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We introduce a special type of semigroup whose properties
are abstracted from the theory of cardinal numbers under
addition. A very general theorem about the behavior of
universal Horn sentences in such semigroups is obtained and
then applied to isols, recursive equivalence types, cardinal
numbers, and Dedekind cardinals, the last two being in set
theory without the axiom of choice.

1. Introduction. In this paper we introduce a special kind of
semigroup which is related to certain cardinal like structures under
a single binary operation. We call them Tarski semigroups (TSGs)
and discuss their general properties in §2. There we show that a
canonical partial order can be induced on a TSG and that every TSG
can be canonically embedded in a torsion free Abelian group (TFAG).
In §3 we give necessary and sufficient conditions that every universal
Horn sentence which holds in the nonnegative integers under addition
also holds in a TSG. We also do the same for the positive integers
under multiplication. Our proofs rely heavily on vector space methods.
Section 4 applies these results to definite semigroups constructed from
cardinal numbers and recursive equivalence types. As a specific
example consider the isols 4. We show that although (4, +, 0) and
(4 — {0}, -, 1) share the same universal Horn sentences, there is an
AE Horn sentence which distinguishes them. Uniformity is again
obtained by showing that their canonical TFAGs have the same first
order theory which is identical to that of the positive rationals under
multiplication. The same results are obtained for the Dedekind
cardinals. We find these results surprising on two counts. First, we
have a structure built from the integers, whose first order theory is
the same as that of a corresponding structure built from the isols.
Usually it is only the universal Horn sentences which remain unchanged.
Second, we have a structure built from the Dedekind cardinals whose
first order theory is complete. In most other constructions incom-
pleteness is the rule. Section 4 concludes with the result of A.
Nerode (subsequently obtained by the author), that nA <nB— A < B
where n is a positive integer and A, B are recursive equivalence
types. This result is not isolated, but fits into our general semigroup
analysis.

2. Semigroups. Let &= (S, +, 0) be a groupoid, thatis S is a
87
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nonempty set, - is a binary operation on S, and 0 is a distinguished
element of S. If @ = the nonnegative integers, necw, and ze S we
define a scalar product nxz by the recursion 0z =0 and (n + 1)z =
(nx) + x. & is called a Tarski semigroup (TSG) if it satisfies the
universal closures of (1) thru (6) below.

(1) t+W+)=@+y) +z.
(2) r2+0=x=0+2x.

(3) r+y=y+ux.

(4) r+y=0—ax=0.

(5) r+tz=yYy+tz—arx=9y.
(6) ne=ny—x=y for 0<n<w.

Such structures are meant to reflect some of the algebraic proper-
ties of cardinal numbers and recursive equivalence types. Let I' =
the cardinals, 4 = the Dedekind cardinals, 2 = the recursive equivalence
types, and 4 = the isols. If we consider each of these structures with
its canonical + and 0, then all satisfy (1) thru (4), (5) is the defining
condition for both 4 and 4, Dekker-Myhill have show that (6) holds
in 4 (cf. [2]), Friedberg has shown that (6) holds in 2 (cf. [6]), and
Bernstein, Sierpinski, and Tarski have all shown that (6) holds in I”
(a fortiori in 4 as a substructure of I) (cf. [1], [11], and [14]).

In & we define the canonical inequality # < ¥y =, (A2)y = 2 + 2.
Then every TSG satisfies the universal closures of (7.1) thru (7.11)
below.

(7.1) 0==zx.

(7.2) r=w.

(7.8) TZYAYsx—o=9.
(7.4) TEYANY=Sz— =2,
(7.5) r=y—c+z=y+=z.
(7.6) r+z2z=2y+tz—a=vy.
(7.7) (m + n)x = (mx) + (nx) .
(7.8) n@ + y) = (nx) + (ny) .
(7.9) m(nx) = (mn)x .

(7.10) m=mn——mer=nr.
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(7.11) r=yYy—nxr < ny .

(7.1) thru (7.11) with the exceptions of (7.3) and (7.6) can be
proved using only (1) thru (3), and (7.6) uses (5) in an obvious way.
To prove (7.3) note that if x <y Ay < x then there exist u, v such
that x +u=y and y+v=2 sothat c +(u+v)=(@+u)+v=
y+v=x=2+0 by (1) and (2). Then u + v =0 by (5), w =0 by
(4), and * =y by (2). This reflects the fact that (7.8), a Cantor-
Bernstein like theorem, is easy to prove for 4 and 4, but consider-
ably harder to prove for I" and @2 (which do not satisfy (5)). Let
us consider

(8) ne=ny—x=yforo<n<w

and ask whether (8) follows from (6) in the same trivial way that
(7.6) follows from (5). The answer is no, and in section 4 we give
some important examples of TSGs which do not satisfy (8). Thus
(8) was not added to our definition of a TSG in order to include these
examples in our study.

Next we embed our TSG .&” into a torsion free Abelian group
(TFAG) &#*. In &7 define (x,y) ~ (u, v) =2 +v =9 + 4. Thus
&~ will satisfy the universal closures of (9.1) thru (9.11) below.

9.1) (@, 9) ~ (2, ¥) .
(9'2) (x, y) ~ (u’ 1)) E— (ui ’U) ~ (x, y) .
(9'3) (x: y) ~ (’M,, 1)) AN (’l,l,, ’U) ~ (a, b) — (x; y) ~ (a’, b) .

An algebraic structure is imposed on these pairs by defining (x, ¥) +
(u, 'U) = DpF (:L' + u,‘y + ?)). Then

(9-4) ((z, v) + (u, v)) + (a, b) = (2, ¥) + (%, v) + (a, b)) .

(9.5) @, y) + (u, v) = (w, v) + (z, y) -

(9.6) (=Y~ ¥)— @9+ )~ Y)+ @),
(9.7) (2, ) ~ (0, 0) .

9.8) (x, ) +(0,0) = (z, ) .

(9.9) (x, ) + (¥, %) ~(0,0) .

We define a scalar product n(x, y) on pairs in exactly the same way
that we defined a similar product in .2 Then

(9'10) n(.’)c, y) = (nxv ny) .
(9.11) n(x, ¥) ~ (0, 0) — (x, y) ~ (0,0) for 0 < n < w.
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(9.1) thru (9.11) with the exceptions of (9.3) and (9.11) can be
proved using only (1) thru (3), and (9.11) uses (6) in an obvious way.
It is interesting to note that (7.3) and (9.3) both of which appear early
in their respective constructions, seem to require (5).

Now define [, y] =or {(%, v)|(%, v) ~ (=, )}, S* =or{[%, ylx, y € S},
[z, y] +*[w, v] =prl[2 + u, ¥y + v], 0* =p£[0, 0], and F* =5, (S*, +*, 0%).
Using (9.1) thru (9.11) we can show that +* and 0* are well defined
and that &°* is a TFAG. Next we define a function i: S— S* by
h(x) =pr[2, 0] and note that

(10'1) [fL’, 0] = [y9 O] —r =Y,
(10.2) v+y=z=[z0+%[y, 0] =[z0],

which together imply that % is an embedding of . into .&#*. Thus,
w.l.g., we shall assume that S & S*, the restriction of +* to S is
+, and that 0 = 0*.

Although the material of this section is quite routine, we have
run thru it again in order to emphasize the importance of the Dedekind

property (5).

3. Horn sentences. We introduce a first order language L in
order to discuss the elementary properties of TSGs and TFAGs. The
primitive symbols of L consist of an infinite list of individual variables
Vo, Vi, +++, @ binary predicate = denoting equality, a binary functor +
denoting addition, and an individual constant 0 denoting the identity
element. Terms, formulas, sentences, and so forth are taken from
current usage. A system of equations is the conjunction of some
finite number of atomic formulas of L. A wuniversal Horn sentence
is the universal closure of a formula of the form s—s" where s and
s’ are systems of equations. Strictly speaking, a universal Horn
sentence should have a conjunction of implications of the form s—s’
for its matrix, however since our prefix is universal we lose no
generality by requiring that our matrix consist of a single conjunct.

We first consider the question of what universal Horn sentences
are satisfied in a given TSG = (S, +,0). Let w* be the TSG
(w, +,0). &7 1is said to satisfy the Tarski condition* (TC") if every
system of equations in the variables v, ---, v, having a solution
Xy, +-+, &, In & with x, = 0 also has a solution #;, +--, 2 in w* with
xp #= 0. &7 is said to have the Horn transfer propertyt (HTP?') if
every universal Horn sentence which is true in w' is also true in &4
Our first important result is

THEOREM 1. A TSG & has the HTP* if and only if it satisfies
the TC*.
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Proof. In one direction our theorem is quite easy. Assume that
% has the HTP* and that s is a system of equations in the variables
Vo *+*, V. If s has no solution z, -.-, x; in @* with x; = 0 then

(11) (Yoo, -+ -, V)8 — v, = 0)

is true in w* and hence by HTP™ also true in %2 But then s can
have no solution x, ---,%, in & with 2, 0. For the converse
assume that .&” satisfies the TC*, that s and s’ are systems of equa-
tions in the variables v, ---, v, and that 9 is a universal Horn
sentence which is true in w*™ and has the form

(12) (Yo, =+, V)5 —8) .

The following terminology is convenient. A formula is TSG-valid if
its universal closure is true in every TSG. Two formulas are TSG-
equivalent if their biconditional is TSG-valid. Thus for every term
t which appears in % we can find a term ¢’ of the form >, %,
where each n,c w, such that ¢ = ¢’ is TSG-valid.

We must show that 9 is true in .&% This is done by an induction
on the number of variables & 4 1 which appear in %{. For k =0 every
equation is TSG-equivalent to one of the form mv, = nv,. If m =n
this is TSG-equivalent to 0 = 0, and if m % n, say m > n, it is TSG-
equivalent to (m — n)v, = 0 by (5), and to v, = 0 by either (4) or (6).
Since % is true in w* the only case ruled out is where s is replaced
by 0 =0 and s’ by v, =0. But then % is clearly true in &%

Before going on to the inductive step let us put our problem
into vector space notation. Consider a TSG .&¥ as embedded into
S#*, Since subtraction is possible in .&#*, for every equation ¢ which
appears in % we can find a term ¢ of the form 3., nv; where each
n; € (@)*, such that ¢ is true in .&” if and only if ¢ = 0 is true in
S* when the v, are assigned values in S. Note that we have
identified the group (w*)* with its underlying domain, and shall do
so in other situations when it is inconvenient to introduce further
notation. Conversely every such equation ¢ = 0 can be given a
meaning in & by separating ¢ into its positive and negative parts
and then transposing. Thus for every system of equations s we can
find a matrix 4, whose entries belongs to (w*)*, such that s is TSG-
equivalent to Av =0. In Av = 0 we interpret v = (v, +++, v;) as a
vector, Av as ordinary matrix multiplication, and 0 as the zero vector,
where possibly some of the computation is going on in .&#*. Combining
these results will give us matrices A and B such that for any TSG
&4 the truth of (12) in .&” is equivalent to the truth in & of

(13) Vo) (4v =0——> By = 0) .
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W.l.g. assume (12) is already in the form given by (13).
Now assume k > 0 and that we have established the HTP*+ for
sentences with fewer than %# + 1 variables. Two cases arise.

Case 1. There is a vector y, all components of which belong to
w — {0}, such that Ay = 0. We claim that % is true in (0*)*. Let
x be any k + l-tuple of rational integers such that Az = 0. Choose
positive n such that z + ny is positive in all components. Then
Az + ny) = (Ax) + n(4Ay) = 0 and hence since (13) is true in ®*, both
B + ny) = 0 and By = 0. But B(xz + ny) = (Bx) + n(By) = Bx = 0.
Thus U holds in (w*)*. Next we claim that % is true in the field of
rational numbers &= (@, +, -, 0, 1). Consider a vector £ = (x,, - -,
x;) where each x, has the form y,/z, with y, € (0")* and z,€ w — {0}.
W.l.g. we may assume that the 2z, have a common positive value d.
Let y= (4, -+, ¥:) and assume that Az =0. Then d'(Ay)= A(d'y) =
Ax = 0 and hence Ay = 0. Since (13) is true in (w*)* we have By = 0
and hence Bxr = B(d'y) = d"*(By) = 0. Thus % is true in Z.

We can interpret the truth of (13) in <2 in the following geo-
metrical terms. In the vector space 7 consisting of all &k + 1-tuples
of rational numbers every vector which is perpendicular to each row
of A is also perpendicular to each row of B. We claim that R, the
subspace of 7° spanned by the rows of B, is contained in R,, the
subspace of 7° spanned by the rows of A. For any subspace % of
7" let Z* be the orthogonal complement of % in 7. Then by
hypothesis (B,)* S (Rp)* so that (Rp)** < (R)**. But ‘=%
which proves our claim. Denote the rows of A by a;, 7 <=n, and
the rows of B by b, ¢ < m. Then there exist rational numbers »,;
such that b, = >};., 7:;;a;. By removing a positive common denominator
d if necessary, we can find a matrix D, the entries of which are
rational integers, such that

(14) dB = DA,

the product on the left (right) being respectively scalar (matrix)
multiplication.

We now show that U is true in 5% Let 2 be a vector with
components from S such that Az = 0. Then d(Bx) = D(Ax) = 0 by
(14). In general Bx e S*, but since .57* is torsion free we get Bx = 0.
Thus 2 is true in &2 Notice that up to now we have used neither

our inductive hypothesis nor the TC*. However they will be used
in

Case 2. There is no vector y, all entries of which belong to
w — {0}, such that Ay = 0. Suppose that for each ¢ < k there is a
vector ¥, such that each component of y; belongs to @, the i-th one
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being positive, and Ay, =0. Then y = 3., ¥: is positive in all
components and Ay = 0, contradicting the fact that we are in Case 2.
Thus for some j < k (Vv)(Av = 0—v; = 0) is true in ®*. By renaming
variables we may assume that 7 = 0 so that by TC*

(15) (Vo) (Av = 0 — v, = 0)

is also true in &2 Let A’ and B’ be the matrices obtained from A
and B respectively by deleting their first columns. Then it is easy
to see that the truth of (13) and (15) in w* implies the truth of

(16) (Vo) A'Y' = 0— B'v' =0)

in w* where v’ = (v, -+, v;). Now let z = (x,, ---, z,) be a vector
with components from S such that Ax = 0. Then x, = 0 by (15) and
hence A’2’ = 0 where 2’ = (x,, +--, x;). By our inductive hypothesis

(16) is true in .5 and hence Bz’ = 0. Then Bx = (0 since z, = 0.
Thus ¥ is true in A

An easy consequence of Theorem 1 is

COROLLARY 1. A universal Horn sentence is true in (07)* if
and only if it is true in every TFAG.

Proof. Suppose U is a universal Horn sentence that is true in
(w)*. By elementary TFAG properties ¥ can be brought into the
form (13) and as in Case 1 of the preceding proof (14) is true. Then
as in the last paragraph of Case 1 we can show that U is true in
every TFAG. The converse is immediate.

Let w* be the TSG (w — {0}, -,1). & is said to satisfy the
Tarski condition™ (TC*) if every system of equations in the variables
Vg, *++, ¥, having a solution «,, --., x, in & with x, % 0 also has a
solution a;, «--, @, in @* with «;# 1. .5 is said to have the Horn
transfer property* (HTP*) if every universal Horn sentence which
is true in w* is also true in .2 The following lemma is so well
known that we find it difficult to find a source.

LEMMA 1. A Horn senlence is true in o™ if and only if it is
true in @*.

Proof. Let p,, p;, --- be the primes in increasing order and let
ITw* be the countable weak direct product of ®*. Consider the
function % which maps each x€ ® — {0} of the form /7, ,p% into an
infinite sequence consisting of the exponents of the p,’s in this prime
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power representation of x. Then % is an isomorphism of ®w* onto
IIw*. Moreover every Horn sentence is true in Tw* if and only if
it is true in w™.

COROLLARY 2. A TSG .&° has the HTP* if and only if it satisfies
the TC*.

Proof. By Lemma 1 & has the HTP* if and only if it has the
HTP*. At the beginning of the proof of Theorem 1 we showed that
& satisfies the TC* if and only if every Horn sentence of the form
(11) which is true in @™ is also true in .2 The same proof also gives
this result for the TC* (replacing w* by w*). Thus by Lemma 1 &
satisfies the TC* if and only if it satisfies the TC*.

COROLLARY 3. A wumniversal Horn sentence is true in (0X)* if
and only if it is true in every TFAG.

Proof. (w*)* is isomorphic to II(w™)*.

4. TIsolic structures. Let A" = (4, +, 0), 4* =4 — {0}, -, 1),
4t = (4, +,0), 4% = (4 — {0}, -, 1), and let ZF be set theory without
the axiom of choice. Whenever we say that a sentence is true in 4%
or 4% we shall mean that a properly relativized version of that
sentence is a theorem of ZF (note that falseness is not the opposite
of truth in this context).

As mentioned at the beginning of § 2, 4* and 4" are both TSGs.
All of the properties needed to verify that 4% is a TSG can be found
in [2], and those needed to verify that 4% is a TSG can be found in
[4]. Even before the general metatheorems of [8], Myhill had already
shown that 4" and 4* satisfied the TC* and TC* respectively (un-
published). Subsequently we obtained the same results for 4™ and
4*. Shortly afterward we were informed by Tarski that he had long
known of these results (for Dedekind cardinals), but had refrained
from publishing them. Thus by Theorem 1 and Corollary 2 of the
last section we know that 4* and 4* have the HTP* and that 4% and
4* have the HTP*. Of course all this is redundant in the light of
[8] and [4], but our argument has the attraction that the various
TCs mentioned above are very easy to prove. We properly begin
this section with an investigation of the first order theories of (4%)*
and (4%)*.

In [7] Myhill gave a complete set of axioms for the theory of
(4H)*. Itis not hard to show that the theory of (4%)* is not complete
and at the moment we do not even know if it is decidable. What is
surprising is that (4%)* has a complete decidable theory which in fact
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is the same as that of (4%)*. [7] is based on methods devised by
Smielew in [12] which we now expound. Let & = (G, +,0) be a
TFAG, k, new, and x, +--, 2,€ G. x, ---, 2, are said to be strongly
linearly independent (mod n) if for each sequence of nonnegative
integers a,, -« -, a;, each a, < n and not all = 0, there is no y € G such
that X<, a2, = ny. Let v, be a sentence in our language L saying
that there exist k& elements strongly linearly independent (mod »). The
principal result of [12] when applied to TFAGs is

PROPOSITION A. An extension of the theory of TFAGs is com-
plete if and only if it is comsistent and contains for any two
integers k> 0, n > 1 either the sentence vy, or its megation.

Let MA Dbe the set of sentences consisting of TFAG and {v. |k > 0,
n > 1}. In [7] it is shown that MA is a complete set of axioms for
(4Y)*., Here we show that the same holds for (4*)* and (4%)*.

THEOREM 2. (i) Ewvery sentence of MA s true im (4¥)*. (ii)
Every sentence of MA, when understood as referring to (4)*, is a
theorem of ZF.

Proof. Since the proofs of (i) and (ii) are virtually the same we
shall only prove (i). Let p,, »,, - -+ be the primes in increasing order.
We shall show that p,, --:, », are strongly linearly independent
(modn) in (4%)* for any n > 1. Let a, ---, @, be a sequence of
nonnegative integers, each a, < n and not all = 0. Then

an (Vu, V)(0"(I ;5,07 = w* —> u = 0)

is a universal Horn sentence in the language of [8] (although not in
our language L; here we are discussing multiplication and exponentia-~
tion). By the following argument (17) is true in w. Let x, y€® and
satisfy y"(Il,c,p¢) = 2. If 20 then y+0 so w.lg. we may
assume that  and y are relatively prime. If p is any prime dividing
y then p divides . Thus ¥y = 1. If p is any prime dividing « then
p” divides I1,.,p% contradicting the facet that each a; <n. Thus =1
giving I7,_,p% = 1 which is impossible since some a; is not 0. Then
(17) is true in 4 by the metatheorems of [8] (of [4] in the cardinal
case). Now if p,, ---p, Were not strongly linearly independent (mod %)
in (4¥)* then there would exist x, ¥ € 4 — {0} such that y*(I,<,p%) = z".
But this contradicts the truth of (17) in 4.

We summarize the situation as follows. (@*)*, (4%)*, (4)*, and
(4%)* all have the same complete theory MA, (®w*)* has a different
complete theory, and there are propositions about (4%)* which are
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undecidable in ZF. Two remarks are in order. First, it is strange
that (0*)* and (4*)* have the same theory. Usually when we extend
structures from the finite to the Dedekind, about the only sentences
which are preserved are the Horns. Second, it is strange that (4*)*
has a complete theory. Usually when we extend structures from the
finite to the Dedekind, axiomatically in ZF, we get a tremendous
amount of incompleteness.

We leave TFAGs and return to TSGs. From §3 we know that
w*, 0", A, A%, 4%, and 4% all satisfy the same universal Horn sentences,
and that w* and w* satisfy the same Horn sentences. Where do these
similarities start breaking down? A fruitful start is from the cancel-
lation law (8). Of course w* and ®* both satisfy (8); that A" satisfies
(8) is shown in [2], and that 4* satisfies (8) is an elementary conse-
quence of [14]. Note that when expressed in our language L, (8)
has the form

(18) Ve, y, w)@Av)(nx + u = ny — 2 +"v =),

a very simple AE Horn sentence. The following lemma is quite useful
for an understanding of (8).

LEMMA 2. If &7 is a TSG then the following two conditions
are equivalent. (i) (8) is true in S~ (ii) For every positive integer
n and xeS*, nreS implies that x e S.

Proof. Assume that (8) is true in &4 that x,y €S, and that
n[x, y]€ S. Then there is a z€ S such that [nz, ny] = n[x, y] = [7, 0]
so that nx = 2z + (ny), ny < nx, y <« by (8), and finally a w€ S such
that ¥ + v = . This implies [z, y] = [u, 0]€ S. Conversely assume
(i) and that nx < ny. There is a ze S such that (nx) + 2z = ny.
Then nly, 2] = [ny, nx] = [z, 0]€ S. By (ii) this implies that [y, ] S
and hence there is a w €S such that [y, 2] = [%, 0,y =2+ u, 2 < ¥.

THEOREM 3. (i) (8) s not true in A*. (ii) When understood as
referring to 4%, (8) is not a theorem of ZF.

Proof. Since the proofs of (i) and (ii) are virtually the same we
shall only prove (i). In view of Lemma 2 it will suffice to find a d
such that

(19) de (49)* — A and d?e A* .

For z,ye A write y |2 if (3ze A)x = yz. Then (19) is equivalent to
finding @, be 4 — {0} such that

(20) (" | @) but not (b|a) .
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In [9] Nerode constructs p, u satisfying

(Pl) p:w—w is a strictly increasing recursive function, not
eventually combinatorial, such that for every eventually combinatorial
function f, not eventually linear, the composition f op is eventually
combinatorial.

(P2) ued— w and for any eventually recursive combinatorial
functions f and g, fi(u) < g4(u) implies that the difference function
g — f is eventually combinatorial.

Construct unary recursive combinatorial functions 2° 9!, ¢, g, and
kh such that for all zecw, p'(x) — p°(x) = p(%x), h(x)p(x) = g(x), and
g(x) = [p(x)]>. Then in the language of [8], the following universal
Horn sentences

(21) (vae)([r(@)]q(x) = [9()])
(22) Vo, y)(h(x)y = g9(x) — p°(x) + ¥ = p'(x))

are true in w. By (Pl) ¢ is eventually recursive combinatorial and
hence by [8] (21), (22) are true in 4. Let @ = g4(u) and b = h ().
Neither g nor h are bounded on ® because otherwise » would be
eventually combinatorial. Thus a, be 4 — {0} since w is infinite, and
b*|a* by (21). If b|a then h,(w)y = g4(u) for some yed. By (22)
we get p%(u) < p4y(u), so p = p' — p° is eventually combinatorial by
(P2), which contradicts (P1). Thus we have satisfied (20). In the
cardinal case we use a set theoretic analogue of (P2) (cf. [5]).

, This shows that although all of the specific TSGs introduced so
far satisfy the same universal Horn sentences, they do not satisfy
the same AE Horn sentences.

Let us now examine some of the properties of the structures
=2, +,0,2x=@~-1{0}, -, ), =, +,0), and I = —
{0}, -, 1). First, because of general considerations, all of these struc-
tures satisfy (1) thru (4) and none satisfy (5). In [3] we showed
that 2% does not satisfy (6). An easy way to see that ' does satisfy
(6) is to argue that if it did, then taking = = 2, we would obtain
the cancellation law 2* = y*—x = y, which by a result of Tarski
(ef. [13]) is equivalent to the axiom of choice. On the other hand
2* and I'* satisfy (6) by [6] and [14] respectively. Recall that (5)
was used to prove (7.3). Even though (5) is not available to us here,
I'* satisfies (7.8) by the Cantor-Bernstein theorem (cf. [1]), and 2F
satisfies (7.8) by Myhill’s effective version of that theorem (cf. [2]).
We argue that 2% and I'* both satisfy (7.3). This amounts to showing
that z|yAyle—x =y for 2,y%0. If xa =y and yb =2 then
(xa)p = x. Thus ¢ < 2a < (xa)b < x and hence x = xa =y by the
Cantor-Bernstein theorem. Thus the canonical < is a partial order
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on all of our structures. However none of them satisfy (7.6), for
then (5) would follow. The same argument shows that neither 2~
nor I'* satisfies (8) for then (6) would follow. On the other hand
the fact that I'* satisfies (6) is really a consequence of the fact that
it satisfies (8) (cf. [14]). We round out the situation with the follow-
ing theorem which was first obtained by A. Nerode and later by the
author.

THEOREM 4. QF satisfies (8).

Proof. First we introduce some notation. We use lower case
Greek letters for subsets of . j is the usual pairing function with
first, second inverses k, I respectively. Let @ X B = {j(x, y) |zca A
yep} and v(n) = {xew|x <mn}. If fis a function let 6f, of denote
the domain, range of f respectively.

We start our proof by assuming that » is a positive integer, A4,
and A, are in 2, and nd, < nAd,. Let a,e¢ A, and @, = a; X v(n).
Then @ enA, and there a one-one partial recursive function p and
disjoint recursively enumerable sets, ¢ and 7, such that &, S op,
(@) S a,, p(@) <=7, and &, — p(@) S 0. We make the following
simplifying assumptions. (i) «, is separable from «, (cf. [2]), in fact
we may assume that every x e «, is even and every y € «, is odd. (ii)
If xedp then k(x) is even and l(x) < n, if y e pp then k(y) is odd and
l(y) < m. (i) pp =t and every element in c U7 is odd. Let f, g
be recursive functions enumerating o, T respectively and let o° =
{f®) |z =< s} and z° = {g(x) |2 < s}. Let h be a recursive function
such that the graph of p is {(kh(x), lh(x)) |z € 0} and let p°* be the
finite function whose graph is {(kh(), lh(z)) |z <s}. We let 5 =
{k(x) | x € dp®}, B = {k(y) | y € pp°} and B° = B; U Bi. Define a predicate
D(x, y) =pr (@) =y VP'(Y) = V() =k(y). If x,yep we say
that x 4s linked to y by stage s (in symbols z ~ °y) if there is a finite
sequence {u, ---, u,} < 0p° U pp* such that ku, =z, ku, =y, and
D°(u;, sy, for each 7 < m. We say that xe B: is released by stage
s if {x} X v(n) S 6p* and ye B: is releasee by stage s if {y} x v(n) =
o’ U7* and ({y} x v(n)) — pp* S o°.

We define finite functions ¢* as follows. ¢° is nowhere defined.
Assume ¢° is defined. Find the least xe B — d¢° and the least
Y€ B — pg° such that z is linked to y by stage s, and x, y are both
released by stage s. If there is no such pair let ¢**' = ¢°. If there
is such a pair let ¢**' be the same as ¢* on d¢° and let ¢**'(x) = y.
We then define ¢q(x) = ¥y =pr (3s)q’(x) = y. Clearly ¢ is a one-one
funection, and since we can effectively tell at any stage whether objects
are linked or released, q is a partial recursive function.

In order to prove that A, < A, it suffices to show that
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(23) a, S dg, and g(a,) S a, and
(24) q(a,) is separable from a, — q(a) .

Several definitions and lemmas are needed. Notice that ~® is an
equivalence relation on 5°.

LEMMA 3. If x,y€ B and x ~ °y then x€a, U «, if and only if
yea,Ua,.

Proof. By induction on the length of the chain w, ---, %, con-
necting x and y. It will suffice to show that if u, = (%, m,), u, =
J(y, my), {u, u,} S 6p° U pp*, and @*(u,, u,) then xca,U «, if and only
if yea,Ua,. Only two cases are of any importance, the rest either
trivial or following by symmetry.

Case 1. Assume zea, and p(u,) = u,. Then u,€a, u, €& and
hence y ¢ a,.

Case 2. Assume yea, and p(u,) = w,. Then w,e@ Npop. But
a,Npp = &, Np@,) by our simplifying assumptions. Hence u,€ &, and
2 € Q.

For x € g°: let v*(x) = {y € B* | x ~* ¥}, 7i(x) = the even elements in
7°(x), and 7i(x) = the odd elements in 7*(x). By Lemma 3 each 7*(x)
is either contained in «, U @, or disjoint from it. Say x s linked to
y (in symbols x ~ y) if (3s)x ~*y. Clearly ~ is an equivalence relation.
Let 7(x) = {ycw|x ~ y}, 7(x) = the even elements in Y(x), and 7,(x) =
the odd elements in 7(x). From the corresponding property of 7(x)
we find that each 7(x) is either contained in «, U @, or disjoint from
it. The heart of our proof (and the reason why we required that
if ¢°(x) = y then x, y were released at some stage prior to s) is given
in the next lemma.

LEMMA 4. If xe€«, then x € dq.

Proof. Assume that xea, Then p maps 7,(x) X ¥(n) one-one
into 7,(®) X y(n). For any set o let |6 | = the cardinality of 6. Then
[7(®) | < |7(x)| by ordinary cancellation. If g(x’) € 7,(x) then &’ € V()
since the first and second element of any pair in the graph of ¢
must be linked. If 7,(x) is finite there is a stage s such that every
z' € 7,(x) is released by stage s, and at least |7, (x)| elements of 7,(x)
are released by stage s. Clearly q(x) is defined. The interesting case
is when 7,(z) is infinite. For then unless special care is taken any
candidate y for q(x) might already be in pq prior to being linked
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with x. Assuming that 7,(x) is infinite we can find a stage s such that
x is released by stage s and for all ' <a, 2’ € dg = ¢’ e dg’. Now 7,(x)
is infinite so if z is not already in d¢° there will be a least stage
t = s such that x¢ dq* and a least y e Vi(x) such that y is released by
stage ¢, but by no stage ¢’ < t¢t. This insures that y ¢ pg’. Then
¢'"(x) = y since no ¥’ < x can be put into dg¢ after stage s.

By interchanging the roles of range and domain in the preceding
proof we easily obtain

LEMMA 5. If yea, and 7(y) is infinite then y € 0q.

Now assume that x€dq. Then by our construction g(x) € 7.(x).
It follows from Lemma 3 that xze«, if and only if ¢(x)ea,. By
Lemma 4, &, £ d¢ and hence ¢ maps «, into a, proving (23). More-
over, q(a,) = @, N pg so that (24) will follow if we can find a recur-
sively enumerable set # which is disjoint from og and contains «, — pgq.
Put y in @ if either

(25) {y} x vy S o

or there is an s satisfying (26) and (27) below.

(26) ye B and every element in 7*(y) is released by stage s.
(27 Yi(y) S 0¢° and y ¢ og° .

Clearly 6 is recursively enumerable. Suppose that yea, — pgq. If
y¢ B for every s then (25) is true. Otherwise 7(y) is defined. If
7.(¥) is infinite then y € pg by Lemma 5. Hence 7,(y) is finite. But
then 7(y) is finite and Y(y) = 7*(y) for sufficiently large s. KEvery
element in 7'(y) is eventually released and 7i(y) S a, < dq. Hence
we can satisfy (26) and (27) showing that yed, ie., a, — pg & 4.
Now suppose that yed. If (25) holds then ¥ certainly is not in pq.
If (26) holds then 7(y) = 7*(y) and if (27) also holds then y ¢ pg because
if g(x) =y for some x then xze7i(y) and y e pg° contradicting (27).
Thus we have shown that @ is disjoint from pg. This completes the
proof of Theorem 4.

The notion of “released” used in the proof of this theorem is due
to Friedberg (cf. [6]). The anthropomorphic way in which we have
used this term (and “linked” as well) is due to Nerode (cf. [10]).
We have already worked out the universal theory of linear inequalities
in 2 (in the style of 10]) and intend to present it in a future publi-
cation.



SEMIGROUPS, HORN SENTENCES AND ISOLIC STRUCTURES 101

REFERENCES

1. F. Bernstein, Untersuchungen aus der Mengelehre, Math. Annalen, 61 (1905), 117-
155,

2. J.C. E. Dekker and J. Myhill, Recursive Equivalence Types, Univ. of Calif. Publs.
in Math., (NS) 3, #3 (1960), 67-214.

3. E. Ellentuck, Solution to a problem of R. Friedberg, Math, Zeit., 82 (1963), 101-
103.

4, ——— A choice free theory of Dedekind cardinals, J. Symbolic Logic, 34 (1969),
70-84.
5. —————, Euxtension methods in cardinal arithmetic, Trans. Amer. Math. Soc., 149

(1970), 807-325.

6. R. Friedberg, The uniqueness of finite division for recursive equivalence types, Math.
Zeit., 75 (1961), 3-7.

7. J. Myhill, Elementary properties of the group of isolic integers, Math. Zeit., 78
(1962), 126-130.

8. A. Nerode, Euxtensions to isols, Ann. of Math., 73 (1961), 362-403.

9. ———, Non-linear combinatorial functions of isols, Math. Zeit., 86 (1965), 410-424.

10. ——, Additive relations among recursive equivalence types, Math. Annalen, 159
(1965), 329-343.

11. W. Sierpinski, Sur 'égalité 2m = 2n pour les mombres cardinaux, Fund. Math.,
3 (1922), 1-6.

12. W. Szmielew, Elementary properties of Abelian groups, Fund. Math., 41 (1955),
203-271.

13. A. Tarski, Sur quelques théorémes qui équivalent a ’axiome de chotx, Fund. Math.,
5 (1924), 147-154.

14. , Camncellation laws in the arithmetic of cardinals, Fund. Math., 36 (1949),
77-92.

Received August 27, 1974. Partially supported by NSF GP-28348.

RuTGERS, THE STATE UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM

Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 61, No. 1 November, 1975

Jifi Addmek, V. Koubek and Véra Trnkova, Sums of Boolean spaces represent every

GTOUD . o ettt e e e e e e e 1
Richard Neal Ball, Full convex [-subgroups and the existence of a*-closures of

lattice ordered groUPS . ... 7
Joseph Becker, Normal hypersurfaces ................ocouiiiiiiiiiiinininn. 17
Gerald A. Beer, Starshaped sets and the Hausdorff metric ..................... ... 21
Dennis Dale Berkey and Alan Cecil Lazer, Linear differential systems with

measurable COeffiCients . . ... ... e 29
Harald Boehme, Gldttungen von Abbildungen 3-dimensionaler

MannigfaltigReiten . . ... ... e 45
Stephen LaVern Campbell, Linear operators for which T*T and T + T*

COMIMUEE . . . ottt et e e e e e e e e e e e et 53
H. P. Dikshit and Arun Kumar, Absolute summability of Fourier series with

JUCTIOTS . oo 59
Andrew George Earnest and John Sollion Hsia, Spinor norms of local integral

FOLAtiONS. I1 ... ... ..o e 71
Erik Maurice Ellentuck, Semigroups, Horn sentences and isolic structures . ........ 87
Ingrid Fotino, Generalized convolution ring of arithmetic functions................ 103
Michael Randy Gabel, Lower bounds on the stable range of polynomial rings . . .. .. 117

Fergus John Gaines, Kato-Taussky-Wielandt commutator relations and
characteristic CUIVeS . .........c.coueuiiiiiiininenn..

Theodore William Gamelin, The polynomial hulls of certain su
R. J. Gazik and Darrell Conley Kent, Coarse uniform convergen
Paul R. Goodey, A note on starshaped sets...................
Eloise A. Hamann, On power-invariance .....................
M. Jayachandran and M. Rajagopalan, Scattered compactificati
V. Karunakaran, Certain classes of regular univalent functions .
John Cronan Kieffer, A ratio limit theorem for a strongly subad,

a locally compact amenable group......................
Siu Kwong Lo and Harald G. Niederreiter, Banach-Buck measu

uniform distribution in rings of algebraic integers. .......
Harold W. Martin, Contractibility of topological spaces onto me
Harold W. Martin, Local connectedness in developable spaces .
A. Meir and John W. Moon, Relations between packing and cov

Hiroshi Mori, Notes on stable currents .......................
Donald J. Newman and I. J. Schoenberg, Splines and the logarit
M. Ann Piech, Locality of the number of particles operator . . ..
Fred Richman, The constructive theory of KT-modules . . ... ..
Gerard Sierksma, Carathéodory and Helly-numbers of

CONVEX-product-StrUCTUTES .. ..o vv i

Raymond Earl Smithson, Subcontinuity for multifunctions. . ...
Gary Roy Spoar, Differentiability conditions and bounds on sin,
Rosario Strano, Azumaya algebras over Hensel rings ... .......


http://dx.doi.org/10.2140/pjm.1975.61.1
http://dx.doi.org/10.2140/pjm.1975.61.1
http://dx.doi.org/10.2140/pjm.1975.61.7
http://dx.doi.org/10.2140/pjm.1975.61.7
http://dx.doi.org/10.2140/pjm.1975.61.17
http://dx.doi.org/10.2140/pjm.1975.61.21
http://dx.doi.org/10.2140/pjm.1975.61.29
http://dx.doi.org/10.2140/pjm.1975.61.29
http://dx.doi.org/10.2140/pjm.1975.61.45
http://dx.doi.org/10.2140/pjm.1975.61.45
http://dx.doi.org/10.2140/pjm.1975.61.53
http://dx.doi.org/10.2140/pjm.1975.61.53
http://dx.doi.org/10.2140/pjm.1975.61.59
http://dx.doi.org/10.2140/pjm.1975.61.59
http://dx.doi.org/10.2140/pjm.1975.61.71
http://dx.doi.org/10.2140/pjm.1975.61.71
http://dx.doi.org/10.2140/pjm.1975.61.103
http://dx.doi.org/10.2140/pjm.1975.61.117
http://dx.doi.org/10.2140/pjm.1975.61.121
http://dx.doi.org/10.2140/pjm.1975.61.121
http://dx.doi.org/10.2140/pjm.1975.61.129
http://dx.doi.org/10.2140/pjm.1975.61.143
http://dx.doi.org/10.2140/pjm.1975.61.151
http://dx.doi.org/10.2140/pjm.1975.61.153
http://dx.doi.org/10.2140/pjm.1975.61.161
http://dx.doi.org/10.2140/pjm.1975.61.173
http://dx.doi.org/10.2140/pjm.1975.61.183
http://dx.doi.org/10.2140/pjm.1975.61.183
http://dx.doi.org/10.2140/pjm.1975.61.191
http://dx.doi.org/10.2140/pjm.1975.61.191
http://dx.doi.org/10.2140/pjm.1975.61.209
http://dx.doi.org/10.2140/pjm.1975.61.219
http://dx.doi.org/10.2140/pjm.1975.61.225
http://dx.doi.org/10.2140/pjm.1975.61.225
http://dx.doi.org/10.2140/pjm.1975.61.235
http://dx.doi.org/10.2140/pjm.1975.61.241
http://dx.doi.org/10.2140/pjm.1975.61.259
http://dx.doi.org/10.2140/pjm.1975.61.263
http://dx.doi.org/10.2140/pjm.1975.61.275
http://dx.doi.org/10.2140/pjm.1975.61.275
http://dx.doi.org/10.2140/pjm.1975.61.283
http://dx.doi.org/10.2140/pjm.1975.61.289
http://dx.doi.org/10.2140/pjm.1975.61.295

	
	
	

