SCATTERED COMPACTIFICATION FOR $\mathbb{N} \cup \{p\}$

M. Jayachandran and M. Rajagopalan
SCATTERED COMPACTIFICATION FOR $N \cup \{p\}$

M. JAYACHANDRAN AND M. RAJAGOPALAN

In this paper, it is shown that the scattered space $N \cup \{p\}$ admits a scattered Hausdorff compactification for a large class of points p in $\beta N - N$. This gives a partial solution to the following problem raised by Z. Semadeni in 1959: "Is there a scattered Hausdorff compactification for the space $N \cup \{p\}$ where p is any point of $\beta N - N$?" (See "Sur les ensembles clairsemés," Rozprawy Matematyczne, 19 (1959).) The proofs are purely topological and the compactifications are easy to visualize.

In 1970, C. Ryll-Nardzewski and R. Telgarsky [5], using deep results from Boolean Algebras, have proved that $N \cup \{p\}$ has a scattered compactification if p is a P-point of $\beta N - N$. In the first section of this paper, it is shown that the space γN constructed by S. P. Franklin and M. Rajagopalan [1] serves as a scattered compactification for $N \cup \{p\}$ when p is a P-point of $\beta N - N$. In the second section, a scattered Hausdorff compactification for $N \cup \{p\}$ is provided, when p is a P-point of order 2 for $\beta N - N$ (definition follows). In this case, it is also shown that the compactification of $N \cup \{p\}$ is a space Y such that $Y - N$ is a homeomorph of $[1, \Omega] \times \gamma N$.

Definition 1.1. A P-point of $\beta N - N$ is said to be a P-point of order 1 for $\beta N - N$. Suppose that for $n \in N$, we have defined a P-point of order n. Then we define a P-point of order $n + 1$ to be a P-point of the derived set of a countable set of P-points each being of order n in $\beta N - N$.

We will now proceed to get a scattered compactification for $N \cup \{p\}$ where p is a P-point of order 1 for $\beta N - N$, by constructing a suitable quotient space of βN which is scattered and Hausdorff and which contains $N \cup \{p\}$ as a dense subspace. The following two lemmas are easy to prove and their proofs are omitted.

Lemma 1.2. Let p be a P-point of order 1 for $\beta N - N$. Then using continuum hypothesis $\beta N - N - \{p\}$ can be written as the union of a collection $\{F_\alpha\}_{\alpha \in [1, \Omega]}$ of clopen sets in $\beta N - N$ such that $F_\alpha \subseteq F_\beta$ for all $\alpha, \beta \in [1, \Omega]$ such that $\alpha < \beta$.

Lemma 1.3. Let π be a partition of $\beta N - N$ such that the quotient space $(\beta N - N)/\pi$ is Hausdorff in its quotient topology. Let $\bar{\pi}$ be the partition of βN where each member of N is a member of $\bar{\pi}$ and each member of π is also a member of $\bar{\pi}$. Then $Y = \beta N/\bar{\pi}$
is compact and Hausdorff and the image of \(N \) in \(Y \) is an open
discrete dense subspace of \(Y \).

Further, if \((\beta N - N)/\pi \) is scattered in quotient topology, \(Y \) is
also scattered in quotient topology.

Lemma 1.4. Let \(p \in \beta N - N \). Let \(\pi \) be a partition of \(\beta N - N \)
such that \(\{p\} \in \pi \) and \((\beta N - N)/\pi \) is Hausdorff. Let \(\bar{\pi} \) be the
partition of \(\beta N \) as described in Lemma 1.3. Let \(\bar{q}: \beta N \rightarrow \beta N/\bar{\pi} = Y \) be
the canonical map. Then \(\bar{q} \) is a homeomorphism when restricted to
\(N \cup \{p\} \).

Proof. Clearly \(\bar{q}|(N \cup \{p\}): N \cup \{p\} \rightarrow N \cup \{p\} \) is continuous, one-
to-one and onto. Also \(\bar{q}: \beta N \rightarrow \beta N/\bar{\pi} \) is continuous, \(\beta N \) is compact
and by Lemma 1.3, \(Y \) is \(T_2 \). Therefore \(\bar{q} \) is a closed map and hence
upper semi-continuous. Let \(O \subset N \cup \{p\} \) be open relative to \(N \cup \{p\} \).
Then \(O = (N \cup \{p\}) \cap U \) where \(U \) is open in \(\beta N \). Let \(W \) be the union
of all partition classes with respect to \(\pi \) within \(U \). Then, by the
upper semicontinuity of \(\bar{q}, W \) is open in \(\beta N \). Since \(W \) is also saturated
under \(\bar{\pi}, \bar{q}(W) \) is open in \(\beta N/\bar{\pi} \). Also \(W \cap (N \cup \{p\}) = O \) and hence
\(\bar{q}(W) \cap \bar{q}(N \cup \{p\}) = \bar{q}(O) \). Therefore, \(\bar{q}(N \cup \{p\}) \) is open relative to \(\bar{q}(N \cup \{p\}) \).
Thus, \(\bar{q}|(N \cup \{p\}) \) is an open map. Therefore, \(\bar{q}|(N \cup \{p\}) \) is a
homeomorphism.

Lemma 1.5. Let \(p \) be a P-point of \(\beta N - N \). Then there exists
a partition \(\pi \) for \(\beta N - N \) such that (i) \(\{p\} \in \pi \) and (ii) the induced
quotient space \(X = (\beta N - N)/\pi \) is homeomorphic to \([1, \Omega]\).

Proof. By Lemma 1.2, \(\beta N - N - \{p\} \) can be written as \(\bigcup_{\alpha \in [1, \Omega)} F_{\alpha} \)
such that \(F_{\alpha} \) is clopen in \(\beta N - N \) for each \(\alpha \) and \(F_{\alpha} \subset F_{\beta} \) for \(\alpha, \beta \in [1, \Omega) \)
such that \(\alpha < \beta \). Put \(H_{\alpha} = F_{\alpha} \) and for each \(\alpha \) such that \(1 < \alpha < \Omega \),
put \(H_{\alpha} = F_{\alpha} - \bigcup_{\beta < \alpha} F_{\beta} \), and put \(H_0 = \{p\} \). Then the collection \(\{H_{\alpha}\}_{\alpha \in [1, \Omega]} \)
forms a partition \(\pi \) of \(\beta N - N \) by closed sets in \(\beta N - N \). Let \(q: \beta N - N \rightarrow (\beta N - N)/\pi \) be the induced quotient map. Let \(q(H_{\alpha}) = b_{\alpha} \)
for all \(\alpha \in [1, \Omega] \). Let \(\tau_1 \) be the usual order topology induced on
\(\{b_{\alpha} | 1 \leq \alpha \leq \Omega\} \) by the bijection \(b_{\alpha} \rightarrow \alpha \) from \(\{b_{\alpha} | 1 \leq \alpha \leq \Omega\} \) onto \([1, \Omega]\) and let \(\tau_2 \) be the quotient topology on \(\{b_{\alpha} | 1 \leq \alpha \leq \Omega\} \) induced on it
by the partition \(\pi \) of \(\beta N - N \). Then the topologies \(\tau_1 \) and \(\tau_2 \) on
\(\{b_{\alpha} | 1 \leq \alpha \leq \Omega\} \) are both compact and Hausdorff and comparable and
hence they are homeomorphic.

Theorem 1.6. Let \(p \) be a P-point of order 1 for \(\beta N - N \). Then
\(N \cup \{p\} \) has a scattered compactification.

Proof. Let \(\pi \) be the partition of \(\beta N - N \) obtained as in Lemma
1.4. Then \(\{p\} \in \pi \) and the quotient space \((\beta N - N)/\pi = X\) is homeomorphic to \([1, 0]\). Hence \(X\) is a compact, scattered and Hausdorff space. Let \(\tilde{\pi}\) be the partition of \(\beta N\) as in Lemma 1.3. Then, by Lemma 4, \(\beta N/\tilde{\pi}\) contains a homeomorphic copy of \(N \cup \{p\}\). Since \(N\) is dense in \(\beta N\), \(N \cup \{p\}\) is dense in \(\beta N/\tilde{\pi}\). Thus, \(\beta N/\tilde{\pi}\) is a scattered, Hausdorff compactification for \(N \cup \{p\}\).

Remark 1.6a. The above scattered Hausdorff compactification of \(N \cup \{p\}\) is a space \(X\) such that the remainder \(X - N\) is homeomorphic to \([1, 0]\). This compact Hausdorff space \(X\) is called \(\gamma N\) by S. P. Franklin and M. Rajagopalan in [1].

2. Scattered Hausdorff compactification for \(N \cup \{p\}\) where \(p\) is \(P\)-point of order 2 in \(\beta N - N\):

Notations. Let \(p \in \beta N - N\). Let \(p\) be a \(P\)-point of order 2 in \(\beta N - N\). Then there exists a countable set \(\{p_1, p_2, \ldots, p_n, \ldots\}\) of distinct \(P\)-points in \(\beta N - N\) such that \(P\) is a \(P\)-point of the set

\[B = \text{cl}_{\beta N - N} \{p_1, p_2, p_3, \ldots, p_n, \ldots\} - \{p_1, p_2, \ldots, p_n, \ldots\} \]

Lemma 2.7. There exists a countable collection \(\{O_n\}_{n \in N}\) of clopen sets in \(\beta N - N\) such that (i) \(O_n \cap O_m = \emptyset\) for \(n, m \in N\) such that \(n \neq m\) and (ii) \(p_n \in O_n \forall n = 1, 2, 3, \ldots\)

Proof. Using the zero dimensionality of \(\beta N - N\) and the fact that \(p_1\), is a \(P\)-point for \(\beta N - N\), we can get a clopen set \(O_1\) in \(\beta N - N\) containing \(p_1\) and disjoint with \(\{p_2, p_3, \ldots, p_n, \ldots\} \cup \{p\}\). Since, \(p_1\) is a \(P\)-point of \(\beta N - N\), we get a clopen set \(F_1\) in \(\beta N - N\) containing \(p_2\) and disjoint with \(p_1, p_3, p_4, \ldots, p_n, \ldots, p\). Put \(O_2 = F_1 - O_1\). Proceeding like this, by induction, for each \(n \in N\), we can get a clopen set \(O_n\) in \(\beta N - N\) satisfying the conditions (i) and (ii) of the Lemma 2.7.

Lemma 2.8. Let \(O\) be any \(\sigma\)-compact subset of \(\beta N - N\). Then \(\text{cl}_{\beta N - N}(O) = \beta O\).

Proof. This follows from the fact that \(O\) is a dense subset of the compact set \(\text{cl}_{\beta N - N}(O)\) and any continuous function \(f: O \rightarrow [0, 1]\) admits a continuous extension to \(\beta N\).

Corollary 2.9. Let the collection \(\{O_n\}_{n \in N}\) be as in Lemma 2.7. Let \(\text{cl}_{\beta N - N}(\bigcup_{n=1}^{\infty} O_n) = M\). Then \(\bigcup_{n=1}^{\infty} O_n\) is a \(\sigma\)-compact subset of
\[\beta N - N \text{ and } M = \beta(\bigcup_{n=1}^{\infty} O_n). \]

Corollary 2.10. Let \(\{p_1, p_2, \ldots, p_n, \ldots\} \) be a countable collection of P-points of \(\beta N - N \). Let \(B = \text{cl}_{\beta N - N} \{p_1, p_2, \ldots, p_n, \ldots\} - \{p_1, p_2, \ldots, p_n, \ldots\}. \) Then \(B \cup \{p_1, p_2, \ldots, p_n, \ldots\} = \beta(\{p_1, \ldots, p_n, \ldots\}) \).

Note 2.11. Let \(X \) be any Tychonoff space. Let \(A \subset X \) be clopen in \(X \). Then \(\text{cl}_{\beta X} A \) is clopen in \(\beta X \).

Proof. The function \(f: X \to [0, 1] \) given by

\[
\begin{align*}
 f(x) &= 0, \text{ for all } x \in A \\
 &= 1, \text{ for all } x \in X - A
\end{align*}
\]

is continuous on \(X \). Therefore, \(f \) admits a continuous extension \(\tilde{f}: \beta X \to [0, 1] \). Then, it is clear that \(\tilde{f}(x) = 0 \) for all \(x \in \text{cl}_{\beta X} A \) and \(\tilde{f}(x) = 1 \) for all \(x \in \beta X - \text{cl}_{\beta X} A \). Hence, the result follows.

Lemma 2.12. Let the collection \(\{O_n\}_{n \in N} \) be as in Lemma 2.7. Let \(B \) be as in Corollary 2.10. Let \(\text{cl}_{\beta N - N} \left(\bigcup_{n=1}^{\infty} O_n \right) = M \). Let \(M - \bigcup_{n=1}^{\infty} O_n = K \). Then, there exists an increasing collection \(\{A_\alpha\}_{\alpha \in [1, \Omega]} \) of clopen sets relative to \(K \) such that \(\bigcup_{\alpha \in [1, \Omega]} A_\alpha = K - B \).

Proof. For each \(n \in N, \) \(p_n \) is a P-point of \(\beta N - N \) and \(p_n \in O_n \). Hence, \(p_n \) is a P-point of \(O_n \) for all \(n = 1, 2, 3, \ldots \). Therefore, as in Lemma 1.2, using continuum hypothesis, for each \(n \in N, \) \(O_n - \{p_n\} \) can be expressed as the union of an increasing collection \(\{A_\alpha\}_{\alpha \in [1, \Omega]} \) of clopen sets relative to \(O_n \) (and hence relative to \(\beta N - N \) also). For each \(n \in N, \) put \(A_\alpha = \left[\text{cl}_{\beta N - N} \left(\bigcup_{n=1}^{\infty} A_{\alpha_n} \right) \right] \cap K \). Then, by Corollary 2.9 and Note 2.11 above, \(A_\alpha \) is clopen relative to \(K \) for all \(\alpha \in [1, \Omega] \).

Since \(A_{\alpha_n} \subset A_{\beta_n} \) for \(\alpha < \beta, \alpha, \beta \in [1, \Omega], \) it follows that \(A_\alpha \subset A_\beta \) for all \(\alpha, \beta \in [1, \Omega] \) such that \(\alpha < \beta \).

Now it remains to show that \(\bigcup_{\alpha \in [1, \Omega]} A_\alpha = K - B \). Clearly \(A_\alpha \cap B = \emptyset \) for all \(\alpha \in [1, \Omega] \) and hence \(\bigcup_{\alpha} A_\alpha \subset K - B \). To get the other inclusion, let \(x_0 \in K - B \). Now, \(K - B \) is open relative to \(K \) and \(K \) is zero-dimensional. Therefore, there exists a clopen set \(V \) relative to \(K \) such that \(x_0 \in V \subset K - B \). Since \(V \subset K \) is clopen in \(K \) and \(\beta N - N \) is zero dimensional, there exists a clopen set \(W \) in \(\beta N - N \) such that \(V = W \cap K \). Put \(W \cap O_n = W_n \) for all \(n = 1, 2, 3, \ldots \). We note that \(p_n \) can belong to \(W_n \) for at most a finite number of \(n \)'s. Therefore, \(\exists k_o \in N \) such that \(p_n \notin W_n \forall n > k_o \). Hence, for each \(n > k_o \), there exists a countable ordinal \(\alpha_n \) such that \(A_{\alpha_n} \supset W_n \). Let the supremum of \(\alpha_n \) for \(n > k_o \), be \(\gamma \). Then \(A_{\gamma_n} \supset W_n \forall n > k_o \). Therefore,
\[\bigcup_{n=k_0+1}^{\infty} A_{\gamma_n} \supset \bigcup_{n=k_0+1}^{\infty} W_n. \]

Hence,

\[
\bigcup_{n=1}^{\infty} A_{\gamma_n} \cap K = A_\tau = \bigcup_{n=k_0+1}^{\infty} A_{\lambda_n} \cap K \\
= \bigcup_{n=k_0+1}^{\infty} W_n \cap K \\
= \bigcup_{n=1}^{\infty} W_n \cap K \\
= \bigcup_{n=1}^{\infty} (W \cap O_n) \cap K \\
= W \cap M \cap K \\
= W \cap K \\
= V .
\]

Also \(x_0 \in V \). Therefore, \(\bigcup_{\alpha \in \{1, \Omega\}} A_\alpha = K - B \).

Lemma 2.13. Let \(B \) be as defined in Corollary 2.10 and let \(K \) be as in Lemma 2.12. Then, there exists a collection \(\{X_\alpha\}_{\alpha \in \{1, \Omega\}} \) of clopen sets relative to \(K \) such that \(X_\alpha \subseteq X_\beta \forall \alpha, \beta \in \{1, \Omega\} \) such that \(\alpha < \beta \) and \(\bigcup_{\alpha \in \{1, \Omega\}} X_\alpha \cap B = B - \{p\} \).

Proof. Now, \(p \) is a \(P \)-point of \(B \) and hence, using continuum hypothesis, \(B - \{p\} \) can be written as the union of an ascending collection \(\{B_\alpha\}_{\alpha \in \{1, \Omega\}} \) of clopen sets relative to \(B \). Since, by Corollary 2.10, \(B \cup \{p_1, p_2, \ldots, p_n, \ldots\} = \beta(\{p_1, \ldots, p_n, \ldots\}) \), each \(B_\alpha \) gives a subset \(N_\alpha = \{p_{\alpha_1}, \ldots, p_{\alpha_n}, \ldots\} \) of \(\{p_1, p_2, \ldots, p_n, \ldots\} \) such that

\[\text{cl}_{\beta N - N}(N_\alpha) \cap B_\alpha = B . \]

Since \(B_\alpha \subseteq B_\beta \) for \(\alpha < \beta \), we have \(N_\alpha \) is almost contained in \(N_\beta \) for \(\alpha < \beta \). Put \(\text{cl}_{\beta N - N}(\bigcup_{\alpha=1}^{\infty} O_\alpha) \cap K = X_\alpha \forall \alpha \in \{1, \Omega\} \). Then \(X_\alpha \) is closed in \(K \forall \alpha \in \{1, \Omega\} \), \(X_\alpha \subseteq X_\beta \) for \(\alpha < \beta \), \(X_\alpha \cap B = B_\alpha \forall \alpha \in \{1, \Omega\} \) and also \((\bigcup_{\alpha} X_\alpha) \cap B = \bigcup_{\alpha} (X_\alpha \cap B) = \bigcup_{\alpha} B_\alpha = B - \{p\} \).

Lemma 2.14. Let the collection \(\{O_\alpha\}_{\alpha \in \mathbb{N}} \), \(M \) and \(K \) be as in Lemma 2.12. Let \(\beta N - N - M = T \). Let \(\{C_\alpha\}_{\alpha \in \{1, \Omega\}} \) be an ascending collection of clopen sets relative to \(K \). Then, there exists an ascending collection \(\{I_\alpha\}_{\alpha \in \{1, \Omega\}} \) of subsets of \(T \cup K \) such that \(I_\alpha \) is closed in \(T_\alpha \cup K \), \(I_\alpha \cap K = C_\alpha \forall \alpha \in \{1, \Omega\} \) and \(\bigcup_{\alpha} I_\alpha = \bigcup_{\alpha} C_\alpha = T \).

Proof. Using the fact that \(\beta N - N \) is zero-dimensional and is of weight \(c \) and also using the fact that the clopen sets of \(\beta N - N \)
satisfy the Dubois-Reymond separability condition, we can write T as the union of an ascending collection $\{G_\alpha\}_{\alpha \in (1, \Omega)}$ of clopen sets in $\beta N - N$ such that $G_\alpha \cap M = \emptyset \forall \alpha \in [1, \Omega)$.

Now, C_i is clopen in K. Since $\beta N - N$ is zero-dimensional, there exists a clopen set J_i in $\beta N - N$ such that $J_i \cap K = C_i$. Put $I_i = [J_i \cap (T \cup K)] \cup I_a$. Then I_i is clopen in $T \cup K$ and $I_i \cap K = C_i$. Suppose that we have constructed clopen sets I_1, I_2, \ldots, I_n in $T \cup K$ for $n \in N$ such that $I_1 \subset I_2 \subset \cdots \subset I_n$ and $I_j \cap K = C_j$ for $j = 1, 2, \ldots, n$. Then we construct I_{n+1} as follows: Since C_{n+1} is clopen in K and $\beta N - N$ is zero-dimensional, there exists a clopen set J_{n+1} in $\beta N - N$ such that $J_{n+1} \cap K = C_{n+1}$. Put $I_{n+1} = [J_{n+1} \cap (T \cup K)] \cup I_n \cup G_{n+1}$. Then I_{n+1} is clopen in $T \cup K$, $I_{n+1} \supset I_n$ and $I_{n+1} \cap K = C_{n+1}$. Having constructed I_1, I_2, \ldots, I_n, we now proceed to construct I_n. First, we claim that $\bigcap_{j=1}^n (I_j \cup \overline{I_j}) = \emptyset$. For, let $x_0 \in k - C_0$, which is clopen in K. Since $\beta N - N$ is zero-dimensional, there exists a clopen set J_n in $\beta N - N$ such that $J_n \cap K = K - C_n$. Let $H_n \cap I_n = H_{n+1} \forall_n = 1, 2, 3, \ldots$. Then H_{n+1} is closed in $\beta N - N$. We will now prove that H_{n+1} is also open in $\beta N - N$. Since, I_n is clopen in $T \cup K$ and $\beta N - N$ is zero dimensional, there exists a clopen set G_n in $\beta N - N$ such that $G_n \cap (T \cup K) = I_n$. Then $G_n \cap [(T \cup K) \cap K] = I_n \cap K = C_n$. Now

$$H_{n+1} = (H_n \cap I_n) = H_n \cap [G_n \cap (T \cup K)] = H_n \cap [(G_n \cap T) \cup (G_n \cap K)] = (H_n \cap G_n \cap T) \cup (H_n \cap G_n \cap K) = (H_n \cap G_n \cap T) \cup [K \cap (K - C_n) \cap G_n] = (H_n \cap G_n \cap T) \cup (C_n \cap (K - C_n)) = H_n \cap G_n \cap T \text{ which is open in } \beta N - N.$$
Now $\beta N - N$ is zero dimensional, $C_ω \cup \text{cl}_{\beta N - N} (\bigcup_{n=1}^{\infty} I_n)$ is a compact subset of $\beta N - N$ and D_i is an open set in $\beta N - N$ containing $C_ω \cup \text{cl}_{\beta N - N} (\bigcup_{n=1}^{\infty} I_n)$. Hence, there exists a clopen set $J_ω$ in $\beta N - N$ such that $D_i \supset J_ω \supset C_ω \cup \text{cl}_{\beta N - N} (\bigcup_{n=1}^{\infty} I_n)$. Now, $J_ω \cap D_i = \emptyset$ and hence $(K - C_ω) \cap J_ω = \emptyset$. Therefore, $J_ω \cap K = C_ω$. Take $L_a = [J_ω \cap (T \cup K)] \cup H_ω$. Then L_a is clopen in $T \cup K$, $L_a \supset \bigcup_{n=1}^{\infty} I_a$ and $L_a \cap K = C_ω$. Continuing this process, we get an increasing collection $\{I_a\}_{\alpha \in [1, \Omega)}$ of clopen sets in $T \cup K$ such that $I_\alpha \cap K = C_\alpha \forall \alpha \in [1, \Omega)$. It can also be seen that $\bigcup_a I_a - \bigcup_a C_\alpha = T$.

Corollary 2.15. Let the collection $\{A_\alpha\}_{\alpha \in [1, \Omega)}$ be as in Lemma 2.12. Then, there exists a collection $\{S_\alpha\}_{\alpha \in [1, \Omega)}$ of clopen sets in $T \cup K$ such that $S_\alpha \subset S_\beta \forall \alpha, \beta \in [1, \Omega)$ such that $\alpha < \beta$, $S_\alpha \cap K = A_\alpha \forall \alpha \in [1, \Omega)$ and $\bigcup_a S_\alpha - \bigcup_a A_\alpha = T$.

Corollary 2.16. Let the collection $\{x_\alpha\}_{\alpha \in [1, \Omega)}$ be as in Lemma 2.13. Then, there exists an increasing collection $\{L_\alpha\}_{\alpha \in [1, \Omega)}$ of clopen sets in $T \cup K$ such that $L_\alpha \cap K = X_\alpha \forall \alpha \in [1, \Omega)$ and $\bigcup_a L_\alpha - \bigcup_a X_\alpha = T$.

Definition 2.17. Let σ_1 and σ_2 be two partitions of a nonempty set X. Then we define $\sigma_1 \cap \sigma_2$ to be the partition of X given by the collection $\{A \cap B \mid A \in \sigma_1, B \in \sigma_2, A \cap B \neq \emptyset\}$ of nonempty subsets of X.

Lemma 2.18. Let X be a compact Hausdorff space. Let σ_1, σ_2 be two Hausdorff partitions for X. Then $\sigma_1 \cap \sigma_2$ is also a Hausdorff partition for X.

Proof. Let $X/\sigma_1 = Y_1$ and $X/\sigma_2 = Y_2$. Let $q_1: X \to Y_1$ and $q_2: X \to Y_2$ be the corresponding quotient maps. Define $(q_1, q_2): X \to Y_1 \times Y_2$ by $(q_1, q_2)(x) = (q_1(x), q_2(x)) \forall x \in X$. This is a continuous function form X into $Y_1 \times Y_2$. Now $Y_1 \times Y_2$ is Hausdorff. Consider q_1, q_2 as a map from X onto $(q_1, q_2)(X)$. Let the partition induced on X by this map be σ. Then $\sigma = \sigma_1 \cap \sigma_2$. Let $q: X \to X/\sigma$ be the corresponding quotient map. Let $g: X/\sigma \to (q_1, q_2)(X)$ be the natural fill-up map making the following diagram commutative.
Now X/σ is compact, $(q_1, q_2)(X)$ is Hausdorff and g is one-to-one, onto and continuous. Hence g is a homeomorphism. Since $(q_1, q_2)(X)$ is Hausdorff, it follows that X/σ is Hausdorff. Therefore $\sigma_1 \cap \sigma_2$ is a Hausdorff partition for X.

In the above proof, we also note that the quotient space induced by $\sigma_1 \cap \sigma_2$ is homeomorphic to the range of the function (q_1, q_2) in $Y_1 \times Y_2$.

Lemma 2.19. Let T and K be as in Lemma 2.14. Let B and p be as in Lemma 2.13. Then, there exists a Hausdorff partition for $T \cup K$ with \{p\} as a separate partition class.

Proof. Let the collection \{\(S_a\)\}_{a \in [1, \Omega]} be as in Corollary 2.15 and let the collection \{\(L_a\)\}_{a \in [1, \Omega]} be as in Corollary 2.16. Put $H_1 = S_1$ and for each $\alpha \in [2, \Omega)$, $H_\alpha = S_\alpha - \bigcup_{1 \leq \gamma < \alpha} S_\gamma$ and $H_\Omega = K - \bigcup a A_a = B$.

Also, let $M_1 = L_1$; for each $\alpha \in [2, \Omega)$, $M_\alpha = L_\alpha - \bigcup_{1 \leq \gamma < \alpha} L_\gamma$ and $M_\Omega = K - \bigcup_{\alpha \in [1, \Omega)} X_\alpha$. Then, the collection \{\(H_a\)\}_{a \in [1, \Omega]} gives a partition π_1 for $T \cup K$ such that the quotient space $(T \cup K)/\pi_1$ is homeomorphic to $[1, \Omega]$. Therefore, π_1 is a Hausdorff partition for $T \cup K$. Similarly, the collection \{\(M_a\)\}_{a \in [1, \Omega]} gives a Hausdorff partition π_2 for $T \cup K$. Let $\pi_1 \cap \pi_2 = \pi_3$. Then, by Lemma 2.18, π_3 is a Hausdorff partition for $T \cup K$. Also

$$H_\Omega \cap M_\Omega = B \cap \left(K - \bigcup_\alpha X_\alpha \right)$$

$$= B - \bigcup_\alpha (B \cap X_\alpha)$$

$$= B - \bigcup_\alpha B_\alpha = \{p\}.$$

Lemma 2.20. Let X be a topological space. Let A_1 and A_2 be closed in X. Let $A_1 \cup A_2 = X$. Let $A \subset X$ be such that $A \cap A_1$ is open relative to A_1 and $A \cap A_2$ is open relative to A_2. Then A is open in X.

Proof. This follows from the fact that

$$A = (O_1 - A_2) \cup (O_2 - A_1) \cup (O_1 \cap O_2).$$

Lemma 2.21. Let π_3 be the partition of $T \cup K$ as obtained in the proof of Lemma 2.19. Let the collection of sets \{\(A_{ak}\)\}_{k \in N} be as obtained in the proof of Lemma 2.12. Let \{\(p_1, p_2, \cdots, p_n, \cdots\)\} be as in Corollary 2.10. For each $k \in N$, let $D_\alpha = A_{ak} - \bigcup_{1 \leq \gamma < \alpha} A_{\gamma k}$. Then the collection of sets \{\(D_{ak}\)\}_{k \in N} and \{\(p_\alpha\)\}_{\alpha \in N} together with the members of π_3 form a Hausdorff partition π_4 for $\beta N - N$.

Proof. Clearly π_4 is a partition for $\beta N - N$. We will now prove that $(\beta N - N)/\pi_4$ is Hausdorff. Given any two partition classes C_1 and C_2 of $\beta N - N$ with respect to π_4, we must prove that there exists a clopen set Y_1 in $\beta N - N$ containing C_1, disjoint with C_2 and saturated under π_4. The cases where either C_1 or C_2 is a D_{α} or a p_{α} are easy to handle and we consider the following cases:

Case 1. Let $C_1 = H_{\alpha} \cap M_\beta$ and $C_2 = H_{\gamma} \cap M_\beta$ where $\alpha, \beta, \gamma \in [1, 2]$ and $\beta \neq \gamma$. Without loss of generality, we can assume that $\beta < \gamma$. Now, by definition $X_\beta = \text{cl}_{\beta N - N}(\bigcup_{n=1}^{N} O_n) \cap K$ where $\text{cl}_{\beta N - N}((p_\beta, \ldots, p_n, \ldots)) \cap B = B_\beta$ (see the proof of Lemma 2.13). Also $L_\beta \cap K = X_\beta$ where L_β is clopen in $T \cup K$ (see Corollary 2.16). Now, $Y_1 = L_\beta \cup \text{cl}_{\beta N - N}(\bigcup_{n=1}^{N} O_n)$ is closed in $\beta N - N$ and using Lemma 2.20, we can see that it is also open in $\beta N - N$. Further $Y_1 \supset C_1$ and $Y_1 \cap C_2 = \emptyset$. Also, Y_1 is saturated under π_4. Therefore, π_4 is a Hausdorff partition for $\beta N - N$.

Case 2. Let $C_1 = H_{\alpha} \cap M_\beta$ and $C_2 = H_{\gamma} \cap M_\beta$ where $\alpha, \beta, \gamma, \delta \in [1, 2]$ and $\alpha \neq \gamma$. Without loss of generality, we can assume that $\alpha < \gamma$. In this case, using Lemma 2.20, we can verify that the set $Y_1 = \text{cl}_{\beta N - N}(\bigcup_{n=1}^{N} A_n) \cup S_\alpha$ is clopen in $\beta N - N$. Further, $Y_1 \supset C_1$ and $Y_1 \cap C_2 = \emptyset$. Also Y_1 is saturated under π_4. Therefore, π_4 is a Hausdorff partition for $\beta N - N$.

Lemma 2.22. Let π_4 be the Hausdorff partition of $\beta N - N$ as given in Lemma 2.21. Let π_5 be the partition of M given by $\pi_5 = \pi_4|M = \{X \cap M | X \in \pi_4\}$. Then π_5 is a Hausdorff partition for M.

Proof. Let D_{α}, p_α, B, and O_α be as in above lemmas. Let $E_\alpha = A_\alpha$ and $E_\alpha = A_\alpha - \bigcap_{1 < \alpha < \beta} A_\alpha, \forall \alpha \in [2, 2]$. Then, it is easy to see that the partition π_5 of M given by the collection $\{D_{\alpha}\alpha \in [1, 2]\}k \in N, \{p_{\alpha}\alpha \in [1, 2]\}$ and B is a Hausdorff partition for M. Let $K_1 = X_1$ and $K_\alpha = X_\alpha - \bigcup_{1 < \alpha < \beta} X_\alpha, \forall \alpha \in [1, 2]$. Also, let $K_\alpha = K - \bigcup_{\alpha \in [1, 2]} X_\alpha$. Then, the partition π_5 of M given by the collection $\{O_\alpha\alpha \in N\}$ and $\{K_\alpha\alpha \in [1, 2]\}$ is also a Hausdorff partition for M. Further $\pi_5 = \pi_4 \cap \pi_5$. Hence, by Lemma 2.18, π_5 is a Hausdorff partition for M.

Lemma 2.23. Let M, π_4 and π_5 be as in previous lemmas. Then M/π_5 is homeomorphic to $(\beta N - N)/\pi_4$.

Proof. Let $(\beta N - N)/\pi_4 = Y$ and let $q_4 : \beta N - N \to Y$ be the quotient map induced by the partition π_4 of $\beta N - N$. Then, by Lemma 2.21, Y is Hausdorff. Now, the map $q_4 : M \to Y$ is a continuous function from M onto Y where M is compact and Y is Hausdorff. Hence, the topology of Y is the quotient topology of M induced on
it by the function \(q_4/M \). But \(q_4 \) induces the partition \(\pi_\delta \) on \(M \). Therefore, \(M/\pi_\delta \) is homeomorphic to \(Y = (\beta N - N)/\pi_\delta \).

Lemma 2.24. Let all notations be as in previous lemmas. Then \(M/\pi_\delta \) is homeomorphic to \(\gamma N \times [1, \Omega] \) where \(\gamma N \) is the compactification of \(N \) constructed by S. P. Frankline and M. Rajagopalan in [1]. (See also remark 1.6a).

Proof. Now \(\pi_\delta = \pi_6 \cap \pi_7 \) where \(\pi_6 \) and \(\pi_7 \) are Hausdorff partitions of \(M \) as given in the proof of Lemma 2.22. Let \(q_6: M \to M/\pi_6 \) and \(q_7: M \to M/\pi_7 \) be the corresponding quotient maps. Consider the function \((q_6, q_7): M \to M/\pi_6 \times M/\pi_7 \) given by \((q_6, q_7)(x) = (q_6(x), q_7(x)) \forall x \in M \). Since \(\pi_6 \cap \pi_7 = \pi_4 \), it follows from Lemma 2.18 that \(M/\pi_\delta \) is homeomorphic to the range of the function \((q_6, q_7) \) from \(M \) into \(M/\pi_6 \times M/\pi_7 \). But it can be seen that \(M/\pi_\delta \) is homeomorphic to \([1, \Omega] \times [1, \omega] \) with its usual product topology and \(M/\pi_\gamma \) is homeomorphic to \(\gamma N \) and that the range of the map \((q_6, q_7) \) is homeomorphic to \([1, \Omega] \times \gamma N \). Hence, \(M/\pi_\delta \) is homeomorphic to \([1, \Omega] \times \gamma N \).

Theorem 2.25. \(N \cup \{p\} \) has a scattered Hausdorff compactification, when \(p \) is a \(P \)-point of order 2 for \(\beta N - N \).

Proof. Consider the partition \(\pi_4 \) of \(\beta N - N \) given in Lemma 2.21. Let \(\bar{\pi}_4 \) be the partition of \(\beta N \) whose members are the members of \(\pi_4 \) and the singletons in \(N \). Since, \((\beta N - N)/\pi_4 \) is Hausdorff, by Lemma 1.3, it follows that \(\beta N/\bar{\pi}_4 \) is Hausdorff. Since \(\beta N \) is compact, we have \(\beta N/\bar{\pi}_4 \) is compact. Since \((\beta N - N)/\pi_4 \) is homeomorphic to \([1, \Omega] \times \gamma N \) which is scattered, we have that \(\beta N/\bar{\pi}_4 \) is also scattered. Since \(N \) is dense in \(\beta N \) and \(N \cup \{p\} \) maps homeomorphically onto itself under the quotient map from \(\beta N \) onto \(\beta N/\bar{\pi}_4 \) (Lemma 1.4), it follows that \(N \cup \{p\} \) is dense in \(\beta N/\bar{\pi}_4 \). Thus, \(\beta N/\bar{\pi}_4 \) is a scattered Hausdorff compactification for \(N \cup \{p\} \). Hence the theorem.

References

Received November 27, 1974 and in revised form July 21, 1975. The second author gratefully acknowledges his support from a grant from Memphis State University during the writing of this paper.

MEMPHIS STATE UNIVERSITY
AND
MADURA COLLEGE, MADURAI, INDIA
Jiří Adámek, V. Koubek and Věra Trnková, *Sums of Boolean spaces represent every group* ... 1

Richard Neal Ball, *Full convex l-subgroups and the existence of a*-closures of lattice ordered groups* 7

Joseph Becker, *Normal hypersurfaces* .. 17

Gerald A. Beer, *Starshaped sets and the Hausdorff metric* 21

Dennis Dale Berkey and Alan Cecil Lazer, *Linear differential systems with measurable coefficients* ... 29

Harald Boehme, *Glättungen von Abbildungen 3-dimensionaler Mannigfaltigkeiten* ... 45

Stephen LaVern Campbell, *Linear operators for which T*T and T + T* commute* ... 53

H. P. Dikshit and Arun Kumar, *Absolute summability of Fourier series with factors* ... 59

Andrew George Earnest and John Sollion Hsia, *Spinor norms of local integral rotations. II* ... 71

Erik Maurice Ellentuck, *Semigroups, Horn sentences and isolic structures* ... 87

Ingrid Fotino, *Generalized convolution ring of arithmetic functions* 103

Michael Randy Gabel, *Lower bounds on the stable range of polynomial rings* ... 117

Fergus John Gaines, *Kato-Taussky-Wielandt commutator relations and characteristic curves* .. 121

Theodore William Gamelin, *The polynomial hulls of certain subsets of C^2* ... 129

R. J. Gazik and Darrell Conley Kent, *Coarse uniform convergence spaces* ... 143

Paul R. Goodey, *A note on starshaped sets* .. 151

Eloise A. Hamann, *On power-invariance* .. 153

M. Jayachandran and M. Rajagopalan, *Scattered compactification for N ∪ {P}* ... 161

V. Karunakaran, *Certain classes of regular univalent functions* 173

John Cronan Kieffer, *A ratio limit theorem for a strongly subadditive set function in a locally compact amenable group* 183

Siu Kwong Lo and Harald G. Niederreiter, *Banach-Buck measure, density, and uniform distribution in rings of algebraic integers* .. 191

Harold W. Martin, *Contractibility of topological spaces onto metric spaces* ... 209

Harold W. Martin, *Local connectedness in developable spaces* 219

A. Meir and John W. Moon, *Relations between packing and covering numbers of a tree* ... 225

Hiroshi Mori, *Notes on stable currents* .. 235

Donald J. Newman and I. J. Schoenberg, *Splines and the logarithmic function* ... 241

M. Ann Piech, *Locality of the number of particles operator* 259

Fred Richman, *The constructive theory of KT-modules* 263

Gerard Sierksma, *Carathéodory and Helly-numbers of convex-product-structures* ... 275

Raymond Earl Smithson, *Subcontinuity for multifunctions* 283

Gary Roy Spoar, *Differentiability conditions and bounds on singular points* ... 289

Rosario Strano, *Azumaya algebras over Hensel rings* 295