_\beta^{-1} \to y\) for some subnet \((h_\beta)\). In particular,

\[xy = \lim h_\beta h_\beta^{-1} = e \]

and

\[yx = \lim h_\beta^{-1} h_\beta = e. \]

this contradicts the fact that \(x \in S - \mathcal{H}(e)\). Hence \(\mathcal{H}(e)\) is locally compact in the relative topology. For the last statement, we refer it to (2.3, p. 17, [5]).

Proposition 3.1. The following statements hold:

1. \(\mathcal{H}(w_H) = \{ w_H \ast \delta_x : x \in N(H) \}\), where \(N(H)\) is the normalizer of \(H\) in \(\mathcal{H}(e)\) and \(\delta_x\) are the point-masses

2. The maps \(\mathcal{H}(w) \xrightarrow{\alpha} \mathcal{H}(w_H)\) defined via

\[\alpha(\mu) = (w_H \ast \mu \ast \mu \ast \mu \ast w_H) = w_H \ast \mu \ast w_H \]

and

\[\beta(\nu) = \mu \ast \nu \ast \mu \ast \mu \]

are mutually inverse continuous group-morphisms.

Proof. 1. We prove it in three steps:

(i) \(\text{supp } \mu \subseteq eSe\) for all \(\mu \in \mathcal{H}(w_H)\).

(ii) Let \(\mu \in \mathcal{H}(w_H)\), then there exists a \(\nu \in \mathcal{H}(w_H)\) so that \(\mu \ast \nu = \nu \ast \mu = w_H\). Hence for given \(a \in \text{supp } \mu\) and \(b \in \text{supp } \nu\) \(\delta_{ab} \ast w_H = \delta_{ba} \ast w_H = w_H\) and thus \(abH = abH = H = baH = baH\) or \(ab = ba = b\) for some \(g, h \in H\); let \(x = h^{-1}a\) and \(x' = agh^{-1}\), then \(xb = bx' = e\) and so \(x' = ex' = (xb)x' = x(bx') = x\). Furthermore,

\[\mu \ast \delta_b = (w_H \ast \mu) \ast \delta_b = w_H \ast (\mu \ast \delta_b) = w_H \]

and so \(\mu = w_H \ast \delta_x = w_H \ast \delta_x \ast w_H\). By (Thm. 1, p. 124, [3]) and Lemma A, we obtain that \(Hx = Hx = HxH = HxH\). This implies \(x \in N(H)\).

(iii) The converse of (ii) follows from the fact that \(w_H \ast \delta_x = \delta_x \ast w_H = w_H \ast \delta_x \ast w_H\).

2. We prove it in two steps:
ON THE GROUPS OF UNITS 307

(i) \(\alpha(\mu_1, \mu_2) = w_H \ast \mu_F \ast \mu_1 \ast \mu_2 \ast \mu_E \ast w_H \)
\(= w_H \ast \mu_F \ast \mu_1 \ast w \ast \mu_2 \ast \mu_E \ast w_H \)
\(= w_H \ast \mu_F \ast \mu_1 \ast \mu_E \ast w_H^2 \ast \mu_F \ast \mu_2 \ast w_H \)
\(= \alpha(\mu_1) \alpha(\mu_2), \)
\(\beta(v_1, v_2) = \mu_E \ast v_1 \ast v_2 \ast \mu_F \)
\(= \mu_E \ast v_1 \ast w_H \ast v_2 \ast \mu_F \)
\(= \mu_E \ast v_1 \ast \mu_F \ast \mu_E \ast w_H \ast v_2 \ast \mu_F \)
\(= \beta(v_1) \beta(v_2). \)

(ii) \(\alpha \circ \beta(v) = \alpha(\mu_E \ast v \ast \mu_F) \)
\(= w_H \ast \mu_F \ast \mu_E \ast v \ast \mu_F \ast \mu_E \ast w_H \)
\(= w_H \ast v \ast w_H \)
\(= v, \)
\(\beta \circ \alpha(\mu) = \beta(w_H \ast \mu_F \ast \mu \ast \mu_E \ast w_H) \)
\(= \mu_E \ast w_H \ast \mu_F \ast \mu \ast \mu_E \ast w_H \ast \mu_F \)
\(= w \ast \mu \ast w \)
\(= \mu. \)

Proposition 3.2. The following statements hold:
1. \(D(\mathcal{H}(w_H)) = N(H) \) and \(\text{supp}(\mathcal{H}(w_H)) = \overline{N(H)} \)
2. \(D(\mathcal{H}(w)) = E(N(H))F = [E, N(H), F] \)
3. \(\text{supp}(\mathcal{H}(w)) = E(N(H))F = [E, N(H), F] \).

Proof. 1. This follows from Proposition 3.1. 1.
2. This follows from Proposition 3.1. 2 and the above statement.
3. This follows from 2.

So far, we have only an algebraic characterization of \(\mathcal{H}(w) \). In the remainder, we will characterize \(\mathcal{H}(w) \) and its subgroups topologically.

Proposition 3.3. The map \(\eta: N(H)/H \rightarrow \mathcal{H}(w_H) \) defined via
\(\eta(xH) = w_H \ast \delta_x (= \delta_x \ast w_H) \)
is a topological isomorphism.

Proof. We observe first that \(\eta \) is a well-defined algebraic isomorphism. Hence it remains to show that \(\eta \) is an open map. To
each \(f \in C(S) \), \(F_f(x) = \int f(xy)w_H(dy) \) is a bounded continuous function constant on each orbit \(xH \) in the compact orbit space \(eSe/H \). Without losing generality, we may assume that \(eSe = S \). Suppose that \(a_aH \to aH \) in \(N(H)/H \). Then

\[
\delta_{a_a} * w_H(f) = F_f(a_aH) \to F_f(aH) = \delta_a * w_H(f).
\]

Hence \(\eta \) is a continuous group-morphism. Suppose that \(a_aH \not\to aH \). Since \(N(H)/H \) is compact, there is a subnet \((a_bH) \) which converges to a \(bH \not= aH \). By Urysohn's Lemma, there is a continuous function \(F: S \to [0, 1] \) with \(F(aH) = 0 \) and \(F(bH) = 1 \). Clearly,

\[
\delta_{a_a} * w_H(fop) = Fop(a_a) = F(a_aH) \not\to F(aH)
\]

where \(fop : S \to S/H \) is the orbit map. Hence \(\eta \) is a topological isomorphism.

The following example shows that not all \(\mathcal{K}(w) \) are compact:

Example. Let \(S = R \cup \{\infty\} \) be the one-point compactification of the additive group of real numbers. Then \(S \) is a compact semitopological semigroup and \(\mathcal{K}(\delta_0) = \{\delta_x : x \in R\} \) which is not compact.

4. **On a limit theorem.** Rosenblatt has proved a necessary and sufficient condition for the convergence of a convolution sequence \((\nu^n)_{n \geq 1} \) of a probability measure \(\nu \) on a compact topological semigroup (Thm. 1, p. 152, [8]). We will see one side of his condition is an immediate result of our characterizations of the groups of units.

Proposition 4.1. Let \(\nu \in P(S) \). Then \(1/n(\nu + \nu^2 + \cdots + \nu^n) \) converges to an idempotent probability measure \(L(\nu) \in P(S) \) so that

1. \(\nu^m * L(\nu) = L(\nu)^m \nu^n = L(\nu) \) for all \(m, n \geq 1 \)
2. \(\text{supp } L(\nu) = M(T) \), where \(T \) is a closed subsemigroup generated by \(\nu \), i.e., \(T = \cup \{\text{supp } \nu^n : n \geq 1\} \).

Proof. (See Thm. 3, [2]).

In the remainder, we maintain that \(\Sigma(\nu) = \{\nu^n : n \geq 1\} \), \(K(\nu) = M(\Sigma(\nu)) \) and \(L(\nu) = \lim 1/n(\nu + \nu^2 + \cdots + \nu^n) = \mu_x * w_G * \mu_Y \). Without losing generality, we may assume that \(S \) is generated by \(\nu \), i.e., \(S = T \). Then \(\text{supp } L(\nu) = M(S) \), \(G = eSe = e(\text{supp } L(\nu))e \), \(X = E(Se) = E(\text{supp } L(\nu)e) = \text{supp } \mu_x \) and
\[Y = E(eS) = E(e(\text{supp } L(v))) = \mu_y \]

for an \(e \in E(M(\text{supp } L(v))) \) (cf. 3.5, p. 67, [1]). In particular, \(\mathcal{H}(L(v)) = \mu_x \{ w_G \} \mu_y = \{ L(v) \} \).

Lemma C. \(K(v) \) is a compact commutative topological subgroup in \(P(S) \).

Proof. (See the proof of 3.4, p. 67, [1]).

Let \(w^2 = w = \mu'_x \mu_H^* \mu'_F \in K(v) \). In particular, \(K(v) \) is a compact subgroup of \(\mathcal{H}(w) \). Then.

Lemma D. The following statements hold:
1. \(E(M(\text{supp } w)) = E(D(\mathcal{H}(w))) = E(D(K(v))) \)
2. \(D(K(v)) \subseteq M(S) \subseteq \text{supp } K(v) \). In particular, \(\text{supp } K(v) = M(S) \)
3. \(E(M(\text{supp } w)) \subseteq M(S) \).

Proof. 1. This follows from the fact that
\[E([E, H, F]) = [E, \{ e \}, F] = E([E, N(H), F]) = E(D(\mathcal{H}(w))). \]

2. As \(K(v) \) is an ideal in \(\Sigma(v) \), \(D(K(v))D(\Sigma(v)) \subseteq D(K(v)) \subseteq \text{supp}(K(v)) \) and so \(\text{supp}(K(v)) \) is a closed ideal in \(S \) (See 3.1, p. 65, [1]), in particular, \(\text{supp}(K(v)) \supseteq M(S) \). On the other hand, \(D(K(v)) = M(\text{supp}(K(v))) \) (See 3.1, p. 65, [1]) and thus \(M(S) \supseteq D(K(v)) \).

Lemma E. The following statements hold:
1. \(\nu^* w = w^* \nu \in K(v) \)
2. \(L(\nu)^* w = w^* L(\nu) = L(\nu) \)
3. There exists an \(e^2 = e \in M(\text{supp } w) \cap M(S) \)
4. \(H = e(\text{supp } w)e \subseteq eSe = G \)
5. \(E = E((\text{supp } w)e) = E(Se) = X \)
6. \(F = E(e(\text{supp } w)) = E(eS) = Y \)
7. \(YX \subseteq H \)
8. \(w = \mu_\nu^* w_H^* \mu_\nu \) with \(\text{supp } \mu_\nu^* = X \) and \(\text{supp } \mu_\nu = Y \).

Proof. 1. This follows from the fact that \(K(v) = M(\Sigma(v)) \).
2. This follows from Proposition 4.1.
2. This follows from Lemma D.
4. This is trivial.
5. Let \(w = \mu_\nu^* w_H^* \mu_\nu \). That \(L(\nu) = w^* L(\nu) = L(\nu)^* w \) implies
By Propositions 2.1 and 2.2, $EGY = XGY$ and $E = X$.

6. Similarly.
7. This follows from 5 and 6.
8. This is done in the proof of 2.

Lemma F. The following statements are equivalent

1. $v^\ast w = w^\ast v \neq w$
2. $K(v) \neq \{w\}$
3. $w \neq L(v)$
4. H is a proper closed normal subgroup in G (i.e., $N(H) = G$) so that $G = \bigcup \{g^nH : n \geq 1\}$ for some $g \in G - H$.

Proof. 1 \Rightarrow 2. This is trivial.

2 \Rightarrow 3. Suppose that $w = L(v)$. Then $K(v) = H(L(v)) = \{L(v)\}$. This is a contradiction. Hence $w \neq L(v)$.

3 \Rightarrow 1. Suppose that $w = w^\ast v = v^\ast w$. Then

$$w = w^\ast (1/n(v + v^2 + \cdots + v^n)) = 1/n(v + v^2 + \cdots + v^n)^\ast w$$

for all $n \geq 1$. In particular, $w = w^\ast L(v) = L(v)^\ast w = L(v)$.

1 \Rightarrow 4. There is a $g \in N(H) - H$ so that $w^\ast v = \mu_{\delta_g}(w^\ast H) \ast \mu_{\delta_g}$.

Let $H(w) \rightleftharpoons \beta H(w_H)$ be the mutually inverse continuous morphisms of Proposition 3.2. Then

$$w^\ast v^n = (w^\ast v)^n = (\beta \circ \alpha (w^\ast v))^n$$

$$= \beta((\alpha (w^\ast v))^n)$$

$$= \beta((w_H \ast \delta_{\varepsilon})^n)$$

$$= \beta(w_H \ast \delta_{\varepsilon}^n)$$

$$= \mu_{\delta_g}(w_H \ast \delta_{\varepsilon}^n) \ast \mu_{\delta_g}.$$

Furthermore, $\bigcup_{n \geq 1} (supp v^n supp w) = (\bigcup_{n \geq 1} supp v^n)(supp w)$ and

$$\bigcup supp v^n (supp w) \supseteq \bigcup supp v^n (supp w)$$

$$= S(supp w) = (XGY)(XHY) = XGY$$
ON THE GROUPS OF UNITS

(cf. 3.1, p. 55, [1] for the inclusion). This implies \(w^*v \) generates \(XGY \) and thus \(\alpha(w^*v) = w_H^*\delta_g \) generates \(G \), i.e., \(G = \bigcup\{g^*H; n \geq 1\} \). That \(N(H) = G \) follows easily.

4 \(\Rightarrow \) 2. Suppose \(K(v) = \{w\} \). Then \(w = L(v) \), in particular, \(H = G \).

Proposition 4.2. The following statements are equivalent:
1. \(H = G \).
2. \(L(v) = w \).
3. \(K(v) = \{w\} \).
4. \(w^*v = v^*w = w \).

Proposition 4.3. If \((v^*)_{n \geq 1} \) converges, then any statement of Proposition 4.2 holds. The converse holds on compact topological semigroups only.

Proof. The first statement is trivial. For the converse part, we refer to (p. 380, [2]).

Theorem (Rosenblatt). Let \(S \) be a compact topological semigroup generated by \(v \). Then \((v^*)_{n \geq 1} \) does not converge iff there is a proper closed normal subgroup \(H \) of \(G \) such that

\[
[X, H, Y] \supp v = [X, Hg, Y]
\]

for some \(g \in G - H \) with \(G = \bigcup\{g^*H; n \geq 1\} \).

Proof. It remains to show the "if" part which we refer to (Thm. 1, p. 152, [8]).

Acknowledgements. The author wishes to thank Drs. Karl H. Hofmann, John R. Liukkonen and Michael W. Mislove for many helpful suggestions.

References

Received August 9, 1974 and in revised form March 20, 1975.

NATIONAL TSING HUA UNIVERSITY,
TAIWAN 300
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waleed A. Al-Salam and A. Verma</td>
<td>A fractional Leibniz q-formula</td>
<td>1</td>
</tr>
<tr>
<td>Robert A. Bekes</td>
<td>Algebraically irreducible representations of $L_1(G)$</td>
<td>11</td>
</tr>
<tr>
<td>Thomas Theodore Bowman</td>
<td>Construction functors for topological semigroups</td>
<td>27</td>
</tr>
<tr>
<td>Stephen LaVern Campbell</td>
<td>Operator-valued inner functions analytic on the closed disc. II</td>
<td>37</td>
</tr>
<tr>
<td>Leonard Eliezer Dor and Edward Wilfred Odell, Jr.</td>
<td>Monotone bases in L_p</td>
<td>51</td>
</tr>
<tr>
<td>Yukiyoshi Ebihara, Mitsuhiro Nakao and Tokumori Nanbu</td>
<td>On the existence of global classical solution of initial-boundary value problem for $cmu - u^3 = f$</td>
<td>63</td>
</tr>
<tr>
<td>Y. Gordon</td>
<td>Unconditional Schauder decompositions of normed ideals of operators between some l_p-spaces</td>
<td>71</td>
</tr>
<tr>
<td>Gary Grefsrud</td>
<td>Oscillatory properties of solutions of certain nth order functional differential equations</td>
<td>83</td>
</tr>
<tr>
<td>Irvin Roy Hentzel</td>
<td>Generalized right alternative rings</td>
<td>95</td>
</tr>
<tr>
<td>Zensiro Goseki and Thomas Benny Rushing</td>
<td>Embeddings of shape classes of compacta in the trivial range</td>
<td>103</td>
</tr>
<tr>
<td>Emil Grosswald</td>
<td>Brownian motion and sets of multiplicity</td>
<td>111</td>
</tr>
<tr>
<td>Donald LaTorre</td>
<td>A construction of the idempotent-separating congruences on a bisimple orthodox semigroup</td>
<td>115</td>
</tr>
<tr>
<td>Pjek-Hwee Lee</td>
<td>On subrings of rings with involution</td>
<td>131</td>
</tr>
<tr>
<td>Marvin David Marcus and H. Minc</td>
<td>On two theorems of Frobenius</td>
<td>149</td>
</tr>
<tr>
<td>Michael Douglas Miller</td>
<td>On the lattice of normal subgroups of a direct product</td>
<td>153</td>
</tr>
<tr>
<td>Grattan Patrick Murphy</td>
<td>A metric basis characterization of Euclidean space</td>
<td>159</td>
</tr>
<tr>
<td>Roy Martin Rakestraw</td>
<td>A representation theorem for real convex functions</td>
<td>165</td>
</tr>
<tr>
<td>Louis Jackson Ratliff, Jr.</td>
<td>On Rees localities and H_1-local rings</td>
<td>169</td>
</tr>
<tr>
<td>Simeon Reich</td>
<td>Fixed point iterations of nonexpansive mappings</td>
<td>195</td>
</tr>
<tr>
<td>Domenico Rosa</td>
<td>B-complete and B_r-complete topological algebras</td>
<td>199</td>
</tr>
<tr>
<td>Walter Roth</td>
<td>Uniform approximation by elements of a cone of real-valued functions</td>
<td>209</td>
</tr>
<tr>
<td>Helmut R. Salzmann</td>
<td>Homogene kompakte projektive Ebenen</td>
<td>217</td>
</tr>
<tr>
<td>Jerrold Norman Siegel</td>
<td>On a space between BH and B_∞</td>
<td>235</td>
</tr>
<tr>
<td>Robert C. Sine</td>
<td>On local uniform mean convergence for Markov operators</td>
<td>247</td>
</tr>
<tr>
<td>James D. Stafney</td>
<td>Set approximation by lemniscates and the spectrum of an operator on an interpolation space</td>
<td>253</td>
</tr>
<tr>
<td>Árpád Száz</td>
<td>Convolution multipliers and distributions</td>
<td>267</td>
</tr>
<tr>
<td>Kalathoor Varadarajan</td>
<td>Span and stably trivial bundles</td>
<td>277</td>
</tr>
<tr>
<td>Robert Breckenridge Warfield, Jr.</td>
<td>Countably generated modules over commutative Artinian rings</td>
<td>289</td>
</tr>
<tr>
<td>John Yuan</td>
<td>On the groups of units in semigroups of probability measures</td>
<td>303</td>
</tr>
</tbody>
</table>