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1. Introduction. The set of arithmetic functions has
the structure of a unitary associative ring under functional
addition and the convolution operation defined by

(1.1) (f*g)(n) = awaf(a)g(b) a,b,neN.

It is also a unique factorization domain with respect to con-
volution.

The purpose of this paper is to determine the conditions
under which this structure is preserved when the concept of
convolution is generalized to include a weighting kernel 7:

(1.2) (ffg)n) = aénf (@)g(b)y(a, b)

The problem consists mainly in characterizing the kernels v for
which 7-convolution is associative. There have been several attempts
to answer this question in certain special cases: A. A. Gioia [4]
characterized those kernels ¥ which are functions of the greatest
common divisor of pairs of natural integers (@, ) and for which ~-
convolution is associative; T. M. K. Davison [2], defining 7-convolution
by (F¥9)(n) = Se=n f(@)9(d)7(ab, a), characterized those kernels 7(ab,
a) for which the subset of multiplicative arithmetic functions forms
a group.

Actually, all weighting kernels v can be fully characterized by
the requirement that the set of arithmetic functions remain an as-
sociative, integral ring under 7-convolution and this is our aim (§3
and Theorem 4.2). The conditions under which unique factorization
is preserved are a direct result of this characterization (§4).

Finally, the methods which yield this characterization will be
applied to the more general case of the ring of functions defined on
denumerably-generated abelian groups or semi-groups to obtain similar
results (§5).

2. Preliminaries. Let A denote the ring of arithmetic functions
under the usual convolution (1.1) and A, the set of arithmetic functions
together with the generalized Y-convolution (1.2).

We wish to examine first the nature of those kernels v for which
A, has the struture of an associative, integral ring.

It is immediate that Y-convolution is distributive with respect to
functional addition for any kernel 7. The first condition imposed on
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7 is due to the requiremet that A, be integral and is given by the
following lemma whose proof is elementary:

LEMMA 2.1. A, has no divisors of zero with respect to Y-convolu-
tion if and only if Y(a, b) = 0 for all a, be N.

It will therefore be assumed henceforth that v vanishes nowhere.
Given this assumption, the only requirement 7-convolution must
satisfy in order that A, be an associative, integral ring is:

2.1) [(FF9)7hl(n) = [£*(97M)](n) for all ne N .

Recalling definition (1.2), equation (2.1) is easily seen to be equiva-
lent to

(2.2) Y(a, b)Y(ab, ¢) = Y(a, be)¥(b, ¢) for all a, b, ce N.

The nonvanishing solutions of this “associativity equation” (2.2) will
therefore be those weighting functions v for which A, has the desired
structure. They are analyzed in the next section.

REMARK. 1. 7-convolution is commutative if and only if 7 is
symmetric i.e.

(2.3) Y(a, b) = (b, @) for all @, be N .
2. If v is a nonvanishing solution of the associativity equation
(2.2) then, for all n e N,

YA, m) =7, 1) =71, 1) =k=0

2.4 .
(2-4) k a constant depending on 7 .

Proof. Let first @ = b =1, then b = ¢ = 1 in equation (2.2).

3. From Remark 2 and Lemma 2.1 it follows that if A, is an
associative, integral ring then 7 satisfies condition (2.4). Thus A4,
has both a left and a right identity defined by

1
(2.5) e,(n) = {7(1, 1)
0 otherwise

for n=1.

Therefore if A, is an associative, integral ring it is necessarily
unitary.

3. Characterization of the non-vanishing solutions of the
associativity equation. Consider a given ordering p,, p,, --+ of the
prime numbers of N. Any integer ae€ N has then a prime factor
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decomposition @ = J[ p¥ where the «,’s are positive integers or zero.
Whithin this setting one can state:

THEOREM 3.1. A nonvanishing function Y(a, b) is a solution of
the associativity equation (2.2) if and only if

3.1) Y(a, b) = Z)%y(a, b) o, be N

where @ and tt are nonvanishing functions and p is bi-multiplicative;
Y s symmetric if and only if p=1. Furthermore, letting a =
I p¥iand b = T[T pi be the prime factor decompositions of & and
b, w and p can be expressed in terms of Y respectively by

© max(0,a;—

1) )
(3.2) w(a)=g Il diotv(ps, V(07 PiE -+ )

where {c;} ts a sequence of arbitrary nonzero real numbers,

1
m U)he’n xa, = 0
—rﬁil—)— otherwise
and
) p,) eibs
.9 ) = JT JI | 2w 2D [
=1 55 L7(py, p)

REMARK. In algebraic topology, solutions of the associativity
equation (2.2) are viewed as cocycles and symmetric functions of the
type (8.1), with ¢ =1, as coboundaries. Part of Theorem 3.1 can
thus be restated as follows: “a symmetric cocycle is a coboundary”.
This result can be proved in several ways,' but only in the case of
symmetric cocycles. We propose to give here an elementary arithmetic
proof which extends to the nonsymmetric case as well.

Proof of Theorem 38.1. One can easily verify that any function
of the type (3.1) is a solution of the associativity equation (2.2).

To show the converse, consider first the symmetric solutions 7:
(a) symmetric case. The proof will consist in the repeated application
of the associativity equation (2.2). As an example, let first a = piip32
and b = pfpf2 or, for simplicity, @ = a,a, and b = b,b,. The following
three expressions are a direct result of the associativity equation:

1 For example using group extensions [3] or the Kiinneth formula.
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i Y(b,by, a,) = 7(by, :0,)Y(by, a5)
o (00 2 7, b9
ii _ Y(ay, b)Y(a.b, asb,)
(@, asbb,) = !
) (@ o ) Y(b,, asb,)
(111) ’Y(a, b) = 7(“1“2, b1b2) — '7(0'1, azzblbz)'y(az, blbz)
7(0’17 a’Z)

Since 7 is symmetric in this example, Y(b,b,, a,) = V(ay, b,0,) and we
can therefore make in (iii) the substitutions (i) and (ii) to obtain:

1 7(0,1, bl)’y(aqbu azbz)’\/(bu @3b,)7 (b, a,)
Y(a, @) V(by, asb,)7(b,, b,)

Y(a,b,, asb;)
Y(ay, a3)7 (b, b))

Y(a, b) = Y(@.a,, bb,) =

= Y(a, b1)7(a2, b,)

or

. ay+8q a2+ﬂ2)
iv Y(a, b) = v(p%, phY¥(p, pl)—LPL T D
(iv) (@, b) = V(p%1, iYY(p52, P ), ) (b 2F)
Note that the desired form ,(ab)/w.,(a)w,(b) already emerges in
the last factor of equation (iv) provided we define

,(p}pi?) = w,(ppl) = (vl p3?) .
The first two factors, which involve only one prime each, can also
be reduced to a similar form: let

a—1

w(p*) = 1 v(p, p°) for a > 1

3=t

B4 ) =1

w,(1) = % k + 0 the common value of Y(1, ») = 7(n, 1) .

It is proved in the Appendix (Lemma 6.1), by induction on the ex-
ponents, that 7(p® »°) can then be expressed as:

(3.5) 1, p) = ) ‘("Z‘;ﬁf:aﬁ) :

It is now clear that a proper definition of @ would lead to the
desired expression:

W(pfriipgetee)
w(pipe)o(@ipd)

Y(phpse, pipty) =

The same procedure is followed in the general case: consider any
two integers a = p% ... p%» and b = p ... pi~ where some of the
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exponents may be null. In exactly the same manner one can use
the associativity equation to obtain

(3.6) 7(0,, b) = 'Y(pfl <o Pn, pfl . pﬁn)

= Y(@f, phipgrtte - pitia)y(pgt - - - pgn, PR - - DRY)
7(p, pe - - - Pon)

Since 7 is symmetric, the factor Y(ps2 - -« pn, pft ... pin) can be replaced
by Y(pfr ... pin pf2 ... pi») and substitutions similar to (i) and (ii)
yield:

¥(a, b) = 1 T(ps, PYY(RETH, pists . pinthe)
7(pt, p3* -+ D3R T(PL, p§rTE e pintin)
Xfy(pfi, pEthe ... pgn"'ﬂn)’)’(pzﬁz . pf/‘, a2 .. p@'ﬂ) .
T Pl - P2

(.7)

After cancellation and rearrangement of terms one arrives at

V(a, b) = 7(p, P{YY(pfE - - - pin, P52 .-+ PEn)
Y(pfrth, pgethe. .. pintha)
Y(ps, 52 -+ - Pin)Y(pfL, phe - .. pin)

(3.8)
X

The same procedure can now be followed starting with the middle
factor v(pfz- -« pin, ps2--- pir). Repeated application of this procedure
yields finally:

n N = V(pEithi prittfitt L. pantha
Y(a, b) = II 7(p%, pi) I1 e = —=g
= L Y(pE, PIEt e pin)Y (P, P - pin)
n » . ¥ o+ Bi “z-( 1+B8i+1 e e MEntbn
(3.9) = KII Y(p%, pl) (pam 2 Do P ) .
=1 Y pz ) le * nn)’)’(p pH—l * n")

since a,., = B,.. = 0.

Replacing now 7(p§, pf) with the expression given by equation (3.5)
and recalling definition (3.4) of ®, one can define ®w as follows:

I

(@) = - 11 e oo, pis --)
(3.10) k =

¢’ a sequence of arbitary nonzero real numbers .

This definition is equivalent to the expression (3.2) given for ® in
the statement of the theorem. Note that a, = 0 for those p, which
do not divide a and that the extra factors of the type 7(p, p% ---
@) =k and o,(p}) = 1/k introduced by taking infinite products cancel
out for each 1.
This definition of ® yields the desired expression in the symmetric
case:
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v(a, b) = _w(@)
w(a)w(b)
with w(a) = 0 for all a.

(b) general case. The proof in this case is only a slight modifi-
cation of the previous one. Define

= Y(a, b)
(3.12) a(a, b) = TR

Obviously ¢ =1 if and only if 7 is symmetric. The inclusion of &
in the previous development will suffice to carry through the differences
due to nonsymmetry, after the following lemma will have specified
the multiplicative nature of o:

LEMMA 3.1. The function o(a, b) is bi-multiplicative.

Proof. From the associativity equation (2.2) one deduces:

(i) (g, v)¥(qv, p) = 7(g, vP)V(v, D).

(ii) (g, p)7(gp, v) = V(g, PV)Y(D, V).

(i) (v, @)7(gp, v) = 7(p, @v)¥(q, v).
Substituting in (ii) the expression given for 7(gp, v) in (i) and com-
bining (i) and (ii) one obtains:

(g, v)7(gv, p) _ (g, p)V(p, 90)V(a, V)
7(v, p) 7(p, v)7(D, 9)

After cancellation of Y(g, v) this yields:

v(g, pv) =

o(qv, p) = 0(g, p)o(v, D) .
Since a(p, q) = 1/o(g, p) this also implies:
a(p, qv) = a(p, Q)o(p, v)

and Lemma 8.1 is thus proved.

Repeating now the steps of the proof in the symmetric case,
equation (3.6) becomes

(p, phpstte - e Pt

1
Y(a, b) =
ce) D= 3G pe o

XY(PP -+ e phn, DR+ e e pEIYO(DE - - - DoR, P - DIR)
where the last factor 7 in (3.6) has been replaced by its symmetric

in order to apply the substitutions which led to equation (3.7). After
these substutitions and after cancellation one obtains:
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7(pal+ﬂ1 pa2+ﬂ2 R pan+/5n)
7(a, b) = 2 9 7(pt, P
V(P Pz - i)Y (Rl Pl e pln) T
(3.8’) X ’Y(p;’z “e :n, 52 oo pﬁn)o‘(p':2 .o fbn’ pgz PR pgn)

X O(pse +« - P, ph. pﬁn) .

The product of the last two factors reduces to o(p2: ... pi», pi).
The final result is then:

n " = v ;yi+ﬂi ?i+1+ﬁi+1--- zm—ﬁn
7(a, ) = [T (ot p2) [T —— @ P

S (PSPl - YO, P - bl

(3.9) o (» p( ) i)Y (DT, pit D)
X o%%i(p,, ; — @) , b
1[0, ) = & % hsra, D)

where @ is defined as in the symmetric case and # is defined in the
statement of the theorem by (3.3). Note that if v is symmetric,
¢ =1. Theorem 3.1 is thereby proved in its most general form.

4. Unique factorization in A,. From §2 it results that 4, is
an associative, integral ring if and only if 7 is a nonvanishing solution
of the associativity equation (2.2). As a direct application of Theorem
3.1, one can now determine the conditions under which A, is also a
unique factorization domain:

THEOREM 4.1. The ring of arithmetic functions A, is o unique
factorization domain with respect to Y-convolution if and only if A,
is commutative, that is, if and only if v is symmetric:

Y{(a, b) = 7(b, @) Sor all a,be N .

Proof. The ring A of of arithmetic functions under the usual
convolution operation is a unique factorization domain [1]. To prove
that A, is a unique factorization domain when 7 is symmetric it is
therefore sufficient to establish that A, is isomorphic to A = A,.
Since v is symmetric one can write, by Theorem 3.1,

v(a, b) = _o(ab)
’ w(a)w(b)

where w(a, b) == 0 for all ¢, be N. The map a: A, — A, defined by
a(fy=of fei

is the desired isomorphism.

If 7 is not symmetric, a counterexample indicates that A4, is not
a unique factorization domain. In order to construct such a coun-
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terexample, note first that if ¥ is not symmetric, there exist three
distinct elements a, b, ¢ such that

o(a, b) = a(b, ¢)
where o is defined by (3.12). For if not, one would have
o(a, b) = a(b, ¢) for any @, b, cc N.

In particular, when ¢ = 1, this would imply that o(e, b)) =1 for all
a, b contradicting the assumption that ¥ is not symmetric. Since o
is multiplicative in both variables, one can therefore consider three
primes p, q, r such that

a(q, p) # o(r, p)
Define then

1 if n=09p
F™=10 it nep
(g, p) if n=gq
g.(m) =47, p) if n=r
0 otherwise
Y(p,q9) if n=gq
g.(n) =37, r) if n=r
0 otherwise .

The functions f, g,, g, are prime and
e, = 95 .

It remains to be ascertained that g,, say, is not the Y-product of g,
and a unit. If a unit » were to exist such that

9y = U7 G:
the following equations would have to be satisfied:
(4.1) 9.(@) = u(1)g:(0)7(1, 9)
(4.2) 9:(r) = wD)g:(r)7 (1, 7) .

Equations (4.1) and (4.2) imply respectively that

Ru(t) = 24 — 5(g, p)
9:(9)

and
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ku() = 2L = 5, p)
9:(7)

where k=71, ¢) =71, r)= 0.

But o(q, p) # (r, p), therefore no such unit can exist and A, is not
a unique factorization domain.

The results of the previous three sections can be summarized in
the following theorem, which answers the question initially formulated
in the introduction:

THEOREM 4.2. The set of all arithmetic functions A, has the
structure of an associative, integral ring with respect to functional
addition and Y-convolution if and only if

w(ab)

V(@ 0) = e ®)

t4(a, b)

where @ and tt are nonvanishing functions and pt is bi-multiplicative.
This ring is unitary. It is commutative if and only if ¢ = 1.
Finally, it is @ unique factorization domain if and only if it s
commutative.

5. Generalization to the set of functions over groups and
semi-groups. The methods used in the proof of Theorem 4.2 have
been based solely on the semi-group properties of the natural integers
N and, for the characterization of the solutions of the associativity
equation, only on the group properties of the field of real or complex
numbers. These methods can thus be easily extended to obtain the
following generalized results:

THEOREM 5.1. (a) Let G be a denumerably generated free abelian
group or semi-group or a denumerably generated group with at least
one presentation in which relations do not exceed in number the number
of generators they involve. For any field F and a function 7: G X
G— F, the set of all functions f: G— F is an associative, integral
ring under functional addition and Y-convolution if and only if

_ _ w*(ab)

(5.1) Y(a, b) = Wﬂ(a, b)
where w*: G— F and p: G— F are nonvanishing functions and
18 bi-multiplicative. This ring is commutative if and only if p =
1. It is a unique factorization domain if and only if it is com-
mutative.

(b) Let G be as above, H any abelian group. Then o function
7: G X G— H is a solution of the associativity equation
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Y(a, b)v(adb, ¢) = Y(a, be)Y (b, ¢) a,b ceG

if and only if it is of the type (5.1)

(¢) In both previous cases, letp;, i =1, 2, ---, denote the gener-
ators of G and a = [I7 p%, b = [ p% be any two elements of G.
Then pt and w* can be expressed in terms of 7 respectively by

(5.2) a, b) = 11 i [ 22e 22T
=151 LY (p;, Dy
a,, B; positive, megative or null integers
and
1 ) ) o
(5-3) w*(a) = H ————xF ()Y (PF, piii’ -+ +)

71, 1)

where wy(pf) = TI55 7(p,, p) for a; > 1, op%) = 1LY (v, 9 for
a; 20, wy(p,) = 1 amd x, is an undetermined constant if p, appears
i mo relation of G or if G is free; otherwise x; ts determined in
terms of wvalues of ¥ on pairs of the type (P, Py -+ Py) T =g +++ 1,
by the relations of G which involve p;.

REMARK. Here again, part (b) of the the theorem has been proved,
for symmetric ¥ only, by S. Eilenberg and S. MacLane [3] in the
case of a free group G and by B. Jessen, J. Karpf and A. Thorup
[5] in the case of any abelian group G and a divisible abelian group
H. Our proof extends to nonsymmetric functions v for any abelian
group H and for the groups G indicated in the statement of the
theorem.

Proof of Theorem 5.1. The proof of Theorem 4.2 applies here,
unaltered in the case of a free semi-group G and with modifications,
in the case of a free group or a group with relations, only in the
characterization of the solutions of the associativity equation (2.2).

If G is free, definition (3.4) of w, must simply be replaced by
definition (6.5) of the appendix to include negative as well as positive
exponents.

If G has relations, note that equalities (3.6") through (3.9") remain
valid, as they are entirely based on the associativity equation (2.2)
and only solutions 7 of that equation are considered. The definition
of ® however must be modified to ensure that it is well defined: if
G has relations of the type

p;:‘...p;’r—_—]_
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then one must have, for a, = 9,0, + 0,1 =7, -+, r
(5.4) (p§i - -+ prr) = (P -+ PY)

Redefine then w as follows:

n—1
(5.5) w*(pfr .- pin) = ilelm?iwo(pi’f)wo(p?f, Dt < oo DI En@(Din)

where ®, is defined by (6.5). (For the sake of clarity w* is defined
in terms of finite n, but here again infinite products may be taken
as the extra factors thus introduced cancel out.)

One can immediately see from equation (8.9) that, with this
definition of w*,

_ _ w*(ab)
Y(a, b) = my(a, b) .
It is also a matter of verification, though much more elaborate, that
w* is indeed well defined.

The x,’s are determined in terms of values of 7 on pairs of the
type (9%, pk -+ p¥), 1 < J, +++, 7, by the requirement (5.4) and by
the relations of G which involve p,, provided these relations do not
exceed in number the number of generators they involve.

For example, in the special case of a finite cyclic group of order
0, the requirement

w*(p"*’) = w*(p°) 0<i<p
implies
s 7o+8~1 . 5 8—1 .
x7° ]H (o, p) =% 1 7(», )
- i
or
70+8~1 .
z JI 7(p, ) =1.
j=é
Since

Wﬁ;ﬂp, :o")=L (v, p )]

i=

one obtains

x” = [:[j:“/(p, 10")]_77

and
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o—1

o =17, ] "

J=

6. Appendix. For any given prime number or generator p and
positive, negative or null exponents «, B, denote Y(p% p?) by

(6.1) I'(e, B) = 7(p% D) .
The associativity equation (2.2) then becomes:
(6.2) I'(a, B (@ + B, 0) = I'(e, B + 6)I'(B, 9) a,B,0eZ

LEMMA 6.1. Any solution of the associativity equation (6.2) is
symmetric and can be expressed as

(6.3) I'(e, ) = Q@ + B2 (a)27(8) for @, Be Z

where
Qa) = :1:[:]’ 1, e for @ > 1, ¢ a nonzero constant
(6.4) Qa) = E[ '@, j)e for a <0
201) = ; .

These results remain walid when the domain of I' is limited to
positive and null integers only.

REMARK. Reverting to the usual notation and letting ¢ =1,
definition (6.4) can be rewritten as:

w(p°) = ﬁ 7(p, p) for @ > 1

(6.5) wy(p?) = T v~(p, P for a <0
7=0
wo(p) =1.

Proof of Lemma 6.1. The symmetry of I' is proved by repeated
induetion: it is already known from equation (2.4) that

ro,a=r(0=r00 ==t for all acZ
Let « =6 =1 in (6.2):
ra,pre+1,1n)=rag+nren.
Induction on g yields

re1ny=ra,ps. for all e Z
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Assume now that

(6.6) Ir'®e,n =1Im,A)

for any e Z and =0, .--, 7,
Then in particular

(6.7) I'(e, o) = I'(1,, €) for 0 < [e] =[]
and, from the associativity equation (6.2) with &« =6 =7, 8 = ¢:
(6.8) I, + ¢ 1) = ', 1, + ¢) .

Thus, for ¢ =1,

(6.9) I'(pn, + ¢, 770) = F(’Vo; 19, + €) .

One can now apply induction on g using the associativity equation
(6.2) as follows:

(Mo, pm, + (¢ + 1)1, + €, M) = I'(n,, (¢t + 1), + ) (1, + €, 1)

Therefore (6.6) is true for all » = p7, + ¢ and I is symmetric.
To prove the rest of the lemma, define, for any solution I” of
the associativity equation (6.2):

(6.10) 0(e) = I'(A, a) = I'(a, 1) .

This definition is valid since I” is symmetric. From the associativity
equation (6.2) one deduces:

(6.11) '@, B) = (8 + 1)(8)6(1) for all e Z
and
6.12) I'(—1, B) = 6(—1)67(5 — 1)6(0) for all pe Z

Applying induction one can now obtain, again from equation (6.2):

(6.13) I'a, B) = Ij 0(8 + )07 ()00)  for a>0,8¢ Z
and
(6.14 I ) =L 078 + )00o(E)  for a<0,pcZ.

Given these expressions for I and definition (6.4) of 2, it can be
verified that equality (6.3) is true.

This proof is essentially unaltered if the domain of I" is limited
to the positive and null integers.
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REMARK. It is immediate that, conversely, any function I" of

the type (6.4) is symmetric and a solution of the associativity equa-
tion (6.2).
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