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The general homogeneous first order linear differential
system is considered. The principal result concerns a repre-
sentation of the solution space as a direct sum of subspaces
such that on each summand upper and lower bounds for the
norms of the solutions can be given. The main tool in obtain-
ing this decomposition is the method of fixed points of integral
operators.

I. Introduction. Consider the homogeneous linear differential
system

(1) ') = A(t)x(t) —oo Kt < oo

where A(t) denotes an nxn complex matrix whose entries are assumed
only to be measurable functions of ¢ which are summable on bounded
intervals and it is understood that (1) holds almost everywhere. Here
z denotes a complex n-vector and for # = col (x,, -+ -, x,) We use ||z|| =
max,.;<, |&|; throughout.

In [4] the second author has shown that when A(¢) in (1) is con-
tinuous and satisfies a diagonal dominance condition the solution space
of (1) admits a type of exponential dichotomy. This result is also
discussed in the notes [2, pg. 126-135]. In [1] the first author has
established an analogous result for the linear difference equation

(2) a(m + 1) = Am + Dax(m) m=0, =1, ...

In §2 we give a more general and improved result for (1),
assuming only measurability for A(¢), and then use this informa-
tion to give estimates for upper and lower bounds for solutions to
(1). Our estimates are comparative in that they give norm comparisons
for solutions at any two values of the variable ¢{. These estimates
were obtained by Martin [5] in the continuous case and in a slightly
weaker form were announced by the second author in [3]. However,
the methods used here are completely different from those used in
[4] and [5] and seem more transparent.

In §4 we show, under the additional assumption that A(t) be
bounded, that our technique of proof is constructive in that all solutions
of (1) bounded on [0, ) arise as fixed points of a family of contraction
mappings. Finally, we indicate the appropriate analogy with our
work concerning (1) for showing that the bounded solutions of (2)
arise in a similar manner.
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2. Statement of main theorems. For A(t) = (a;;(t)) we define

r(t) = S last), 1<i<n.
j=1
i

Our first main theorem is a strengthened form of the second
author’s original theorem.

THEOREM 1. Let the entries of A(t) in (1) be measurable and
let a and B be measurable functions so that a(t) > B(t) almost every-
where. Let {1, ---, n} = I, U I, such that both the following hold on
the whole real line.

(i) Reay(t) + r(t) = B@t),iel,

(ii) Reay(t) — r(t) = a(®), i€ L.

Let k denote the cardinality of I, and L the solution space of (1).
Then there exist subspaces L~(B) and L~ (a) of L such that each of
the following holds:

(i) xzeL (B) iff for any t, = ¢,

21| < Il | exp | a)at

(ii) ze LY (a) off for any t, < &,
It = lla) exp | atat

(ii)) L = L7(B) @ L*(2)
(iv) dim L~(B) = k.

Using Theorem 1 we shall establish the estimates for upper and
lower bounds of solutions of (1) given by the following.

THEOREM 2. Let A(t) in (1) be measurable and let L denote
the solution space of (). For each 1 =1, ---, n let

ci(t) = Re ay(t) — ri(t) ,
di(t) = Re a.(t) + r:(2) .

Suppose {1, ---, n} =Uj=. I; where if

a,(t) = min {c(t)|i e I;}
Bi(t) = max {d.(¢)|i e I;}

then Bit) < a;.,(t) holds almost everywhere, 1’ < j < s — 1. Finally
let n; denote the number of indicies 1 with i€ l;,j=1,--+,s. Then
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there ewist subspaces L; of L,j=1, .-+ s, such that each of the
following holds:
(i) zeL; off whenever t, < i,

12

lee)lexp | s < 1ot
= st !l exp | "su(e)ds

(11) L=LQLO---DL,
(iii) diij:’I’bj, j:l,...,s.

3. Proofs of the main theorems. Let K denote the complex
field and let

S ={col(x, -+, 2, )e K"|w; =0 if je I}
where I, is as in the statement of Theorem 1. Let P be the projection
in &(K") defined by P(x) = col (ex,, ---, &,2,) if z =col(z, ---, 2,)
_(1if jel,
where €; = { iz jel,
The proof of Theorem 1 uses the following preliminaries.

PROPOSITION 1. Let the entries of A(t) be measurable and assume
that both the following hold for all t = O:

(3) (i) Re au(t) + r:(t) = —0(8), te I,
(4) (i) Re a,(t) — r(t) =z 6(8), ie L,

where 0(t) is measurable, 0(t) > 0 a.e., and rﬁ(s)ds = oo, Then for

each be S there exists a unique solution x o} (1) such that both the
following hold:
(i) P0)=>

(iD) sl = lla)lexp — |"d(s)ds
whenever 0 < t, < t,.

Proof. We define two addends of A(f) by
(5) D(t) = diag (ay(t), -+, @..(¢)), and
(6) N(t) = A®) — D)

and four additional matrix functions by
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(7) V.(t) = diag (“/1 exp S:au(s)ds, vee, Y, €Xp S:a,,m(s)ds)

_(1if jel
where 7; = {0 i jeI:,

(8) Vi(t) = diag (’)’1 exp S:an(s)ds, cee, 7, eXp S:a,m(s)ds>

_{0if jeI,
where 7; = {1 if jel,

(9) W) = diag (71 exp — S:au(s)ds, Cee, Y, eXp — S:a,,,,(s)ds)

_(lif jelI,
Where 7; = iO if jel, and

(10) Wy(t) = diag (71 exp — Stau(s)ds, eee, Y, €Xp — Sta,,,,(s)ds)
0 0

where 7, = {3 i 167

From (5)-(10) we observe that

11) LZ&YEL = D)V, k=12, and
(12) VO WE) + V&) Wilt) = I = Identity .

For each fixed be S we define the set M, by
M, = {x: [0, «©) — K"|z is continuous and
la(t)|| < |1b]| exp — | 'a(s)ds, ¢ = o}
and the mapping T, on M, by T,(x) = x* where

w* () = Vl(t)[b + Sth(s)N(s)x(s)ds]
(13) o
—V.0) S W(s)N(s)x(s)ds .

For i1¢ I, we have from (7), (9), and (13) that

n

x¥ () = b,exp S:a”(s)ds + S:<exp S:a“(a)do> Z,l a:;(8)x;(s)ds .

Since x e M,, (3) and the above give
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@t = Ilbllexp | = @Gs) + rsNas
+ {(ex0 = [00) + ri@)d0) 35 lasts) 12611 o
= (10 exp — | 3(s)ds| exp Sr(s);s
+ g:(exp _ g:fri(a)d0>ri(s)ds]

< [|b] exp — S:E(s)ds[exp S — r(s)ds + exp S — r(0)do

t
0

s=1%
s

=0

— |Ib]exp — SZa(s)dS .

Similarly, ¢¢ I, implies

x¥(t) = ~Sm(exp — Sian (0)d0>jZ: a,;(s)x;(s)ds ,

L

t

S0
@t = | (exp = [000) + 000} 01 (exp — | 2(0o)as
= (1liexp — | 36)ds) | (exo — | ¢@)
+ (o) do)r(s) + a(s))ds = ||b]] exp — S:é(s)ds :

Thus T,(M,) & M,, and the set T,(M,) is uniformly bounded. From
the equality

B(t) — 27(t) = [Vilt) ~ Vi@ b + S Wi(s)N(s)x(s)ds]
V) S W(s)N(s)x(s)ds
— [Vi(t) ~ Vi) | Wio) Neha(e)ds
+ Vi) g Wi(s) N(s)a(s)ds

it follows that the restriction of T,(M,) to any compact interval is
equicontinuous. Since T} is clearly continuous we have by the Schauder-
Tychonoff theorem the existence of at least one xz, € M, so that Ty(z,) =
x¥ = x,. Rather than prove directly that T, has a unique fixed point
in M, we shall prove the slightly stronger assertion that there is at
most one solution x,(t) of (1) such that Tyx, = x, and ||2,{)]|—0 as
t—> co. (To see that this is stronger than uniqueness recall that since
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ra(s)ds = 4 oo, m€ M,— ||a(t)]| — 0 as t — oo.)
[

We therefore assume that x and y are two distinct solutions of
(1) such that Tyx =z, T,y = ¥, and that ||2@)||—0 and ||y(t)|—0
as t— oo.

Let

o, y) = Sup [|2(t) — y(t)]] > 0.

Since ||2(t) — y(t)]| — 0 as t — o there exists a ¢, such that o(z, y) =
[lz(t,) — y(@)||. For i€ I, we have

le(t) — vt | = aF ) — yiE)]
= §:1<eXp - S?(m(a) + 5(a)>daj§:‘{ |@:(3) ] |24(s) — yi(s)|ds

ficald

= po(z, ¥) S:l(exp — S:l('ri(a) + b‘(a))da)r,-(s)ds
= o, 9) | (exp = ["0s0) + 3@))r(9) + 3(5))ds

= p(@, 9 1 — exp — | (o) + 2(o))do |
< o(@, y)-
Similarly if 4 ¢ I, then
@t) = vdt)| = |2 (t) — vr(e)]
= [ (ex0 = [ 40) + 200130 ) 30 12406) = (o) ds

= 0@, 1) | (exp — | o) + o@)do)r (s)ds
< 0@, 9 | (ex0 = | @) + 0(0)do)rs) + o)
= p(x’ y)'
We have therefore arrived at the contradiction
p(x: y) = max |xi(t1) - yi(tl)l < p(x; y) .

Hence there can exist at most one solution of T,z = x with ||z(¢)||— 0
as t—> oo,
We next observe that for any xze M,

L @) = DOV + | WeNoEs |

- DO V) | WA N@a(E)ds
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+ [Vi@®) Wi(8) + Vu(t) W)IN(E)2(t)
= D@)x*@) + N(t)x(t)
so the fixed point x, satisfies
xo(8) = A()xo(?) -

Now note, for

V(t) = diag <exp S:an(s)ds, .-, €XD S:am(s)ds> ,
that
V't) =D@) V), V(0) =1
so by the variation of parameters formula any solution of
@'(t) = D@)x(t) + f()

must satisfy
2(t) = V()x(0) + V(©) S:V"‘(s)f(s)ds :
Thus, for 7¢I,

15) @) = oxp |'au@as 2.0 + | (exp — {‘aut0)0)i(s)as
so if x(t) is to be a solution of (1) with |[«(¢)]]— 0 as ¢— oo then

lim

t—o0

2:(0) + S:(exp —_ S:aii(o)dcf) fi(s)ds[ =0

or

(16) 2,(0) = — Sj(exp — S:aﬁ(a)da))fi(s)ds.

(15) and (16) now give that

an  a() = — (exp S:a”(s)ds> S:e(exp —~ S:a“(o)da>fi(s)ds.

Requiring that P(x(0)) = b gives for ¢ ¢ I,, that

(18) x,(t) = exp S:a“(s)dsl:bi + S:<exp — g:a,n(o)d0> fi(s)ds] .
(17) and (18) now give that

w(t) = Vl(t)[b + S:Wl(s)f(s)ds] — V) S:oWz(s)f(s)ds .

35
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Letting f(s) = N(s)xz(s) from our above calculations we conclude that
any solution of (1) satisfying P(z(0)) = b and ||z(t)||—0 as t—
satisfies T,z = . Thus to complete the proof of the proposition we
need only show that the uniqgue fixed point x, of T, on M, satisfies
the indicated inequality.

Fix t, = 0. For ¢t = 0 define B(t) = A(t -+ t,) and let B(t) = (¢ + ¢).
Then for B(t) = (b;;(t))

Re b,i(t) + 29; [bii(0)] = —pB(), 1€ L,
and
Re b.,(¢) — ;.1 10::(t) | = B(®), i€ L .

Thus B(t) satisfies the same hypotheses with respect to A(¢f) as does
A(t) with respect to d(¢). Let ¢ = P(x,(t))€S. By what we have
already proved there exists a unique x, € M, so that

z1(t) = B)x,(¢), P((0)) = ¢ .
Since z,(t)e M, we have that
t
(19) a(@) = [[ P, ()| exp — SOB(S)ds, t=0.
Also we have that
xy(t + t) = B(t)x(t +¢,),t =0,
Pt + tl))‘ = P(ot)) = ¢, and
t=0
[|2,(t + t)|]|—> 0 as t— co .
Threfore, from our above uniqueness result applied to B(t) we conclude
that z(t + t) = x,(t).
Thus (19) gives that
t
lan(t + 1| = (| Pae) | exp — | peds, ¢20
80
@) = || Pt exp — {0sds, 0=tst,
t
from which the inequality in the statement of the proposition follows.
Our second preliminary is a direct generalization of the second

author’s original theorem to the case where A(t) is measurable and
0(t) > 0 is no longer assumed to be constant on (—oo, ).
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PROPOSITION 2. Let A(t) in (1) satisfy the hypotheses of Prop-
osition 1 on the whole real line except for the requirement that
S 0(s)ds = oo. Then there exist vector spaces L~ and L't of solutions

OJO” (1) such that each of the following holds:
(i) xze L™ iff whenever —o < t, <t, << oo

(20) 2t | = l|2()]| exp — | “2(s)ds
(ii) ze L™ iff whenever —o <t, <t < o

(21) =@l 2 llat) | exp | “2(s)ds

(iii) dim (L") =k
(v) L=L @L"

Proof. First let us assume as in Proposition 1 that | d(s)ds = .
Fix f,€(— o, o) and let B() = A(t + t,), 8() = (¢ + 1), t€[0, =).
Then B(¢) satisfies the same conditions with respect to B(t) as does
A(t) with respect to 6(t). Let 2 be any solution of (1) which satisfies
inequality (20) for 0 =< ¢, < ¢,. By Proposition 1 there exists a unique
solution ¥ of %'(t) = B(t)y(t) so that P(y(0)) = P(x(t,)) € S and

Iy < lly@)lexp — | "s6)ds, 0=t <t

If 2(t) = x(t, + t) then 2'(t) = B(t)z(t), P(2(0)) = P(x(¢,)) = P(y(0)), and
llz@)| — 0

Thus by the uniqueness of Proposition 1 «(t, + ) = 2(¢) = y(t), t € [0,
o), SO

[[2(¢) ]| = [[2(t,)]| exp — S:zﬁ(s)ds , 05t <t,.

holds. Hence any solution of (1) which satisfies (20) for 0 ¢, = ¢,
does s0 for —oo < ¢, £ t,.

Now for each be S let y, denote the unique solution of 2'(f) =
A()x(t), t e [0, ), whose existence is established by Proposition 1 and
let x, denote the solution of z'(f) = A(t)x(t), t € (—, o) determined by
the initial condition x,(0) = %,(0). By our above observations z, satisfies
(20) on the whole real line. Let L™ = {x,]be S}. By the uniqueness
of Proposition 1, formula (13), and the fact that dim S = k it follows
that L~ is a vector space of dimension k.

Now let C(t) = —A(—t),t€(—o0, «). Then there are n — k in-
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tegers ¢ € I, such that
Re ¢;,(t) + ; le @) = —o0(—t) <0

and k integers ¢ € I, so that
Rec,(t) — ;‘. le:i(®)| = 0(—¢) > 0.

Hence, by our preceding argument there exists an »—k& dimensional
vector space R~ of solutions of y'(¢) = C(t)y(t) such that

W@l < 119e) | exp — | o(—o)ds, —= <t =t < o .

Let L™ = {z|z(@) = y(—t),ye R"}. Then xe L* implies that 2'(f) =
A(t)x(t) and that

latll 2 1) | exp | aes , —o <t < oo

which establishes (21).

Since g 5(s)ds > 0 it follows that L~ N L* = {0}. Since dim L* =
dim B~ =% — k we have that L = L~ L*.

We now remove the restriction that S 0(s)ds = . For each in-
teger m = 1,2, ... define the matrix £, i)y

E, ~d1ag< 1 & ...,_s_”>
m m m

where
{——1 if jel,
& = . .
1 if jel,
and let A,(t) = A(t) + E,. Then for ¢,(t) = d(¢) + 1/m we have that
S 0.(s)ds = o so our preceding argument applies to the system
0

2'(t) = A, {)x() .

Denoting the solution space of this system by L, we have the corres-
ponding decomposition L, = L, @ L;.
For each integer m we define a vector space V,, by

= {w(0) [z e Ly} .

Let {¢in, -+, C;w} be a basis for V,, which is orthonormal with respect
to the complex inner product on K". By the compactness of the unit
ball in K™ there exists a sequence of integers {m;} and vectors ¢, - - -,
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¢, such that lim,.,, Cim; = Cy 1L S 15 k. These vectors are orthonormal
and hence independent. Let ¥V~ be the k-dimensional space spanned
by ¢, -+, ¢, and let

L~ = {xe L|x(0)e V")

(where L denotes the solution space of (1) as before). Then for ze
L~ there exist secalers a,, --+, a, such that

x(0) = ﬁ] ac; .
Let x;(t) denote the solution of

2(t) = AnyE)alt)
such that

k
z;(0) = Zl, Q; Cim »

Then lim;.. 2;(0) = 2(0) and by what we have already proved =z;
satisfies the inequality

Izl =zt llexp — [(56) + )ds, o< ¢,
1 m;
Thus, since lim;_., A, (f) = A(f) uniformly on (— oo, ) it follows that
z;(t) — x(t) uniformly on compact intervals as j— <, and that
Izl < o) llexp — {"2eds , =t

This establishes the existence of L~ in the statement of Proposition
1. The existence of L* follows in a similar fashion. The proof that
L™ L~ = {0} follows as before.

Proof of Theorem 1. For each te(—oo, =) let
22) () = 1/2)(a@) + B()) and @) = (1/2)(a@) — B(E) > 0.
Define the matrix B(f) by
B(t) = A(t) — 7()I = (b;;(t)) , te€(—oo, ).
Then
Re b,;(t) + ;Ibij(t)] = -p@®), tel,

and
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Rebd.i(t) — 3, 1b6.40)| =z 0() , i€l
JF

hold almost everywhere. Let M denote the solution space of y'(f) =
B@)y(t), t € (— oo, ). Then by Proposition 2 there exist subspaces
M~ and M* of M so that each of the following holds:

(i) ye M iff whenever — <t ¢, <

Iyl = Iy exp — | "ot)at

(ii) ye M?* iff whenever —oo < t, < ¢, < oo

lv®l| 2 v exp | ot)at
(iii) dm M =k
(ivy M=M & M.
Now Y is a solution of ¥'(t) = B(t)y(t) if and only if y(t) =
x(t) exp — Sov(s)ds for some solution of (1). Therefore, if we set
L7(®) = {slo@® = y(t) exp | 7(s)ds, y e I}
and
L%@::&pﬂ):ymemﬂbgm&yeMﬂ

the conclusions of Theorem 1 follow from those above and (22).

Proof of Theorem 2. Without loss of generality we may assume
that

a(t) < Bit) < ay(t) < + -+ < a,(t) < Bi(t)

holds almost everywhere. Let j be any integer so that 1 <j <s.
Then by Theorem 1 there exist subspaces L(8;) and L*(a;) of L
such that each of the following holds:

(i) xze L (B;) implies whenever —oo < ¢, < ¢, < o that

(23) (e 1] < l1z(e) 1| exp | 8.t)at
(ii) =z e L*(«;) implies whenever —oe < ¢, <, < oo that
(24 et = lla(e) |l exp | ")t

(i) dim L (8) = m + ma + -+ + ny
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@iv) dimL"(@;)=n— (0, + 0y + -+ + n;_y).

Let L; =L (8;)N L*(;). Then dimJ; =n; and if xeL; x
satisfies the inequality in the statement of Theorem 1 by (23) and
(24). Since dimL =n,+ --- + n, = n it follows that dim L; = n;
and that

L=LLO---DL,.

4. Applications. As our first application of the preceding
techniques of proof we point out that mapping T, actually gives an
iterative scheme for computing the bounded solutions of (1) on [0, )
when A(f) satisfies stronger conditions than those of Theorem 1.

THEOREM 3. Let A(t) be as in Theorem 1. In addition let A(t)
be bounded and assume the existence of a fixed number 6 > 0 so that
0(t) = 0 > 0 holds for all te[0, ). Then to each be S corresponds
¢ unique bounded solution x, of

(25) z'(t) = A@)x(), te [0, =)
which 1s given by
2, = lim T7(x)

where x is any element of M,. Furthermore, all solutions of (25)
bounded on [0, «) arise in this manner.

Proof. Since A(t) is bounded and () = 6 > 0 there exists a
constant ¥ with 0 < 7 < 1 such that

ri(t) < _79@)
1—7
holds for all t€(— o, ) and all 1 £ 7 < n. Thus
r@) =7t +0@), — o <t< o, 1950
Referring to the uniqueness proof of Proposition 1 we see that
if Ty = «*, T,y = y* for x, y€ M, then for 1¢ I,

270) = 7@)] = o, 1| (exp ~ | (ri(0) + 8@ ) (5)ds
=70, 1) | (exp — | (o) + 30N (o) + d(sN)ds
=70, ¥) .

Similarly, for 7€ I, we see that
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j5®) — y2®)] S 70, 1) | (exp — {@0) + 3@)do ) (5) + 3
= vo(x, ¥) .
Hence
sup || Tyx(t) — Toy(@) |l = 7 sup [l2(t) — y@|
so under our present hypotheses T, is a contraction mapping on M,.

Theorem 3 now follows from our preceding work and the contraction
mapping principle.

As our second application we indicate the analogues of our pre-
ceding technique for the problem of determining the bounded solutions
of the linear difference equation

(26) z(m + 1) = A(m + L)x(m) m=20,12 ...
THEOREM 4. Let {1, ---, n} = I, U I,, let k denote the cardinality
of I, and assume that both the following hold for some o< (0, 1)
and all m =0,1,2, ---
(i) Ja(m)| +7r(m)=1—-0<1,iel
(ii) lagym)| —rm)=1+0d>1,4iel,.
Let S and M, be S, be as before. Then to each be S corresponds
a unigque bounded solution of (26) which is the fixed point of the
contraction mapping F, defined on M, by (27). Furthermore, every
bounded solution of (26) arises in this manner.
Indication of proof. For each m = 0,1, 2, --. we define
D(m) = diag (a.(m), -+, @uu(m))
and
N(m) = A(m) — D(m) .
Let
Vl(m) = dlag (fl(m), Sty fn(m))

where

M lau@)| it jel,
0 if jel,

film) =

and define V,(m), Wi(m), and W,(m) by analogy between the above
and (8)-(10).
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Let S be as before and for be S let
M, = {z: Z* — K" |||z(m)|| < |[b]|Q — 0)", me Z}
where Z* =1{0,1,2, ..-.}. Define F, on M, by F,x = y where

@n) yim) = Vim)[b + EWENGR() | - Viim) 3, W) Ne() -

The proof then follows by direct analogy with our preceding work
for (1).
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