A NOTE ON STARSHAPED SETS

PAUL R. GOODEY
A NOTE ON STARSHAPED SETS

P. R. Goodey

If S is a compact subset of \mathbb{R}^d, it is shown that S is starshaped if and only if S is nonseparating and the intersection of the stars of the $(d-2)$-extreme points of S is non-empty.

Let $S \subset \mathbb{R}^d$. The $(d-2)$-extreme points of S are by definition those points of S such that if $D \subset S$ is a $(d-1)$-dimensional simplex then $x \in \text{relint } D$ (the relative interior of D). The totality of $(d-2)$-extreme points of S is denoted by $E(S)$. For each $y \in S$ we define $S(y)$, the star of y by $S(y) = \{z: [y, z] \subset S\}$, where $[y, z]$ denotes the closed line segment from y to z. S is said to be starshaped if $\ker S \neq \emptyset$ where $\ker S = \{S(y): y \in S\}$. In [2] it is shown that if S is a compact starshaped set in \mathbb{R}^d then $\ker S = \bigcap \{S(y): y \in E(S)\}$. Thus the following question arises: if S is such that $\bigcap \{S(y): y \in E(S)\} \neq \emptyset$, under what hypothesis is S starshaped? It is clearly desirable that the hypothesis should be as weak as possible in order to indicate to what extent $\bigcap \{S(y): y \in E(S)\} \neq \emptyset$ implies that S is starshaped. In [3] it is shown that one suitable hypothesis is that S should have the half-ray property, that is, for any point x in $\mathbb{R}^d \setminus S$ there is a half-line l with vertex x such that $l \cap S = \emptyset$. Now we note that this hypothesis is a rather strong one especially as it is being used to deduce the fact that a certain set is starshaped. Thus one suspects that a much weaker hypothesis might suffice. This suspicion is further strengthened by the example given in [3] to show that, in fact, some hypothesis is necessary. More precisely, the example given is a separating set that is, its complement is not connected. The purpose of this note is to prove the following

Theorem. If $S \subset \mathbb{R}^d$ is a nonseparating compact set and $\bigcap \{S(y): y \in E(S)\} \neq \emptyset$, then S is starshaped.

Proof. Let $z \in \bigcap \{S(y): y \in E(S)\}$. We shall show that for any x in $\mathbb{R}^d \setminus S$, $l(x, z) \cap S = \emptyset$ where $l(x, z)$ is the half-line with vertex x which does not contain z but is such that the line containing $l(x, z)$ does contain z. Clearly this suffices to show that S is starshaped.

Choose x_0 in the complement of the convex hull of S, then $l(x_0, z) \cap S = \emptyset$. Now since S is a nonseparating compact set, its complement is a path-connected unbounded open set (see [1, p. 356]). Thus any point in $\mathbb{R}^d \setminus S$ can be “joined” to x_0 by a finite polygonal path in $\mathbb{R}^d \setminus S$ such that if t is any segment of the path then the line
containing \(t \) does not contain \(z \).

Now we assume \(l(x, z) \cap S \neq \emptyset \) for some point \(x \) in \(\mathbb{R}^d \setminus S \) and seek a contradiction. Let \(P \) be a polygonal path as described above with consecutive vertices \(v_1 = x, v_2, v_3, \ldots, v_n = x_0 \). Put \(i = \max \{ j : l(v_j, z) \cap S \neq \emptyset \} \) then \(1 \leq i < n \). Let the closed segment \([v_i, v_{i+1}]\) be the image under the continuous function \(f \) of the unit interval, with \(f(0) = v_i \) and \(f(1) = v_{i+1} \). Note that if \(p \neq q \) then \(l(f(p), z) \cap l(f(q), z) = \emptyset \). Now \(l(f(1), z) \cap S = \emptyset \) and so, since \(S \) is compact we can put \(p = \max \{ q : l(f(q), z) \cap S \neq \emptyset \} \) and then \(0 \leq p < 1 \). Let \(y \) be the point of \(S \) on \(l(f(p), z) \) which is furthest from \(z \). Now suppose \(D \) is a \((d-1)\)-simplex with \(D \subset S \) and \(y \in \text{relint } D \).

Then \(y \) must be the mid-point of a segment which is contained in \(S \cap Q \) where \(Q \) is the plane through \(z, v_i, v_{i+1} \). But this is impossible because of the definition of \(y \) and the fact that \(l(f(q), z) \cap S = \emptyset \) for \(p < q \leq 1 \). Hence \(y \in E(S) \) and so \(f(p) \in S \). This contradiction shows that \(l(x, z) \cap S = \emptyset \) and thus completes the proof.

Finally, as a result of the above theorem and the comments made in [2] we are led to ask: if \(S \) has the half-ray property and has a point which "sees" just the extreme points of the convex hull of \(S \) and not all the \((d-2)\)-extreme points, is \(S \) necessarily starshaped? The following example shows that the answer is negative:

\[
S = \{(x, y) \in \mathbb{R}^2 : |x| \leq 1, |y| \leq 1\} \setminus \{(x, y) \in \mathbb{R}^2 : |x| < \frac{1}{2}, |y| > \frac{1}{2}\}.
\]

Similarly we observe that if we rotate \(S \) about the \(y \)-axis we obtain a three dimensional set with the required properties.

References

Received May 30, 1975, and in revised form July 4, 1975.

Royal Holloway College