Vol. 61, No. 1, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Scattered compactification for N ∪{p}

M. Jayachandran and M. Rajagopalan

Vol. 61 (1975), No. 1, 161–171
Abstract

In this paper, it is shown that the scattered space N ∪{p} admits a scattered Hausdorff compactification for a large class of points p in βN N. This gives a partial solution to the following problem raised by Z. Semadeni in 1959: “Is there a scattered Hausdorff compactification for the space N ∪{p} where p is any point of βN N?” (See “Sur les ensembles clairsemés,” Rozprawy Matematyczne, 19 (1959).) The proofs are purely topological and the compactifications are easy to visualize.

Mathematical Subject Classification 2000
Primary: 54D35
Secondary: 54B15
Milestones
Received: 27 November 1974
Revised: 21 July 1975
Published: 1 November 1975
Authors
M. Jayachandran
M. Rajagopalan