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We introduce a special type of semigroup whose properties
are abstracted from the theory of cardinal numbers under
addition. A very general theorem about the behavior of
universal Horn sentences in such semigroups is obtained and
then applied to isols, recursive equivalence types, cardinal
numbers, and Dedekind cardinals, the last two being in set
theory without the axiom of choice.

1* Introduction* In this paper we introduce a special kind of
semigroup which is related to certain cardinal like structures under
a single binary operation. We call them Tar ski semigroups (TSGs)
and discuss their general properties in § 2. There we show that a
canonical partial order can be induced on a TSG and that every TSG
can be canonically embedded in a torsion free Abelian group (TFAG).
In § 3 we give necessary and sufficient conditions that every universal
Horn sentence which holds in the nonnegative integers under addition
also holds in a TSG. We also do the same for the positive integers
under multiplication. Our proofs rely heavily on vector space methods.
Section 4 applies these results to definite semigroups constructed from
cardinal numbers and recursive equivalence types. As a specific
example consider the isols Λ. We show that although (Λ, + , 0) and
(Λ — {0}, , 1) share the same universal Horn sentences, there is an
AE Horn sentence which distinguishes them. Uniformity is again
obtained by showing that their canonical TFAGs have the same first
order theory which is identical to that of the positive rationale under
multiplication. The same results are obtained for the Dedekind
cardinals. We find these results surprising on two counts. First, we
have a structure built from the integers, whose first order theory is
the same as that of a corresponding structure built from the isols.
Usually it is only the universal Horn sentences which remain unchanged.
Second, we have a structure built from the Dedekind cardinals whose
first order theory is complete. In most other constructions incom-
pleteness is the rule. Section 4 concludes with the result of A.
Nerode (subsequently obtained by the author), that nA ^ nB-+ A ^ B
where n is a positive integer and A, B are recursive equivalence
types. This result is not isolated, but fits into our general semigroup
analysis.

2* Semigroups. Let £*= (S, +, 0) be a groupoid, that is S is a
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nonempty set, + is a binary operation on S, and 0 is a distinguished
element of S. If ω = the nonnegative integers, n e ω, and x e S we
define a scalar product nx by the recursion Ox = 0 and (n + 1)# —
(nx) + x. 6^ is called a Tar ski semigroup (TSG) if it satisfies the
universal closures of (1) thru (6) below.

( 1 ) x + (y + z) = (x +.y) + z .

( 2 ) x+0=x=0+x.

( 3 ) x + y = y + x .

( 4 ) x + y = 0 ># = 0 .

( 5 ) x + z = y + z >χ = y.

(6 ) nx = ny > x — y for 0 < n < co .

Such structures are meant to reflect some of the algebraic proper-
ties of cardinal numbers and recursive equivalence types. Let Γ =
the cardinals, Δ — the Dedekind cardinals, Ω = the recursive equivalence
types, and A = the isols. If we consider each of these structures with
its canonical + and 0, then all satisfy (1) thru (4), (5) is the defining
condition for both Δ and A, Dekker-Myhill have show that (6) holds
in A (cf. [2]), Friedberg has shown that (6) holds in Ω (cf. [6]), and
Bernstein, Sierpinski, and Tarski have all shown that (6) holds in Γ
(a fortiori in A as a substructure of Γ) (cf. [1], [11], and [14]).

In Sf we define the canonical inequality xt^y ^DF (lz)y = x + z.
Then every TSG satisfies the universal closures of (7.1) thru (7.11)
below.

(7.1) 0 ^ x .

(7.2) x ^ x .

(7.3) x <Ξ y A y ^ x > x = y .

(7.4) x <Ξ y A y ^ z > x ^ z .

(7.5) x <: y > x + z ^y + z .

(7.6) x + z<^y + z > x<,y .

(7.7) (m + w)# = (m#) + (nx) .

(7.8) w(a? + y) = (wa?) +

(7.9) m(nx) =

(7.10) m ^ n •
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(7.11) x ^ y > nx ^ ny .

(7.1) thru (7.11) with the exceptions of (7.3) and (7.6) can be
proved using only (1) thru (3), and (7.6) uses (5) in an obvious way.
To prove (7.3) note that if x ^ yAy ^ x then there exist u, v such
that x + n = y and y + v = x so that x + (u + v) = (x + u) + v =
^ + v = # = a + 0 by (1) and (2). Then u + v = 0 by (5), % = 0 by
(4), and a? = y by (2). This reflects the fact that (7.3), a Cantor-
Bernstein like theorem, is easy to prove for Δ and Λ, but consider-
ably harder to prove for Γ and Ω (which do not satisfy (5)). Let
us consider

( 8) nx ^ ny > x ^ y for 0 < n < ω

and ask whether (8) follows from (6) in the same trivial way that
(7.6) follows from (5). The answer is no, and in section 4 we give
some important examples of TSGs which do not satisfy (8). Thus
(8) was not added to our definition of a TSG in order to include these
examples in our study.

Next we embed our TSG Sf into a torsion free Abelian group
(TFAG) ^ * . In &> define (x, y) - (u, v) =DFx + v = y + u. Thus
Sf will satisfy the universal closures of (9.1) thru (9.11) below.

(9.1) (x, V) - (a?, V)

(9.2) (x, y) - (u, v) > (u, v) - (x, y) .

(9.3) (x, y) - (u, v) A (u, v) - (α, b) > (x, y) - (α, b) .

An algebraic structure is imposed on these pairs by defining (x, y) +
(u, v) =DF (x + u,y + v). Then

(9.4) ((a?, y) + (u, v)) + (α, b) = (x, y) + ((u, v) + (α, δ)) .

(9.5) (x, y) + (u, v) = (w, v) + (x, y) .

(9.6) (x, y) - (x', »') > (x9 y) + (μ, v) - (a?', y') + (u, v) .

(9.7) (x, a?) - (0, 0) .

(9.8) (a?, ») + (0, 0) = (a?, 2/) .

(9.9) {x, y) + (y, x) ~ (0, 0) .

We define a scalar product n(x, y) on pairs in exactly the same way
that we defined a similar product in &> Then

(9.10) n{x, y) = (nx, ny) .

(9.11) n(x, y) - (0, 0) > (a?, y) - (0, 0) for 0 < n < ω .
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(9.1) thru (9.11) with the exceptions of (9.3) and (9.11) can be
proved using only (1) thru (3), and (9.11) uses (6) in an obvious way.
It is interesting to note that (7.3) and (9.3) both of which appear early
in their respective constructions, seem to require (5).

Now define [x, y] =DF {(u, v) \ (u, v) ~ (x, y)}, S* =DF {[x, y]x, y e S),
[x, v]+*[u, v] = DF[x + u,y + v], 0* =Dr[0, 0], and Sf* =Dr(S*9 + *, 0*).
Using (9.1) thru (9.11) we can show that +* and 0* are well defined
and that ^ * is a TFAG. Next we define a function h:S->S* by
h(x) = DF [x, 0] and note that

(10.1) [s,0] = [y,0] >x = y,

(10.2) x + y = z = [x, 0] + * [y, 0] = [z, 0] ,

which together imply that h is an embedding of Sf into ^ * . Thus,
w.l.g., we shall assume that S f iS* , the restriction of +* to S is
+ , and that 0 = 0*.

Although the material of this section is quite routine, we have
run thru it again in order to emphasize the importance of the Dedekind
property (5).

3* Horn sentences* We introduce a first order language L in
order to discuss the elementary properties of TSGs and TFAGs. The
primitive symbols of L consist of an infinite list of individual variables
0o, vif > a binary predicate = denoting equality, a binary functor +
denoting addition, and an individual constant 0 denoting the identity
element. Terms, formulas, sentences, and so forth are taken from
current usage. A system of equations is the conjunction of some
finite number of atomic formulas of L. A universal Horn sentence
is the universal closure of a formula of the form s~+s' where s and
s' are systems of equations. Strictly speaking, a universal Horn
sentence should have a conjunction of implications of the form s —> s'
for its matrix, however since our prefix is universal we lose no
generality by requiring that our matrix consist of a single conjunct.

We first consider the question of what universal Horn sentences
are satisfied in a given TSG S^= (S, +, 0). Let ω+ be the TSG
(ω, +, 0). Sf is said to satisfy the Tar ski condition" (TC+) if every
system of equations in the variables vOf , vk having a solution
xOf , xk in S^ with x0 Φ 0 also has a solution x'o, , x'k in ω+ with
x[ φ 0. £f is said to have the Horn transfer property+ (HTP+) if
every universal Horn sentence which is true in ω+ is also true in SZ
Our first important result is

THEOREM 1. A TSG £f has the HTP+ if and only if it satisfies
the TC+.
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Proof. In one direction our theorem is quite easy. Assume that
Sf has the HTP+ and that s is a system of equations in the variables
Vo, •> VΛ If s has no solution x'θ9 , xk in ω+ with x[ Φ 0 then

(11) (VVo, •• ,vk)(s >vo = O)

is true in ω+ and hence by HTP+ also true in £f. But then s can
have no solution x09 , xk in ^ with x0 Φ 0. For the converse
assume that Sf satisfies the TC+, that s and s' are systems of equa-
tions in the variables v09 , vk and that 21 is a universal Horn
sentence which is true in ω+ and has the form

(12) (Yv09 •• ,^)(s > s ' ) .

The following terminology is convenient. A formula is ΎSG-valid if
its universal closure is true in every TSG. Two formulas are TSG-
equivalent if their biconditional is TSG-valid. Thus for every term
t which appears in §1 we can find a term t' of the form Σ<£* w^Vi,
where each nt e ω, such that t = ί' is TSG-valid.

We must show that SC is true in £t This is done by an induction
on the number of variables k + 1 which appear in St. For k = 0 every
equation is TSG-equivalent to one of the form mv0 = nv0. lί m — n
this is TSG-equivalent to 0 = 0, and if mΦ n, say m> n, it is TSG-
equivalent to (m — n)v0 = 0 by (5), and to v0 = 0 by either (4) or (6).
Since 2t is true in ω+ the only case ruled out is where s is replaced
by 0 = 0 and s' by v0 = 0. But then 31 is clearly true in S<

Before going on to the inductive step let us put our problem
into vector space notation. Consider a TSG £f as embedded into
£f*. Since subtraction is possible in S^*9 for every equation e which
appears in SI we can find a term t of the form 'Σnzk fM?,, where each
%e(ω+)*, such that e is true in S^ if and only if t = 0 is true in
^ * when the vt are assigned values in S. Note that we have
identified the group (ω+)* with its underlying domain, and shall do
so in other situations when it is inconvenient to introduce further
notation. Conversely every such equation t = 0 can be given a
meaning in S^ by separating t into its positive and negative parts
and then transposing. Thus for every system of equations s we can
find a matrix A, whose entries belongs to (ω+)*, such that s is TSG-
equivalent to Av = 0. In Av = 0 we interpret v = (v09 , vk) as a
vector, Av as ordinary matrix multiplication, and 0 as the zero vector,
where possibly some of the computation is going on in ^ * . Combining
these results will give us matrices A and B such that for any TSG
Sf9 the truth of (12) in Sf is equivalent to the truth in &> of

(13) (Vv)(Av = 0 > Bv = 0) .
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W.l.g. assume (12) is already in the form given by (13).
Now assume k > 0 and that we have established the HTP+ for

sentences with fewer than k + 1 variables. Two cases arise.

Case 1. There is a vector y, all components of which belong to
w — {0}, such that Ay = 0. We claim that 21 is true in (ω+)*. Let
x be any k + 1-tuple of rational integers such that Ax = 0. Choose
positive n such that x + ny is positive in all components. Then
A(x + ny) = (Ax) + n(Ay) — 0 and hence since (13) is true in ω+, both
£(# + ny) = 0 and £# = 0. But 5(x + ny) = (£#) + w(l?2/) = 5x = 0.
Thus SI holds in (α>+)*. Next we claim that 2t is true in the field of
rational numbers & = (Q, +, , 0, 1). Consider a vector x = (a?0, •••,
a?Λ) where each #έ has the form yjzt with yt e (ω+)* and ^ e ω - {0}.
W.l.g. we may assume that the zt have a common positive value d.
Let y = (yOf , yk) and assume that Ax = 0. Then d~\Ay) — A(d~1y) =
A# = 0 and hence A?/ = 0. Since (13) is true in {ω+)* we have By = 0
and hence Ita = Bid^y) = d~ι{By) = 0. Thus St is true in ^ .

We can interpret the truth of (13) in & in the following geo-
metrical terms. In the vector space °Γ consisting of all k + 1-tuples
of rational numbers every vector which is perpendicular to each row
of A is also perpendicular to each row of B. We claim that RB, the
subspace of T* spanned by the rows of B, is contained in RA, the
subspace of Y* spanned by the rows of A. For any subspace ^ of
T let ^ 1 be the orthogonal complement of ^ in T. Then by
hypothesis (RA)

L £ (RB)
L so that {RB)

LL £ (RA)11- But ^ λ l = <%f
which proves our claim. Denote the rows of A by aό, j < n, and
the rows of B by bi9 i < m. Then there exist rational numbers rtJ

such that bi — Σi<% ̂ a^s- By removing a positive common denominator
d if necessary, we can find a matrix D, the entries of which are
rational integers, such that

(14) dB = DA,

the product on the left (right) being respectively scalar (matrix)
multiplication.

We now show that 21 is true in SK Let a; be a vector with
components from S such that Ax = 0. Then d(Bx) — D(Ax) = 0 by
(14). In general BxeS*, but since ^ * is torsion free we get Bx = 0.
Thus 2t is true in St Notice that up to now we have used neither
our inductive hypothesis nor the TC+. However they will be used
in

Case 2. There is no vector yf all entries of which belong to
ω — {0}, such that Ay = 0. Suppose that for each i ^ k there is a
vector yi such that each component of yt belongs to co, the i-th one
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being positive, and Ayt = 0. Then y = Σ ^ Vt is positive in all
components and Ay = 0, contradicting the fact that we are in Case 2.
Thus for some j <; k (Vv)(Av = 0 --> i;, = 0) is true in ω+. By renaming
variables we may assume that j = 0 so that by TC+

(15) {Vv)(Av = 0 > v0 = 0)

is also true in S< Let A' and 5 ' be the matrices obtained from A
and B respectively by deleting their first columns. Then it is easy
to see that the truth of (13) and (15) in ω+ implies the truth of

(16) (Vv')(A'v* = 0 > B'v' = 0)

in ω+ where v' = (vlf , vk). Now let x = (x09 - -, xk) be a vector
with components from S such that Ax = 0. Then xQ — 0 by (15) and
hence A'x' = 0 where x' = (a?!, , %). By our inductive hypothesis
(16) is true in &* and hence B'x' = 0. Then Bx = 0 since a?0 = 0.
Thus SC is true in Sf.

An easy consequence of Theorem 1 is

COROLLARY 1. A universal Horn sentence is true in {ω+)* if
and only if it is true in every TFAG.

Proof. Suppose St is a universal Horn sentence that is true in
{ω+y. By elementary TFAG properties SI can be brought into the
form (13) and as in Case 1 of the preceding proof (14) is true. Then
as in the last paragraph of Case 1 we can show that SI is true in
every TFAG. The converse is immediate.

Let ωx be the TSG (α> - {0}, .,1). Sf is said to satisfy the
Tarski condition" (TCX) if every system of equations in the variables
vOf , vk having a solution xOf , xk in £f with x0 Φ 0 also has a
solution xΌ, , x\ in ωx with X[Φ 1. Sf is said to have the Horn
transfer propertyx (HTPX) if every universal Horn sentence which
is true in ωx is also true in S< The following lemma is so well
known that we find it difficult to find a source.

LEMMA 1. A Horn sentence is true in ω+ if and only if it is
true in cox.

Proof. Let pQ, pl9 be the primes in increasing order and let
Πω+ be the countable weak direct product of co+. Consider the
function h which maps each x e ω — {0} of the form Πi<ωPi* into an
infinite sequence consisting of the exponents of the p/s in this prime
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power representation of x. Then h is an isomorphism oί ωx onto
Πω+. Moreover every Horn sentence is true in Πω+ if and only if
it is true in ω+.

COROLLARY 2. A TSG &* has the HTPX if and only if it satisfies
the TCX.

Proof. By Lemma 1 Sf has the HTPX if and only if it has the
HTP+. At the beginning of the proof of Theorem 1 we showed that
Sf satisfies the TC+ if and only if every Horn sentence of the form
(11) which is true in ω+ is also true in S< The same proof also gives
this result for the TCX (replacing ω+ by ωx). Thus by Lemma 1 S^
satisfies the TCX if and only if it satisfies the TC+.

COROLLARY 3. A universal Horn sentence is true in (ωx)* if
and only if it is true in every TFAG.

Proof. (ωx)* is isomorphic to Π(ω+)*.

4* Isolic structures* Let Λ+ = (Λ, +, 0), Ax = (Λ - {0}, , 1),
A+ = (Δ, +, 0), Δx = (Δ - {0}, , 1), and let ZF be set theory without
the axiom of choice. Whenever we say that a sentence is true in Δ+

or Δx we shall mean that a properly relativized version of that
sentence is a theorem of ZF (note that falseness is not the opposite
of truth in this context).

As mentioned at the beginning of § 2, Λ+ and A+ are both TSGs.
All of the properties needed to verify that Λx is a TSG can be found
in [2], and those needed to verify that Δx is a TSG can be found in
[4]. Even before the general metatheorems of [8], Myhill had already
shown that Λ+ and Λx satisfied the TC+ and TCX respectively (un-
published). Subsequently we obtained the same results for Δ+ and
Δx. Shortly afterward we were informed by Tar ski that he had long
known of these results (for Dedekind cardinals), but had refrained
from publishing them. Thus by Theorem 1 and Corollary 2 of the
last section we know that Λ+ and Δ+ have the HTP+ and that Λx and
Δx have the HTPX. Of course all this is redundant in the light of
[8] and [4], but our argument has the attraction that the various
TCs mentioned above are very easy to prove. We properly begin
this section with an investigation of the first order theories of (Λx)*
and {Δxγ.

In [7] Myhill gave a complete set of axioms for the theory of
(Λ+)*. It is not hard to show that the theory of (Δ+)* is not complete
and at the moment we do not even know if it is decidable. What is
surprising is that (J x)* has a complete decidable theory which in fact
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is the same as that of (A*)*. [7] is based on methods devised by
Smielew in [12] which we now expound. Let gf = ((?,+, 0) be a
TFAG, k,neω, and x0, , xk e G. x09 , xk are said to be strongly
linearly independent (mod n) if for each sequence of nonnegative
integers aOf , ak, each α< < n and not all = 0, there is no yeG such
that Σ ^ f c αta5, = ny. Let ^ be a sentence in our language L saying
that there exist k elements strongly linearly independent (mod n). The
principal result of [12] when applied to TFAGs is

PROPOSITION A. An extension of the theory of TFAGs is com-
plete if and only if it is consistent and contains for any two
integers k > 0, n > 1 either the sentence ψkn or its negation.

Let MA be the set of sentences consisting of TFAG and {ψkn \ k > 0,
n > 1}. In [7] it is shown that MA is a complete set of axioms for
{Λ+)*. Here we show that the same holds for (Λ*)* and (J x )*.

THEOREM 2. (i) Every sentence of MA is true in (Λx)*. (ii)
Every sentence of MA, when understood as referring to ( i x )*, is a
theorem of ZF.

Proof. Since the proofs of (i) and (ii) are virtually the same we
shall only prove (i). Let p0, pu be the primes in increasing order.
We shall show that p0, , pk are strongly linearly independent
(modn) in (Λx)* for any n > 1. Let α0, " ,ak be a sequence of
nonnegative integers, each at < n and not all = 0. Then

(17) (Vu, v)(vn(Π^kpp) = un > u = 0)

is a universal Horn sentence in the language of [8] (although not in
our language L; here we are discussing multiplication and exponentia-
tion). By the following argument (17) is true in ω. Let x, ye ω and
satisfy yn(Πi£kp

a.ί) = xn. If x Φ 0 then y Φ 0 so w.l.g. we may
assume that x and y are relatively prime. If p is any prime dividing
y then p divides x. Thus y = 1. If p is any prime dividing x then
pn divides Π^pp contradicting the fact that each α* < n. Thus x = 1
giving ΠizkPϊ* = 1 which is impossible since some at is not 0. Then
(17) is true in A by the metatheorems of [8] (of [4] in the cardinal
case). Now if p0, pk were not strongly linearly independent (mod n)
in (Ax)* then there would exist x, y e A — {0} such that ynmiύkp

aιi) = xn-
But this contradicts the truth of (17) in A.

We summarize the situation as follows. (a>x)*, (Λx)*, (J x)*, and
(A+γ all have the same complete theory MA, (ω+)* has a different
complete theory, and there are propositions about (J+)* which are
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undecidable in ZF. Two remarks are in order. First, it is strange
that (ω x)* and (Λx)* have the same theory. Usually when we extend
structures from the finite to the Dedekind, about the only sentences
which are preserved are the Horns. Second, it is strange that (z/x)*
has a complete theory. Usually when we extend structures from the
finite to the Dedekind, axiomatically in ZF, we get a tremendous
amount of incompleteness.

We leave TFAGs and return to TSGs. From § 3 we know that
ω+, o)x, Λ+, Λx, A+, and Δx all satisfy the same universal Horn sentences,
and that ω+ and a)x satisfy the same Horn sentences. Where do these
similarities start breaking down? A fruitful start is from the cancel-
lation law (8). Of course ω+ and ωx both satisfy (8); that Λ+ satisfies
(8) is shown in [2], and that J+ satisfies (8) is an elementary conse-
quence of [14]. Note that when expressed in our language L, (8)
has the form

(18) (Vx, y, u)(lv)(nx + u = ny > x + v = y) ,

a very simple AE Horn sentence. The following lemma is quite useful
for an understanding of (8).

LEMMA 2. If S^ is a TSG then the following two conditions
are equivalent, (i) (8) is true in &. (ii) For every positive integer
n and x e S*, nxe S implies that x e S.

Proof. Assume that (8) is true in Sf, that x, ye S, and that
n[x, y] 6 S. Then there is a ^ e S such that [nx, ny] = n[x, y] = [z, 0]
so that nx = z + (ny), ny <.nxfy ^x by (8), and finally a, ueS such
that y + u = x. This implies [x, y] — [u, 0] 6 S. Conversely assume
(ii) and that nx ^ ny. There is a ze S such that (nx) + z = ny.
Then n[y, x] = [ny, nx] = [z, 0] e S. By (ii) this implies that [y, x]eS
and hence there is a u e S such that [y, x] = [u, 0], y = x + u, x ^ #.

THEOREM 3. (i) (8) is not true in Λx. (ii) When understood as
referring to Δx, (8) is not a theorem of ZF.

Proof. Since the proofs of (i) and (ii) are virtually the same we
shall only prove (i). In view of Lemma 2 it will suffice to find a d
such that

(19) d e (Λxγ - Λx and d2 e Λx .

For x,yeΛ write # | x if (32e Λ)x = yz. Then (19) is equivalent to
finding α, b e A — {0} such that

(20) (621 a2) but not (6 | a) .
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In [9] Nerode constructs p, n satisfying
(PI) p : ω —> ω is a strictly increasing recursive function, not

eventually combinatorial, such that for every eventually combinatorial
function /, not eventually linear, the composition f°p is eventually
combinatorial.

(P2) u 6 A — ω and for any eventually recursive combinatorial
functions / and g, fn{u) ^ gj^) implies that the difference function
g — f is eventually combinatorial.

Construct unary recursive combinatorial functions p°, p\ q, g, and
h such that for all x e ω, p\x) — p°(x) = p(x), h(x)p(x) = g(x), and
q(x) = [p(x)]2 Then in the language of [8], the following universal
Horn sentences

(21) (Vx)([h(x)Yq(x) = [g(x)Y) ,

(22) (Vx, y)(h(x)y = g(x) > p\x) + y = p\x))

are true in ω. By (PI) q is eventually recursive combinatorial and
hence by [8] (21), (22) are true in A. Let a = gΛ(u) and b = hΛ(u).
Neither g nor h are bounded on ω because otherwise p would be
eventually combinatorial. Thus a, b e A — {0} since u is infinite, and
b2\a2 by (21). If b \ a then hΛ(u)y = gΛ(u) for some ye A. By (22)
we get P°Λ(U) ^ PΛ(U), SO p = p1 — p° is eventually combinatorial by
(P2), which contradicts (PI). Thus we have satisfied (20). In the
cardinal case we use a set theoretic analogue of (P2) (cf. [5]).

This shows that although all of the specific TSGs introduced so
far satisfy the same universal Horn sentences, they do not satisfy
the same AE Horn sentences.

Let us now examine some of the properties of the structures
β+ = (Ω, +, 0), fix = (Ω - {0}, , 1), Γ+ = (Γ, +, 0), and Γ* = (Γ -
{0}, , 1). First, because of general considerations, all of these struc-
tures satisfy (1) thru (4) and none satisfy (5). In [3] we showed
that Ωx does not satisfy (6). An easy way to see that Γ x does satisfy
(6) is to argue that if it did, then taking n — 2, we would obtain
the cancellation law x2 = y2 —* x = y, which by a result of Tar ski
(cf. [13]) is equivalent to the axiom of choice. On the other hand
Ω+ and Γ+ satisfy (6) by [6] and [14] respectively. Recall that (5)
was used to prove (7.3). Even though (5) is not available to us here,
Γ+ satisfies (7.3) by the Cantor-Bernstein theorem (cf. [1]), and Ω+

satisfies (7.3) by MyhilΓs effective version of that theorem (cf. [2]).
We argue that Ωx and Γx both satisfy (7.3). This amounts to showing
that x\yΛy\x—+x = y for x, y Φ 0. If xa = y and yb — x then
(xa)b = x. Thus x ^ xa ^ (xa)b ^ x and hence x = xa — y by the
Cantor-Bernstein theorem. Thus the canonical ^ is a partial order
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on all of our structures. However none of them satisfy (7.6), for
then (5) would follow. The same argument shows that neither Ωx

nor Γx satisfies (8) for then (6) would follow. On the other hand
the fact that Γ+ satisfies (6) is really a consequence of the fact that
it satisfies (8) (cf. [14]). We round out the situation with the follow-
ing theorem which was first obtained by A. Nerode and later by the
author.

THEOREM 4. Ω+ satisfies (8).

Proof. First we introduce some notation. We use lower case
Greek letters for subsets of ft), j is the usual pairing function with
first, second inverses k, I respectively. Let a x β = {j(x, y)\xeaΛ
ye β} and v(n) = {x e ω | x < n}. If / is a function let δf, pf denote
the domain, range of / respectively.

We start our proof by assuming that n is a positive integer, Ao

and A1 are in Ω, and nA0 <; nAx. Let at e At and at = at x v(n).
Then cii e nAt and there a one-one partial recursive function p and
disjoint recursively enumerable sets, σ and τ, such that α0 £ δp,
p(ά0) £ aί9 p(d0) £ τ, and aλ — p(a0) £ o. We make the following
simplifying assumptions, (i) a0 is separable from a1 (cf. [2]), in fact
we may assume that every xea0 is even and every yea± is odd. (ii)
If x e δp then Jc(x) is even and l(x) <n, if yepp then Jc(y) is odd and
Kv) < n. (iii) pp = τ and every element in σ [Jτ is odd. Let / , g
be recursive functions enumerating σ, τ respectively and let σs =
{/(&) I sc ^ s} and τ s = {g(x) \ x ^ s}. Let Λ be a recursive function
such that the graph of p is {(kh(x), lh(x)) \ x e ω) and let p8 be the
finite function whose graph is {(Jch(x), lh{x)) \ x ^ s}. We let βs

0 =
{k(x) I x 6 δps}, βl = [k(y) \ y e pp8} and β8 = βs

0\j β . Define a predicate
Φ*(x, y) EΞDF ps(χ) = y v ps(y) = xV k(x) = k(y). If x, y e β8 we say

that x is linked to y by stage s (in symbols x ~ 8y) if there is a finite
sequence {u0, , um} £ δp8 U pps such that ku0 — x, knm = y, and
Φ*(Ui, ui+1) for each i < m. We say that as e /9S is released by stage
s if {#} x v(n) £ δp s and y e βl is releasee by stage s if {y} x v(n) £
σs U τ8 and ({?/} x v(^)) — pp8 £ σ8.

We define finite functions q8 as follows. q° is nowhere defined.
Assume q8 is defined. Find the least x e βs

Q — <5gs and the least
yeβ[ — pq8 such that α? is linked to y by stage s, and a?, 2/ are both
released by stage s. If there is no such pair let qs+1 = q8. If there
is such a pair let qs+1 be the same as qs on δq8 and let qs+1(x) = #.
We then define (̂α?) = y =DF(ls)qs(x) = ?/. Clearly g is a one-one
function, and since we can effectively tell at any stage whether objects
are linked or released, q is a partial recursive function.

In order to prove that AQ ^ A1 it suffices to show that
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(23) a0 £ δq, and q(a0) Q aλ and

(24) q(a0) is separable from aλ — q(a0) .

Several definitions and lemmas are needed. Notice that ^ s is an
equivalence relation on /3s.

LEMMA 3. If x, ye β8 and x ~ sy then xeao{J a1 if and only if
yeao{j a,.

Proof. By induction on the length of the chain u0, --,um con-
necting x and y. It will suffice to show that if u0 = j(x, m0), nx =
JiVf wθ, {u0, wj £ <?PS U ρp'9 and Φs(w0, i θ then x e a0 U aγ if and only
if yea0 (J a19 Only two cases are of any importance, the rest either
trivial or following by symmetry.

Case 1. Assume xeaQ and p(uQ) = uγ. Then ^ G ^ ^ e ^ and
hence y e ax.

Case 2. Assume yeaλ and p(w0) = u^ Then ^ e ^ ί l />p. But
ttiPipp = ^iΠp(^o) by our simplifying assumptions. Hence u o e a o and
xea0.

For αj G /9s: let V(x) = {y e βs \ x — s y), T0(x) = the even elements in
Ύs(x), and 7l(x) = the odd elements in T(x). By Lemma 3 each 7s(x)
is either contained in <x0 U oί\ or disjoint from it. Say x is linked to
y (in symbols x ~ y) if (3s)x ~ s y. Clearly ^ is an equivalence relation.
Let Ί(x) — {y e ω \ x ~ y}, Ύ0(x) = the even elements in Ί{x), and Ίx{x) —
the odd elements in Ύ(x). From the corresponding property of 7s(x)
we find that each Ύ(x) is either contained in a0 U #i or disjoint from
it. The heart of our proof (and the reason why we required that
if qs(x) = y then x, y were released at some stage prior to s) is given
in the next lemma.

LEMMA 4. If x e a0 then x e δq.

Proof. Assume that x e a0. Then p maps Ύ0(x) x v(n) one-one
into ΎJKX) x v(n). For any set δ let | δ \ = the cardinality of δ. Then
I Ύ0(x) I ̂  I Ύjfa) I by ordinary cancellation. If q(x') e Ύ^x) then x' e Ύ0(x)
since the first and second element of any pair in the graph of q
must be linked. If ΎQ(x) is finite there is a stage s such that every
x'£Ύ0(x) is released by stage s, and at least |70(«)| elements of Ί^x)
are released by stage s. Clearly q(x) is defined. The interesting case
is when ΎQ(x) is infinite. For then unless special care is taken any
candidate y for q(x) might already be in pq prior to being linked



100 ERIK ELLENTUCK

with x. Assuming that Ύ0(x) is infinite we can find a stage s such that
x is released by stage s and for all x' <x, x' eδq =Ξ x' e 3qs. Now 7X(#)
is infinite so if x is not already in δqs there will be a least stage
t ;Ξ> S such that x g δq* and a least 2/ e 7{(a?) such that 2/ is released by
stage ί, but by no stage t' < t. This insures that yipq1. Then
qt+1(x) = 7/ since no x' < a? can be put into dq after stage s.

By interchanging the roles of range and domain in the preceding
proof we easily obtain

LEMMA 5. If ye a1 and ΎQ(y) is infinite then y e pq.

Now assume that xeδq. Then by our construction q(x)eΎ1(x).
It follows from Lemma 3 that xeaQ if and only if q(x) e ax. By
Lemma 4, <x0 £ δq and hence q maps <x0 into a1 proving (23). More-
over, q(a0) = aλ Π pq so that (24) will follow if we can find a recur-
sively enumerable set θ which is disjoint from pq and contains aι — pq.
Put y in θ if either

(25) {y} x y(w) £ σ

or there is an s satisfying (26) and (27) below.

(26) y e βl and every element in Js(y) is released by stage s .

(27) 7soG/) S 5<f and y <£ pqs .

Clearly θ is recursively enumerable. Suppose that yea1--pq. If
y&βl for every s then (25) is true. Otherwise Ί{y) is defined. If
ΎQ(y) is infinite then yepq by Lemma 5. Hence 70(y) is finite. But
then Ύ(y) is finite and Ύ(y) = T(y) for sufficiently large s. Every
element in Ύs(y) is eventually released and Ύs

Q(y) Q a0 Q δq. Hence
we can satisfy (26) and (27) showing that yeθ, i.e., ax — pqQθ.
Now suppose that yeθ. If (25) holds then y certainly is not in pq.
If (26) holds then Ύ(y) = T(y) and if (27) also holds then y g pq because
if q(x) = y for some x then xeΎfty) and yepq8 contradicting (27).
Thus we have shown that θ is disjoint from pq. This completes the
proof of Theorem 4.

The notion of "released" used in the proof of this theorem is due
to Friedberg (cf. [6]). The anthropomorphic way in which we have
used this term (and "linked" as well) is due to Nerode (cf. [10]).
We have already worked out the universal theory of linear inequalities
in Ω+ (in the style of 10]) and intend to present it in a future publi-
cation.
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