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Summary. Fix « < 0. We will describe the polynomial
hulls of compact subsets of C? that are invariant under the
transformations 7%, 0 < 0 < 2x, defined by

0.1) To(z,w) = (e'%,6"%w) , (z,w)e C*.

1. Introduction. Let X be a compact subset of C2%. In [10],
J. Wermer describes the polynomial hull X of X, for a certain class
of sets X 'which are invariant under the one-parameter group of
transformations

1Y) (z, w) — (e"z, ¢ *w) , 002,

He develops an idea for introducing analytic structure in X’\X, and
he shows in particular that every point of X\X lies on an analytic
dise in X.

Our aim is to combine Wermer’s ideas with some elementary
results in potential theory, in order to describe the polynomial hull
X of an arbitrary compact subset X of C® invariant under the group
(1.1), or more generally under the transformations defined by (0.1).

If the number « is irrational, then the transformation group
defined by (0.1) is dense in the two-parameter group of transformations

1.2) (z, w) — (¢, e'*w) , 054, <2,

If X is invariant under the group (0, 1), then X is also invariant
under the groups (1.2). Such sets are said to be circled. The de-
scription of the polynomial hull of compact circled sets is classical
(61, 121, [3], [4, S§III. 8], [7, §2.4], [9, §14]). We may confine our
attention to the case in which « is rational.

Consider next the case @ = 0. The transformations (0.1} then
assume the form

(1.3) (z, w)y — (e"z, w) , 0=0<2n.

If X is invariant under the transformations (1.3), its polynomial hull
can be described as follows [9]. Let J be the projection of X into
the w-plane, and define

r(w) = sup {|z]: (¢, w)e X}, wed.

Define a function R on the polynomial hull J of J by requiring that
log R be the lower envelope of the family of functions w which are
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superharmonic in a neighborhood of J and which satisfy « = logr
on J. Then

X ={(z, w:wed, |z] < Rw)} .

(This description is valid for subsets of C*, providing w is interpreted
as an (n — 1)-tuple in C*™, and “superharmonic” is replaced by “pluri-

superharmonic”.)
R In §5 we formulate our main result, Theorem 5.2, which describes
X in the case that @ = —1, that is, in the case that X is invariant

under the group (1.1). The description again involves the envelopes
of certain families of superharmonic functions.

Sections 2 through 4 include some preliminary results, while the
proof of Theorem 5.2 is given in §§6 and 8. In §9, we indicate how
the discussion ean be modified to cover the case in which @ is an
arbitrary negative rational number. In §10 we observe that every
point of X'\X lies on an analytic disc in X, and that P(X) = C(X)
whenever there are no analytic dises in X.

A source for standard definitions and notation is [4]. The complex
plane will be denoted by C, and the open disc with center z and
radius 0 will be denoted by 4(z; o).

The space of all continuous complex-valued functions on X is
denoted by C(X). The uniform closure in C(X) of the analytic poly-
nomials is denoted, as usual, by P(X). Then X can be identified with
the mg.ximal ideal space of P(X), and P(X) is isometrically isomorphic
to P(X).

2. A result from potential theory. Let K be a compact subset
of C, such that C\K is connected. Let ® be an upper semicontinuous
function from K to [—co, ). Let & be the family of real-valued
functions + which are continuous and superharmonic on a neighborhood
of K, and which satisfy v = ® on K. Let ¥ be the lower envelope
of &:

¥(z) = inf {v(2): v e &} .

Then ¥ is an upper semi-continuous function from K to [— oo, o)
which satisfies

P() = ¥(2), ze K.
THEOREM 2.1. Let K, ® and + be as above. Let 2 be the subset
of z€ K such that (z) < ¥(2). Then 2 is an open subset of C, and

¥ 4is harmonic on 2.

Proof. Since @ is upper semi-continuous, there exists ¢ > 0 such
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that
@(Z) <ec, ZeK .

Then also Z(z) < ¢ for all z¢ K.

First we show that ®(z,) = ¥(z,) if 2,€6K. This depends only
on the existence of a barrier at z,, and the proof is classical. Indeed,
let € >0, and let N be a neighborhood of z, such that @(z) < 2(z,) + €
for ze NN K. Since z, is a regular point for the “outer” Dirichlet
problem (or since z, is a peak point for P(K)), there exists a function
4 harmonic in a neighborhood of K, such that u >0 on K, u(z,) <e¢,
and #(z) > ¢ — ®(z) for ze K\N. The function + = u + +(z,) is then
harmonic in a neighborhood of K, 4 > @ on K, and +(z,) < ?(z,) + &.
It follows that ¥'(z,) < ®(z,) + €, this for all ¢ > 0, so that

T(z) = P(z,) » 2,€0K .

We have shown that 2 is a subset the interior of K.

Next we wish to show that £ is open. We will use the following
standard estimate, which follows for instance from [8, Theorem III.
67].

LEMMA 2.2. There is a positive function x(t), ¢t > 0, such that
%1(@) — 0 as t— 0, which has the following property. If 4, = 4(Cy; 0)
s any open disc, if W is a domain such that {,e WC 4, if E is a
connected subset of A\W which meets 04, and if d = inf {|{{ — &|:
Ce E}, then the harmonic measure tt, on OW for §, satisfies

(04, N OW) =< x(d/d) .

Now let {,e 2. Choose a so that @) < a < ¥(,). On account
of the upper semi-continuity of @, it suffices to show that ¥{{) = e
for { near {,. For this, it suffices to find d, > 0 such that v = «a
for all {e 4(; d,) and for all functions « which are continuous and
superharmonic in a neighborhood of K and satisfy + = @ on K.

So let ¥ be such a function. Replacing ++ by min (v, ¢), we can
assume that 4 = c.

Let 4, = 4(¢,; 6) be an open disc such that 4, K° and such that

Q) < a, Led,.

The set {{ € 4,: v() > a} is open and includes {,. Let W be the com-
ponent of this set which includes . Then + = a on 4,N 0W, while
= aon dd,NOW.

We claim that every component of 4,\W meets 64,. Indeed, sup-
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pose not. Then there is a connected open subset U of 4, such that
oUc W, and U includes a portion of dW. Now UU W is connected,
and (UU W)coW, so that 4 = a on o(U U W). Since v attains its
minimum value @ over U U W on the portion of 0 W inside UU W, +
is identically equal to @ on U U W. This contradicts the definition of
W, and the claim is established.

Let f, be the harmonic measure on é W for {e¢ W. Define

() , Ce W.

(%) {Saw vl

On account of the preceding paragraph, every point of 0 W is a regular
point for the Dirichlet problem, so that « is continuous in a neigh-
borhood of K. Evidently +r, is superharmonic. Since v, = a on oW,
also +, = a on W. Consequently +, = @, and +, € &.

Now

P —a =@ —a=| [0 - a0 .

Since =a on 4,N0W, the integral is bounded above by
(¢ — @)t (04,N 3 W). The estimate of Lemma 2.2 then yields

7)) —a=(c— a)df),

when d is the distance from {, to dW. Since ¢ > a and ¥ () > a,
the quantity x(d/0) is bounded away from zero, independent of .
Consequently the quantity d is bounded away from zero, independent
of 4. Let d,> 0 be a lower bound for such d. From the definition
of d, we obtain 4({; d,) € W, hence + > a on 4(C; d,), this for all +,
so that ¥ = a on 4({; 0,). We conclude that 4((;0d,) 2, and 2 is
open.

Now the restrictions of the funections in & to 2 form a Perron
family on 2. The classical proof then shows that their lower envelope
¥ is either harmonic on 2 or is equal to —c on 2. Since ¥ > @ on
2, the latter alternative is excluded, and the theorem is proved.

3. Amnalytic discs. The maximum modulus principle allows us
to conclude that if V is an analytic variety in C* whose boundary
lies in X, then VcX. We will need a slightly more general assertion
to the same effect.

A subset S of C* is an analytic disc if there is a continuous
one-to-one map @ of an open disc 4, in the complex plane onto S,
such that fo@ is analytic on 4, for every analytic polynomial f on
cn.
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LEMMA 3.1. Let Y be a compact subset of C*. Let E be a bounded
subset of C" such that E\ECY, and such that E is a union of analytic
discs. Then ECY,

Proof. Let ye YU E be a peak point for P(Y U E). Then y can
lie on no analytic disc in Y U E; otherwise any function peaking at
y would be constant on that dise, an absurdity. Consequently the
peak points for P(Y U E) all lie in Y. Since these are dense in the
Shilov boundary, the Shilov boundary of P(Y U E) is contained in
Y. It follows that Ec Y.

4. A lemma of B. Cole. The next lemma is due to by B.
Cole, who uses it in his work extending the classical inequalities of
A. N. Kolmogoroff, M. Riesz and A. Zygmund to a function-algebra
setting’.

LeEMMA 4.1. Let J be a compact subset of C. Let ted, and let
7 be a measure on J which is a Jensen measure for {, with respect
to the algebra P(J). Then

[ = v

for any real-valued function ~ which is superharmonic in o neigh-
borhood of J.

Proof. Recall that a Jensen measure for {, is a probability
measure 7 on J which satisfies

log | /@) = | 10g 1 147

for all fe P(J). In particular,

@.1) loglco-slgSlog;c—sldn(o, EeC.

By a theorem of F. Riesz, + is the logarithmic potential of some
positive measure \ defined in a neighborhood of J:

A

¥ = — |log 1L~ ¢lan@) , ted.

Integrating with respect to 7, interchanging the orders of integration,
and using (4.1), we obtain

[#@dn© = - {10216 - elave = v ,

! Communicated to a Colloquium audience at Tulane University, December, 1970.
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as required.
5. Formulation of the theorem.

In §§5 through 8 we assume that X is a compact subset of C*
that is invariant under the transformations

(5.1) R Ty (z, w) — (6?2, ¢ “w) , 0so0<2r.
Define F: X —C by
(5.2) F(z, w) = zw , (z, w)e X.
The fiber M, of X over ¢ is defined by
M. =F™Q, te F(X).

The various M, partition X into disjoint closed subsets. Evidently
X is invariant under the T, and one checks easily that each M, is
invariant under the Ty. For {e F(X), define

(5.3) Q(C) = sup {|z]: (z, w)e M},
(5.49) R =sup{{w]: (z, w)ye M} .
Since zw = { on M,

(5.5) inf {|z[: (2, w) e M} = [L|/R(Q) ,

for e F(X)\{0}. In particular; the infimum is strictly positive, for
¢+#0.

LEMMA 5.1. If ¢e F(X), L+ 0, then M, coincides with the circle
or closed annulus described by

._1€]
(5.6) (e G20 o= 121 = QO
Furthermore, if 0¢€ F(X), then M, coincides with the set
(5.7) {z, 0): [z] = Q(0)} U {(0, w): |w| = R(0)} .

Proof. Suppose { # 0. On account of (5.5) and the definitions
of @ and R, M, is included in the annulus (5.6). Furthermore, on
account of the invariance of M, under the T,, M, includes the boundary
circles of (5.6). Since the annulus described by (5.6) is “analytic”,
M, includes the entire annulus. That proves the first statement of
the lemma, and the proof of the second statement is similar.

To describe X, it now suffices to determine F(X), and to determine
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the upper semi-continuous functions @({) and R({). Since the problem
at hand is invariant under an interchange of coordinates, any expres-
sion for Q) will lead to an expression for R({). Consequently it
suffices to describe F(X') and Q.

Let ¢ be the upper semi-continuous function on F(X) defined by

q(@) = sup{lz|: (z, w)e X N M}
= sup {|z]: (#, {/z) € X} .

Let K be the polynomial hull of F(X):

(5.8)

(5.9) K=FZX).

Let & be the family of real-valued functions + such that « is
superharmonic in a neighborhood of K and + = log ¢ on F(X). Define

(5.10) 7@ =inf {y(Q):ve &}, {eK.
The following theorem yields the description of X that we are

aiming at.

THEOREM 5.2. Let X be a compact subset of C* that is invariant
under the Ty given by (5.1). Let F, Q and + be as defined above. Then
F(X) coincides with the polynomial hull K of F(X). Furthermore,

(5.11) Q) = exp (¥() , {eK.

The proof will be postponed to §8. Here we make two preliminary
observations.

A S
LEMMA 5.3. F(X) is included in K = F(X).

Proof. This follows from an elementary principle in Banach-
algebra theory, since F'e P(X).

LEMMA 5.4. If Ce F(X), then
(5.12) Q) = exp (¥(Q)) .

Proof. Let {,e€ F(X), and let (2, w,)e M. Let v be a Jensen
measure on X for (2, w,) with respect to the algebra P(X). Then
the projected measure F*(v) is a Jensen measure on F(X) for {, with
respect to the algebra P(K). For any + € & log|z,| < Slog |z|dy(z,
w) < S log q(Q)d(F*v)({) = S«;r(C)d(F*v)(C). By Cole’s lemma, the latter

integral is bounded by ;). Taking the infimum over + and the
supremum over (2, w,) € M, we obtain (5.12).
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6. Proof of Theorem 5.2: A special case. In this section, we
assume that

F(X) = 6K,

that is, F(X) forms the boundary of its polynomial hull. In this
case, the lower envelope ¥ of & is given by

log q({) , {edK,

[/ ES
© {S log g()du(e) tex,

where #, is the harmonic measure on 0K for {€ K’ We will show
shortly that the integral converges.
Define a lower semi-continuous function p on 0K by

p@) =inf {|z]: (2, w)e X N M}, {edK.
Then —o < p =<q. Let ¢> 0 satisfy
2], lw] < ¢, (2, we X .
The relation zw = { then yields the estimate
log|z| = log || — loge, (z, we XN M, .
Taking an infimum, we obtain
log p({) = log [{] — loge, {ecoK.

A simple application of Fatou’s Lemma reveals that the function
log |{] is integrable with respect to harmonic measure on 0K [1, p.
170]. Consequently log » and log q are both integrable with respect
to f,. In particular, ¥ is finite.

Define
log p(C) , {edK,
o= {S log p(S)ds1(8) Ceke.
Then @(%) > — o on K°, and
00 <@, Cek.

Since each component of K° is simply connected, every point of 0K°
is a regular point for the Dirichlet problem, and the mass of g
accumulates towards & as {e K° tends to £c0K. On account of the
semi-continuity of log » and log ¢, we obtain

(6.1) log p(&) < lim inf () , e oK,
KO03(-¢
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(6.2) log ¢(¢) = lim sup ¥ () , geoK .
KY3(-¢

Let *¥ be a conjugate harmonic function on K° for ¥, and set

9@) = exp [T() + T )], LeK°.

Then ¢ is analytic and bounded on K°, and |g| = exp(¥). From (6.1)
and (6.2) we obtain

(6.3) p(¢) = liminf [g({)| < limsup |g({)| < 9(8),

where { e K° tends to £c oK.
Define

V = {(9(0), &/9(0): {e K% .

Then V is a union of analytic dises in C®. The relation (6.3) shows
that if {,e K° tends to £€ 0K, then any cluster point (2, w,) of the
(9(,), €./9(C,)) satisfies zw, = & and p(8) = |2,] < q(¢). In particular,
any such cluster point (2,, w,) belongs to M,. It follows that ViV X.
By Lemma 3.1, VC X.

For each e K°, (g(£), £{/9()) belongs to M., so that F(X) includes
K’. From Lemma 5.3 and the hypothesis F(X) = 0K, we conclude
that F(X) = K. Furthermore, if { € K° then Q() = |9(0)| = exp (T ({)).
From Lemma 5.4 it follows that @ = exp(¥) on K° hence on K.
This proves Theorem 5.2, in the case at hand. In this case, though,
we can give a more explicit description of X.

THEOREM 6.1. Let X be a compact subset of C* that is invariant
under the transformations (5.1). Define F, @, v and M, as in
Sections 5 and 6. Suppose that F(X) forms the boundary 0K of a
polynomially convex subset K of C. Let 8 be a component of K°,
and let Ce Q. If 0¢ Q, then

M, = {(2, {/z): 0(0) < log |z| £ ¥ (Q)} .
If 0 2, then
M. = {(z, C/2): 2(0) + G, 0) < log |2z| = ¥(Q)},
where G(C, 0) is the Green’s function for 2 with singularity at 0.

Proof. In view of Lemma 5.1 and the special case of Theorem
5.2 proved above, we need show only that

o), teR,0¢2,
o) + G 0), LeR0e.

The definition of p and the relation zw = { show that

(6.4) inf {log |z]: (z, w)e M} =
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sup {log |w]: (z, w)e XN M} = log |{] — log p({), oK, {+0.

Applying the version of Theorem 5.2 already proved, with the var-
iables interchanged, we obtain

sup {log wl: (5, w)e My} = | [log |&] — log p(@dr(®)
= {1og |5l (o) - 0(0), e 2.
The relation zw = { then yields

inf {log |2]: (z, w) € M,} = O() + log [£] — Slog &l d(@)

for {e 2. Now Slog |&|d(€) is equal to either log|{| or log || —

G(¢, 0), depending on whether 0¢ 2 or 0e 2. That establishes (6.4),
and the proof of Theorem 6.1 is complete.

7. An example. As an example, we consider a class of tori
which are close to those treated by Wermer [10].

Let I" be any simple closed Jordan curve in C which does not
pass through the origin, let ¢ be a positive continuous function on
I, and let

X ={(zC/e):Ce T, |z| = q@)} .

Then X is a torus that is invariant under the transformations (5.1).
In this case, F(X) = I', while K is the union of I" and the bounded
component 2 of C\I'. Furthermore, p = ¢ = Q on I'. There are two
cases that occur.

Suppose 0¢ 2. Let ¥ be the harmonic extension of log ¢ to 2,
let *¥ be a conjugate harmonic function for ¥ on 2, and set g({) =
exp (T() + 1*¥ (), L e 2, as before. Define

V. = {(¢“9(C), e*C/g(): e B0 a < 2rm.

Then the V, are disjoint analytic discs whose boundaries lie on X,
and X is the union of X and the V,’s.

On the other hand, suppose 0 € 2. Define g and the V,’s as above.
Also, define an analytic function % on 2 so that

log [R(Q)| =log |L| — G, 0) —¥(), L2,
and set
W, = {(e7*C/r(Q), e*n()): (e R}, 0= a < 2n.

The W, are disjoint analytic dises whose boundaries are included in
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X. The topological boundary of X is the disjoint union of X, the
Vs, and the W,’s. In some sense, X is a deformed bidisc.

If the curve I' passes through the origin, one must assume that
g > 0 on I'\{0}, while

(7.1) lim sup (2G| < o

270 €|
In this case, define X to be the closure of the set of pairs (z, {/2),
such that eI, { # 0, and |z]| = q¢(). The condition (7.1) guarantees
that X is bounded. The polynomial hull X of X is the union of X,
and the analytic dises V,, 0 < & < 27, together with an analytic disc
or two in the fiber M,.

8. Proof of Theorem 5.2: The general case. We return to
an arbitrary compact subset X of C? that is invariant under the
transformations (5.1). Recall that K is the polynomial hull of F(X).
The compact set ¥ = F'(0K) is also invariant, and F(Y) = oK.
Applying the results of §6, we find that F(?) = K. Consequently
F(X’) = K. To complete the proof of Theorem 5.2, it suffices to
establish the identity (5.11).

Set log () = —c on K\F(X), and let 2 = {{ € K:log q({) < T(0)}.
By Theorem 2.1, 2 is an open subset of K° on which ¥ is harmonic.
Let E be the set of (2, w)e C* such that { = zw belongs to 2 and
loglz| = ¥(). To complete the proof, it will suffice to show that
EcX.

Let (2, w,) € E, and let *¥ be the harmonic conjugate function
for ¥ defined near ¢, = z,w, and satisfying *¥({,) = arg z,. Define
9(0) = exp (T (&) + i*T()) as before. Then as { varies near {, the
points (¢({), £/9(2)) describe an analytic disc in & which passes through
(2o, wy). Consequently E is a union of analytic discs.

In view of Lemma 3.2, it suffices now to prove that E\Ec X.

Suppose (z,, w,) € E\E. Choose (z,, w,) € E such that (z,, w,) con-
verges to (2, w,). Then{, = z,w, € 2 tends to {, = z,w,, and evidently
L, 08. Since ¥ is upper semi-continuous, log |z,| = limlog|z,| =
lim?(E,) £¥E) = log Q). On the other hand, let « be the harmonic
extension of log q|,x to K. Then 4 < ¥. From (5.5) and the results
in the special case already treated,

log |C] — log R(§) = w(), Le K°.

Using the upper semi-continuity of R, we obtain log |2,| = lim log |2,| =
lim 7 (€,) = limu(Z,) = log [{,| — limlog R({,) = log |{,| — log R(Z,).
Consequently

[GI/REG) = 2] S Q&) .
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From (5.5) and the descrlptlon of M, given in §5, we conclude that
(20, wo) € M;,. Hence E\EC X. The proof is complete.

9. The case in which a = —m/n. Let m and » be positive
integers that are relatively prime. In this Section, we suppose that
X is invariant under the transformations (2, w) — (€2, e~'™'™0y),
Equivalently, X is invariant under the transformations

9.1) (2, w) — (ez, e~"0yw) , 0s0=<2r.

The polynomial hull X is also invariant under the transformations
9.1).

The description of X can be obtained by modifying slightly the
discussion of §85 through 8. In the case at hand, the polynomial
map F from X to C and the fibers M, are defined by

(9.2) Flz, w) = z"w" , (2, we X,
9.3 M, = F'({Q)) , eC.

The fibers M; are invariant under the transformations (9.1). Again
define Q(&) by (5.3) and R() by (5.4). If { # 0, the fiber M, is the
annulus or circle given by

= (v, TP [CP I RE ™ S M S QY

Note that the various choices of the nth root of { lead to the same
set above. The description of M, is idential to (5.7). To describe
X, it again suffices to describe F(X), and to describe the function Q.
The final result is almost identical to Theorem 5.2, and so is the
proof. We state the result formally, but omit the proof.

THEOREM 9.1. Let X be a compact subset of C* that is invariant
under the transformations (9.1). Define F as in (9.2). Then F(X)
coincides with the polynomial hull of F(X). Furthermore, if Q, q
and T are as defined in (5.8), (5.8) and (5.10) respectively, then

QQ) = exp @) , (e F(X).

10. Amnalytic structure in X. Asa consequence of the descrip-
tion of X given above, one can extend Wermer’s results on analytic
structure in X to the compacts sets X treated here.

THEOREM 10.1. Fix a =0, let X be a compact subset of C* that
18 invariant under the Ty, deﬁned in (0.1). Then every point of
X\X lies on an analytic disc in X. Furthermore, P(X) = C(X) if
and only if there are no analytic discs in X.
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Proof. We consider only the case &« = —1. The other cases are
similar.

Let X be a compact subset of C? that is invariant under the
transformations (5.1). We will employ the notation of §5.

Suppose (2, w)e X does not lie on an analytic disc in X. Let
{ = zw, so that (2, w)e M,. Since (2, w) does not lie in an analytic
annulus in M, either |z| = Q({) or |w| = R({). Suppose for the sake
of definiteness, that [z| = Q). If (e, then (2, w) lies on one of
the analytic discs in X constructed in the proof of Theorem 5.2 (cf.
the third paragraph of §8). We conclude that {¢ 2. Hence ¢({) =
Q). From the definition of ¢ and the invariance of X, we conclude
that (2, w)e X. That proves the first assertion of the theorem.

If P(X) = C(X), then X= X, and evidently there are no analytic
dises in X.

Conversely, suppose that there are no analytic dises in X. Let
Y=F"'0K), as in §8. Then Y is invariant, F(Y)= 0K, and
F(?) = K. Furthermore, according to the description given in §6,
¥n F(K° is a union of analytic discs. We conclude that K° is
empty. Hence K = F(X). By Lavrentieff’s Theorem, P(K) = C(K).
By the theory of sets of antisymmetry [4, Theorem I1.13.1], each
restriction algebra P(X)] x; 18 a closed subalgebra of C(M), and P(X)
consists of all funections in C(X) which belong to P(X)]MC for all
te K. Now our hypothesis on X shows that each M, is a circle (or
a point, if { =0). Furthermore, polynomials in z*w and zw® are
dense in C(M,). Consequently P(X)|,, = C(M;), and P(X) = C(X).
In particular, X =X. The proof is complete.

The following question is open (cf. [5]): Does P(X) consist of
precisely those functions Fe C(X) such that F is analytic on each
analytic disc in X?
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