SCATTERED COMPACTIFICATION FOR $N \cup \{p\}$

M. Jayachandran and M. Rajagopalan
SCATTERED COMPACTIFICATION FOR \(N \cup \{ p \} \)

M. JAYACHANDRAN AND M. RAJAGOPALAN

In this paper, it is shown that the scattered space \(N \cup \{ p \} \) admits a scattered Hausdorff compactification for a large class of points \(p \) in \(\beta N - N \). This gives a partial solution to the following problem raised by Z. Semadeni in 1959: "Is there a scattered Hausdorff compactification for the space \(N \cup \{ p \} \) where \(p \) is any point of \(\beta N - N \)?" (See "Sur les ensembles clairsemés," Rozprawy Matematyczne, 19 (1959).) The proofs are purely topological and the compactifications are easy to visualize.

In 1970, G. Ryll-Nardzewski and R. Telgarsky [5], using deep results from Boolean Algebras, have proved that \(N \cup \{ p \} \) has a scattered compactification if \(p \) is a P-point of \(\beta N - N \). In the first section of this paper, it is shown that the space \(\gamma N \) constructed by S. P. Franklin and M. Rajagopalan [1] serves as a scattered compactification for \(N \cup \{ p \} \) when \(p \) is a P-point of \(\beta N - N \). In the second section, a scattered Hausdorff compactification for \(N \cup \{ p \} \) is provided, when \(p \) is a P-point of order 2 for \(\beta N - N \) (definition follows). In this case, it is also shown that the compactification of \(N \cup \{ p \} \) is a space \(Y \) such that \(Y - N \) is a homeomorph of \([1, \Omega] \times \gamma N\).

Definition 1.1. A P-point of \(\beta N - N \) is said to be P-point of order 1 for \(\beta N - N \). Suppose that for \(n \in N \), we have defined a P-point of order \(n \). Then we define a P-point of order \(n + 1 \) to be a P-point of the derived set of a countable set of P-points each being of order \(n \) in \(\beta N - N \).

We will now proceed to get a scattered compactification for \(N \cup \{ p \} \) where \(p \) is a P-point of order 1 for \(\beta N - N \), by constructing a suitable quotient space of \(\beta N \) which is scattered and Hausdorff and which contains \(N \cup \{ p \} \) as a dense subspace. The following two lemmas are easy to prove and their proofs are omitted.

Lemma 1.2. Let \(p \) be a P-point of order 1 for \(\beta N - N \). Then using continuum hypothesis \(\beta N - N - \{ p \} \) can be written as the union of a collection \(\{ F_\alpha \}_{\alpha \in [1, \Omega]} \) of clopen sets in \(\beta N - N \) such that \(F_\alpha \subset F_\beta \) for all \(\alpha, \beta \in [1, \Omega] \) such that \(\alpha < \beta \).

Lemma 1.3. Let \(\pi \) be a partition of \(\beta N - N \) such that the quotient space \((\beta N - N) / \pi \) is Hausdorff in its quotient topology. Let \(\tilde{\pi} \) be the partition of \(\beta N \) where each member of \(N \) is a member of \(\tilde{\pi} \) and each member of \(\pi \) is also a member of \(\tilde{\pi} \). Then \(Y = \beta N / \tilde{\pi} \).
is compact and Hausdorff and the image of N in Y is an open discrete dense subspace of Y.

Further, if $(\beta N - N)/\pi$ is scattered in quotient topology, Y is also scattered in quotient topology.

Lemma 1.4. Let $p \in \beta N - N$. Let π be a partition of $\beta N - N$ such that $(p) \in \pi$ and $(\beta N - N)/\pi$ is Hausdorff. Let $\bar{\pi}$ be the partition of βN as described in Lemma 1.3. Let $\bar{q}: \beta N \to \beta N/\bar{\pi} = Y$ be the canonical map. Then \bar{q} is a homeomorphism when restricted to $N \cup \{p\}$.

Proof. Clearly $\bar{q}|(N \cup \{p\}): N \cup \{p\} \to N \cup \{p\}$ is continuous, one-to-one and onto. Also $\bar{q}: \beta N \to \beta N/\bar{\pi}$ is continuous, βN is compact and by Lemma 1.3, Y is T_2. Therefore \bar{q} is a closed map and hence upper semi-continuous. Let $O \subset N \cup \{p\}$ be open relative to $N \cup \{p\}$. Then $O = (N \cup \{p\}) \cap U$ where U is open in βN. Let W be the union of all partition classes with respect to $\bar{\pi}$ within U. Then, by the upper semicontinuity of \bar{q}, W is open in βN. Since W is also saturated under $\bar{\pi}$, $\bar{q}(W)$ is open in $\beta N/\bar{\pi}$. Also $W \cap (N \cup \{p\}) = O$ and hence $\bar{q}(W) \cap \bar{q}(N \cup \{p\}) = \bar{q}(O)$. Therefore, $\bar{q}(O)$ is open relative to $\bar{q}(N \cup \{p\})$. Thus, $\bar{q}|(N \cup \{p\})$ is an open map. Therefore, $\bar{q}|(N \cup \{p\})$ is a homeomorphism.

Lemma 1.5. Let p be a P-point of $\beta N - N$. Then there exists a partition π for $\beta N - N$ such that (i) $(p) \in \pi$ and (ii) the induced quotient space $X = (\beta N - N)/\pi$ is homeomorphic to $[1, \Omega]$.

Proof. By Lemma 1.2, $\beta N - N - \{p\}$ can be written as $\bigcup_{a \in [1, \Omega]} F_a$ such that F_a is clopen in $\beta N - N$ for each a and $F_a \subset F_{\beta_a}$, $\beta_a \in [1, \Omega]$ such that $\alpha < \beta$. Put $H_a = F_1$ and for each a such that $1 < \alpha < \Omega$, put $H_a = F_a - \bigcup_{1 \leq \alpha < a} F_\gamma$, and put $H_\Omega = \{p\}$. Then the collection $(H_a)_{a \in [1, \Omega]}$ forms a partition π of $\beta N - N$ by closed sets in $\beta N - N$. Let $q: \beta N - N \to (\beta N - N)/\pi$ be the induced quotient map. Let $q(H_a) = b_a$ for all $a \in [1, \Omega]$. Let τ_1 be the usual order topology induced on $\{b_a \mid 1 \leq \alpha \leq \Omega\}$ by the bijection $b_a \to \alpha$ from $\{b_a \mid 1 \leq \alpha \leq \Omega\}$ onto $[1, \Omega]$ and let τ_2 be the quotient topology on $\{b_a \mid 1 \leq \alpha \leq \Omega\}$ induced on it by the partition π of $\beta N - N$. Then the topologies τ_1 and τ_2 on $\{b_a \mid 1 \leq \alpha \leq \Omega\}$ are both compact and Hausdorff and comparable and hence they are homeomorphic.

Theorem 1.6. Let p be a P-point of order 1 for $\beta N - N$. Then $N \cup \{p\}$ has a scattered compactification.

Proof. Let π be the partition of $\beta N - N$ obtained as in Lemma
1.4. Then \(\{p\} \in \pi \) and the quotient space \((\beta N - N)/\pi = X\) is homeomorphic to \([1, \omega]\). Hence \(X \) is a compact, scattered and Hausdorff space. Let \(\tilde{\pi} \) be the partition of \(\beta N \) as in Lemma 1.3. Then, by Lemma 4, \(\beta N/\tilde{\pi} \) contains a homeomorphic copy of \(N \cup \{p\} \). Since \(N \) is dense in \(\beta N \), \(N \cup \{p\} \) is dense in \(\beta N/\tilde{\pi} \). Thus, \(\beta N/\tilde{\pi} \) is a scattered, Hausdorff compactification for \(N \cup \{p\} \).

Remark 1.6a. The above scattered Hausdorff compactification of \(N \cup \{p\} \) is a space \(X \) such that the remainder \(X - N \) is homeomorphic to \([1, \omega]\). This compact Hausdorff space \(X \) is called \(\gamma N \) by S. P. Franklin and M. Rajagopalan in [1].

2. Scattered Hausdorff compactification for \(N \cup \{p\} \) where \(p \) is \(P \)-point of order 2 in \(\beta N - N \):

Notations. Let \(p \in \beta N - N \). Let \(p \) be a \(P \)-point of order 2 in \(\beta N - N \). Then there exists a countable set \(\{p_1, p_2, \ldots, p_n, \ldots\} \) of distinct \(P \)-points in \(\beta N - N \) such that \(P \) is a \(P \)-point of the set

\[
B = \text{cl}_{\beta N - N} \{p_1, p_2, p_3, \ldots, p_n, \ldots\} - \{p_1, p_2, \ldots, p_n, \ldots\}.
\]

Lemma 2.7. There exists a countable collection \(\{O_n\}_{n \in N} \) of clopen sets in \(\beta N - N \) such that (i) \(O_n \cap O_m = \emptyset \) for \(n, m \in N \) such that \(n \neq m \) and (ii) \(p_n \in O_n \forall n = 1, 2, 3, \ldots \)

Proof. Using the zero dimensionality of \(\beta N - N \) and the fact that \(p_1 \) is a \(P \)-point for \(\beta N - N \), we can get a clopen set \(O_1 \) in \(\beta N - N \) containing \(p_1 \) and disjoint with \(\{p_2, p_3, \ldots, p_n, \ldots\} \cup \{p\} \). Since, \(p_2 \) is a \(P \)-point of \(\beta N - N \), we get a clopen set \(F_1 \) in \(\beta N - N \) containing \(p_2 \) and disjoint with \(p_1, p_3, p_4, \ldots, p_n, \ldots, p \). Put \(O_2 = F_1 - O_1 \). Proceeding like this, by induction, for each \(n \in N \), we can get a clopen set \(O_n \) in \(\beta N - N \) satisfying the conditions (i) and (ii) of the Lemma 2.7.

Lemma 2.8. Let \(O \) be any \(\sigma \)-compact subset of \(\beta N - N \). Then \(\text{cl}_{\beta N - N}^{(\sigma)} = \beta O \).

Proof. This follows from the fact that \(O \) is a dense subset of the compact set \(\text{cl}_{\beta N - N} (O) \) and any continuous function \(f: O \to [0, 1] \) admits a continuous extension to \(\beta N \).

Corollary 2.9. Let the collection \(\{O_n\}_{n \in N} \) be as in Lemma 2.7. Let \(\text{cl}_{\beta N - N} (\bigcup_{n=1}^{\infty} O_n) = M \). Then \(\bigcup_{n=1}^{\infty} O_n \) is a \(\sigma \)-compact subset of
Corollary 2.10. Let \(\{p_1, p_2, \ldots, p_n, \ldots\} \) be a countable collection of P-points of \(\beta N - N \). Let \(B = \text{cl}_{\beta N - N} \{p_1, p_2, \ldots, p_n, \ldots\} - \{p_1, p_2, \ldots, p_n, \ldots\} \). Then \(B \cup \{p_1, p_2, \ldots, p_n, \ldots\} = \beta(\{p_1, \ldots, p_n, \ldots\}) \).

Note 2.11. Let \(X \) be any Tychonoff space. Let \(A \subset X \) be clopen in \(X \). Then \(\text{cl}_{\beta X} A \) is clopen in \(\beta X \).

Proof. The function \(f: X \to [0, 1] \) given by
\[
\begin{align*}
f(x) &= 0, \text{ for all } x \in A \\
&= 1, \text{ for all } x \in X - A
\end{align*}
\]
is continuous on \(X \). Therefore, \(f \) admits a continuous extension \(\tilde{f}: \beta X \to [0, 1] \). Then, it is clear that \(\tilde{f}(x) = 0 \) for all \(x \in \text{cl}_{\beta X} A \) and \(\tilde{f}(x) = 1 \) for all \(x \in \beta X - \text{cl}_{\beta X} A \). Hence, the result follows.

Lemma 2.12. Let the collection \(\{O_n\}_{n \in \mathbb{N}} \) be as in Lemma 2.7. Let \(B \) be as in Corollary 2.10. Let \(\text{cl}_{\beta N - N}(\bigcup_{n=1}^{\infty} O_n) = M \). Let \(M - \bigcup_{n=1}^{\infty} O_n = K \). Then, there exists an increasing collection \(\{A_\alpha\}_{\alpha \in [1, \Omega)} \) of clopen sets relative to \(K \) such that \(\bigcup_{\alpha \in [1, \Omega)} A_\alpha = K - B \).

Proof. For each \(n \in \mathbb{N} \), \(p_n \) is a P-point of \(\beta N - N \) and \(p_n \in O_n \). Hence, \(p_n \) is a P-point of \(O_\alpha \) for all \(n = 1, 2, 3, \ldots \). Therefore, as in Lemma 1.2, using continuum hypothesis, for each \(n \in \mathbb{N} \), \(O_n - \{p_n\} \) can be expressed as the union of an increasing collection \(\{A_\alpha\}_{\alpha \in [1, \Omega)} \) of clopen sets relative to \(O_n \) (and hence relative to \(\beta N - N \) also). For each \(n \in \mathbb{N} \), put \(A_\alpha = [\text{cl}_{\beta N - N}(\bigcup_{n=1}^{\infty} A_{\alpha n})] \cap K \). Then, by Corollary 2.9 and Note 2.11 above, \(A_\alpha \) is clopen relative to \(K \) for all \(\alpha \in [1, \Omega) \). Since \(A_{\alpha n} \subset A_{\beta n} \) for \(\alpha < \beta \), \(\alpha, \beta \in [1, \Omega) \), it follows that \(A_\alpha \subset A_\beta \) for all \(\alpha, \beta \in [1, \Omega) \) such that \(\alpha < \beta \).

Now it remains to show that \(\bigcup_{\alpha \in [1, \Omega)} A_\alpha = K - B \). Clearly \(A_\alpha \cap B = \emptyset \) for all \(\alpha \in [1, \Omega) \) and hence \(\bigcup_{\alpha \in [1, \Omega)} A_\alpha \subset K - B \). To get the other inclusion, let \(x_0 \in K - B \). Now, \(K - B \) is open relative to \(K \) and \(K \) is zero-dimensional. Therefore, there exists a clopen set \(V \) relative to \(K \) such that \(x_0 \in V \subset K - B \). Since \(V \subset K \) is clopen in \(K \) and \(\beta N - N \) is zero dimensional, there exists a clopen set \(W \) in \(\beta N - N \) such that \(V = W \cap K \). Put \(W \cap O_n = W_n \) for all \(n = 1, 2, 3, \ldots \). We note that \(p_n \) can belong to \(W_n \) for at most a finite number of \(n \)'s. Therefore, \(\exists k_0 \in \mathbb{N} \) such that \(p_n \notin W_n \forall n > k_0 \). Hence, for each \(n > k_0 \), there exists a countable ordinal \(\alpha_n \) such that \(A_{\alpha_n} \supset W_n \). Let the supremum of \(\alpha_n \) for \(n > k_0 \), be \(\gamma \). Then \(A_\gamma \supset W_n \forall n > k_0 \). Therefore,
\[\bigcup_{n=0}^{\infty} A_{\gamma n} \supset \bigcup_{n=0}^{\infty} W_n. \]

Hence,

\[\bigcup_{n=1}^{\infty} A_{\gamma n} \cap K = A_{\gamma} = \bigcup_{n=0}^{\infty} A_{\lambda n} \cap K = \bigcup_{n=0}^{\infty} W_n \cap K = \bigcup_{n=1}^{\infty} (W \cap O_n) \cap K = W \cap M \cap K = V. \]

Also \(x_0 \in V \). Therefore, \(\bigcup_{\alpha \in [1, \Omega)} A_{\alpha} = K - B \).

Lemma 2.13. Let \(B \) be as defined in Corollary 2.10 and let \(K \) be as in Lemma 2.12. Then, there exists a collection \(\{X_\alpha\}_{\alpha \in [1, \Omega)} \) of clopen sets relative to \(K \) such that \(X_\alpha \subset X_\beta \forall \alpha, \beta \in [1, \Omega) \) such that \(\alpha < \beta \) and \(\bigcup_{\alpha \in [1, \Omega)} X_\alpha \cap B = B - \{p\} \).

Proof. Now, \(p \) is a P-point of \(B \) and hence, using continuum hypothesis, \(B - \{p\} \) can be written as the union of an ascending collection \(\{B_\alpha\}_{\alpha \in [1, \Omega)} \) of clopen sets relative to \(B \). Since, by Corollary 2.10, \(B \cup \{p_1, p_2, \ldots, p_n, \ldots\} = \beta([p_1, \ldots, p_n, \ldots]) \), each \(B_\alpha \) gives a subset \(N_\alpha = \{p_{\alpha_1}, \ldots, p_{\alpha_k}, \ldots\} \) of \(\{p_1, p_2, \ldots, p_n, \ldots\} \) such that

\[\text{cl}_{\beta N - N}(N_\alpha) \cap B_\alpha = B. \]

Since \(B_\alpha \subset B_\beta \) for \(\alpha < \beta \), we have \(N_\alpha \) is almost contained in \(N_\beta \) for \(\alpha < \beta \). Put \(\text{cl}_{\beta N - N}(\bigcup_{k=1}^{n} O_{n_k}) \cap K = X_\alpha \forall \alpha \in [1, \Omega) \). Then \(X_\alpha \) is clopen in \(K \) \(\forall \alpha \in [1, \Omega) \), \(X_\alpha \subset X_\beta \) for \(\alpha < \beta \), \(X_\alpha \cap B = B_\alpha \forall \alpha \in [1, \Omega) \) and also \(\bigcup_{\alpha \in [1, \Omega)} X_\alpha \cap B = \bigcup_{\alpha \in [1, \Omega)} B_\alpha = B - \{p\} \).

Lemma 2.14. Let the collection \(\{O_\alpha\}_{\alpha \in N} \), \(M \) and \(K \) be as in Lemma 2.12. Let \(\beta N - N - M = T \). Let \(\{C_\alpha\} \alpha \in [1, \Omega) \) be an ascending collection of clopen sets relative to \(K \). Then, there exists an ascending collection \(\{I_\alpha\}_{\alpha \in [1, \Omega)} \) of subsets of \(T \cup K \) such that each \(I_\alpha \) is clopen in \(T_\alpha \cup K \), \(I_\alpha \cap K = C_\alpha \forall \alpha \in [1, \Omega) \) and \(\bigcup_{\alpha \in [1, \Omega)} I_\alpha - \bigcup_{\alpha \in [1, \Omega)} C_\alpha = T \).

Proof. Using the fact that \(\beta N - N \) is zero-dimensional and is of weight \(c \) and also using the fact that the clopen sets of \(\beta N - N \)}
satisfy the Dubois-Reymond separability condition, we can write T as the union of an ascending collection $\{G_\alpha\}_{\alpha \in [1, \Omega)}$ of clopen sets in $\beta N - N$ such that $G_\alpha \cap M = \emptyset \forall \alpha \in [1, \Omega)$.

Now, C_i is clopen in K. Since $\beta N - N$ is zero-dimensional, \exists a clopen set J_i in $\beta N - N$ such that $J_i \cap K = C_i$. Put $[J_i \cap (T \cup K)] \cup G_i = I_i$. Then I_i is clopen in $T \cup K$ and $I_i \cap K = C_i$. Suppose that we have constructed clopen sets I_1, I_2, \ldots, I_n in $T \cup K$ for $n \in N$ such that $I_1 \subset I_2 \subset \cdots \subset I_n$ and $I_i \cap K = C_j$ for $j = 1, 2, \ldots, n$. Then we construct I_{n+1} as follows: Since C_{n+1} is clopen in K and $\beta N - N$ is zero-dimensional, there exists a clopen set J_{n+1} in $\beta N - N$ such that $J_{n+1} \cap K = C_{n+1}$. Put $I_{n+1} = [I_{n+1} \cap (T \cup K)] \cup I_n \cup G_{n+1}$. Then I_{n+1} is clopen in $T \cup K$, $I_{n+1} \supset I_n$ and $I_{n+1} \cap K = C_{n+1}$. Having constructed $I_i \cap C_i \subset C_i$ we now proceed to construct I_ω. First, we claim that $\beta N - N - (\bigcup_{n=1}^{\omega} I_n) \cap (K - C_\omega) = \emptyset$. For, let $x_0 \in K - C_\omega$, which is clopen in K. Since $\beta N - N$ is zero-dimensional, there exists a clopen set H_ω in $\beta N - N$ such that $H_\omega \cap K = K - C_\omega$. Let $H_\omega \cap I_n = H_\omega \cap I_n = 1, 2, 3, \ldots$. Then H_ω is clopen in $\beta N - N$. We will now prove that H_ω is also open in $\beta N - N$. Since, I_n is clopen in $T \cup K$ and $\beta N - N$ is zero dimensional, there exists a clopen set Γ_n in $\beta N - N$ such that $\Gamma_n \cap (T \cup K) = I_n$. Then $\Gamma_n \cap [(T \cup K) \cap K] = I_n \cap K = C_n$. Now

$$H_{n, \omega} = (H_\omega \cap I_n) = H_\omega \cap [\Gamma_n \cap (T \cup K)] = (H_\omega \cap \Gamma_n \cap T) \cup (H_\omega \cap \Gamma_n \cap K) = (H_\omega \cap \Gamma_n \cap T) \cup [(K - C_\omega) \cap \Gamma_n] = (H_\omega \cap \Gamma_n \cap T) \cup [C_n \cap (K - C_\omega)] = H_\omega \cap \Gamma_n \cap T$$

which is open in $\beta N - N$.

Therefore, $H_{n, \omega}$ is clopen in $\beta N - N$. Also $\beta N - N - O_1, \beta N - N - (O_1 \cup O_2), \ldots$ form a decreasing countable collection of clopen sets in $\beta N - N$ such that $(\beta N - N - \bigcup_{n=1}^{\omega} I_n) \cap \bigcap_{n=1}^{\omega} H_{n, \omega} \forall m, n = 1, 2, 3, \ldots$. Therefore, by Dubois-Reymond separability condition, there exists a clopen set H in $\beta N - N$ such that $H \subset T$ and $H \supset \bigcup_{n=1}^{\omega} H_{n, \omega}$. Therefore, $(\beta N - N - H) \cap H_\omega$ is a clopen set in $\beta N - N$ and $x_0 \in (\beta N - N - H) \cap H_\omega$. Also $[(\beta N - N - H) \cap H_\omega] \cap (\bigcup_{n=1}^{\omega} I_n) = \emptyset$. Therefore $x_0 \notin \text{cl}_{\beta N - N} (\bigcup_{n=1}^{\omega} I_n)$. Hence, $(K - C_\omega) \cap \bigcap_{n=1}^{\omega} I_n = \emptyset$. Now $C_\omega \cup \text{cl}_{\beta N - N} (\bigcup_{n=1}^{\omega} I_n)$ and $K - C_\omega$ are disjoint closed sets in $\beta N - N$ which is normal. Therefore, there exist disjoint open sets D_1, D_2 in $\beta N - N$ such that

$$D_1 \supset C_\omega \cup \text{cl}_{\beta N - N} \left(\bigcup_{n=1}^{\omega} I_n \right) \quad \text{and} \quad D_2 \supset K - C_\omega.$$
Now $\beta N - N$ is zero dimensional, $C_\omega \cup \text{cl}_{\beta N - N} \left(\bigcup_{n=1}^{\infty} I_n \right)$ is a compact subset of $\beta N - N$ and D_1 is an open set in $\beta N - N$ containing $C_\omega \cup \text{cl}_{\beta N - N} \left(\bigcup_{n=1}^{\infty} I_n \right)$. Hence, there exists a clopen set J_ω in $\beta N - N$ such that $D_1 \supset J_\omega \supset C_\omega \cup \text{cl}_{\beta N - N} \left(\bigcup_{n=1}^{\infty} I_n \right)$. Now, $J_\omega \cap D_2 = \emptyset$ and hence $(K - C_\omega) \cap J_\omega = \emptyset$. Therefore, $J_\omega \cap K = C_\omega$. Take $J_\omega = [J_\omega \cap (T \cup K)] \cup H_\omega$. Then J_ω is clopen in $T \cup K$, $J_\omega \supset \bigcup_{n=1}^{\infty} I_n$ and $J_\omega \cap K = C_\omega$. Continuing this process, we get an increasing collection $\{I_\alpha\}_{\alpha \in [1, \omega)}$ of clopen sets in $T \cup K$ such that $I_\alpha \cap K = C_\alpha \forall \alpha \in [1, \omega)$. It can also be seen that $\bigcup_\alpha I_\alpha - \bigcup_\alpha C_\alpha = T$.

Corollary 2.15. Let the collection $\{A_\alpha\}_{\alpha \in [1, \omega)}$ be as in Lemma 2.12. Then, there exists a collection $\{S_\alpha\}_{\alpha \in [1, \omega)}$ of clopen sets in $T \cup K$ such that $S_\alpha \subset S_\beta \forall \alpha, \beta \in [1, \omega)$ such that $\alpha < \beta$, $S_\alpha \cap K = A_\alpha \forall \alpha \in [1, \omega)$ and $\bigcup_\alpha S_\alpha - \bigcup_\alpha A_\alpha = T$.

Corollary 2.16. Let the collection $\{x_\alpha\}_{\alpha \in [1, \omega)}$ be as in Lemma 2.13. Then, there exists an increasing collection $\{L_\alpha\}_{\alpha \in [1, \omega)}$ of clopen sets in $T \cup K$ such that $L_\alpha \cap K = X_\alpha \forall \alpha \in [1, \omega)$ and $\bigcup_\alpha L_\alpha - \bigcup_\alpha X_\alpha = T$.

Definition 2.17. Let σ_1 and σ_2 be two partitions of a nonempty set X. Then we define $\sigma_1 \cap \sigma_2$ to be the partition of X given by the collection $\{A \cap B | A \in \sigma_1, B \in \sigma_2, A \cap B \neq \emptyset\}$ of nonempty subsets of X.

Lemma 2.18. Let X be a compact Hausdorff space. Let σ_1, σ_2 be two Hausdorff partitions for X. Then $\sigma_1 \cap \sigma_2$ is also a Hausdorff partition for X.

Proof. Let $X/\sigma_1 = Y_1$ and $X/\sigma_2 = Y_2$. Let $q_1: X \to Y_1$ and $q_2: X \to Y_2$ be the corresponding quotient maps. Define $(q_1, q_2): X \to Y_1 \times Y_2$ by $(q_1, q_2)(x) = (q_1(x), q_2(x)) \forall x \in X$. This is a continuous function form X into $Y_1 \times Y_2$. Now $Y_1 \times Y_2$ is Hausdorff. Consider (q_1, q_2) as a map from X onto $(q_1, q_2)(X)$. Let the partition induced on X by this map be σ. Then $\sigma = \sigma_1 \cap \sigma_2$. Let $q: X \to X/\sigma$ be the corresponding quotient map. Let $g: X/\sigma \to (q_1, q_2)(X)$ be the natural fill-up map making the following diagram commutative.
Now \(X/\sigma \) is compact, \((q_1, q_2)(X) \) is Hausdorff and \(g \) is one-to-one, onto and continuous. Hence \(g \) is a homeomorphism. Since \((q_1, q_2)(X) \) is Hausdorff, it follows that \(X/\sigma \) is Hausdorff. Therefore \(\sigma_1 \cap \sigma_2 \) is a Hausdorff partition for \(X \).

In the above proof, we also note that the quotient space induced by \(\sigma_1 \cap \sigma_2 \) is homeomorphic to the range of the function \((q_1, q_2) \) in \(Y_1 \times Y_2 \).

Lemma 2.19. Let \(T \) and \(K \) be as in Lemma 2.14. Let \(B \) and \(p \) be as in Lemma 2.13. Then, there exists a Hausdorff partition for \(T \cup K \) with \(\{p\} \) as a separate partition class.

Proof. Let the collection \(\{S_\alpha\}_{\alpha \in [1, \Omega)} \) be as in Corollary 2.15 and let the collection \(\{L_\alpha\}_{\alpha \in [1, \Omega)} \) be as in Corollary 2.16. Put \(H_1 = S_1 \) and for each \(\alpha \in [2, \Omega) \), \(H_\alpha = S_\alpha - \bigcup_{\xi < \alpha} S_\xi \) and \(H_\Omega = K - \bigcup_\alpha A_\alpha = B \). Also, let \(M_1 = L_1 \); for each \(\alpha \in [2, \Omega) \), \(M_\alpha = L_\alpha - \bigcup_{\xi < \alpha} L_\xi \) and \(M_\Omega = K - \bigcup_{\alpha \in [1, \Omega)} X_\alpha \). Then, the collection \(\{H_\alpha\}_{\alpha \in [1, \Omega)} \) gives a partition \(\pi_1 \) for \(T \cup K \) such that the quotient space \((T \cup K)/\pi_1 \) is homeomorphic to \([1, \Omega]\). Therefore, \(\pi_1 \) is a Hausdorff partition for \(T \cup K \). Similarly, the collection \(\{M_\alpha\}_{\alpha \in [1, \Omega]} \) gives a Hausdorff partition \(\pi_2 \) for \(T \cup K \). Let \(\pi_1 \cap \pi_2 = \pi_3 \). Then, by Lemma 2.18, \(\pi_3 \) is a Hausdorff partition for \(T \cup K \). Also

\[
H_\Omega \cap M_\Omega = B \cap \left(K - \bigcup_{\alpha} X_\alpha\right) = B - \bigcup_{\alpha} (B \cap X_\alpha)
= B - \bigcup_{\alpha} B_\alpha = \{p\}.
\]

Lemma 2.20. Let \(X \) be a topological space. Let \(A_1 \) and \(A_2 \) be closed in \(X \). Let \(A_1 \cup A_2 = X \). Let \(A \subset X \) be such that \(A \cap A_1 \) is open relative to \(A_1 \) and \(A \cap A_2 \) is open relative to \(A_2 \). Then \(A \) is open in \(X \).

Proof. This follows from the fact that

\[
A = (O_1 - A_2) \cup (O_2 - A_1) \cup (O_1 \cap O_2).
\]

Lemma 2.21. Let \(\pi_3 \) be the partition of \(T \cup K \) as obtained in the proof of Lemma 2.19. Let the collection of sets \(\{A_\alpha\}_{\alpha \in [1, \Omega]} \) be as obtained in the proof of Lemma 2.12. Let \(\{p_1, p_2, \ldots, p_n, \ldots\} \) be as in Corollary 2.10. For each \(k \in N \), let \(D_{\alpha k} = A_{\alpha k} - \bigcup_{\xi < \alpha} A_{\xi k} \). Then the collection of sets \(\{D_{\alpha k}\}_{\alpha \in [1, \Omega]} \) and \(\{p_\alpha\}_{\alpha \in N} \) together with the members of \(\pi_3 \) form a Hausdorff partition \(\pi_4 \) for \(\beta N - N \).
Proof. Clearly \(\pi_4 \) is a partition for \(\beta N - N \). We will now prove that \((\beta N - N)/\pi_4 \) is Hausdorff. Given any two partition classes \(C_1 \) and \(C_2 \) of \(\beta N - N \) with respect to \(\pi_4 \), we must prove that there exists a clopen set \(Y \) in \(\beta N - N \) containing \(C_1 \), disjoint with \(C_2 \) and saturated under \(\pi_4 \). The cases where either \(C_1 \) or \(C_2 \) is a \(D_{\alpha k} \) or a \(p_\alpha \) are easy to handle and we consider the following cases:

Case 1. Let \(C_1 = H_\alpha \cap M_\beta \) and \(C_2 = H_\alpha \cap M_\gamma \) where \(\alpha, \beta, \gamma \in [1, \Omega] \) and \(\beta \neq \gamma \). Without loss of generality, we can assume that \(\beta < \gamma \). Now, by definition \(X_\beta = \text{cl}_{\beta N - N}(\bigcup_{n=1}^N O_{n \beta}) \cap K \) where \(\text{cl}_{\beta N - N}((p_{n \alpha}^\beta, \cdots, p_{n \beta}^\alpha, \cdots)) \cap B = B_\beta \) (see the proof of Lemma 2.13). Also \(L_\beta \cap K = X_\beta \) where \(L_\beta \) is clopen in \(T \cup K \) (see Corollary 2.16). Now, \(Y_1 = L_\beta \cup \text{cl}_{\beta N - N}(\bigcup_{n=1}^N O_{n \beta}) \) is closed in \(N \). Further, \(Y_1 \cap C_1 \) and \(Y_1 \cap C_2 \) are disjoint and \(Y_1 \) is saturated under \(\pi_4 \).

Case 2. Let \(C_1 = H_\alpha \cap M_\beta \) and \(C_2 = H_\gamma \cap M_\delta \) where \(\alpha, \beta, \gamma, \delta \in [1, \Omega] \) and \(\alpha \neq \gamma \). Without loss of generality, we can assume that \(\alpha < \gamma \). In this case, using Lemma 2.20, we can verify that the set \(Y_1 = \text{cl}_{\beta N - N}(\bigcup_{n=1}^N A_{n \alpha}) \cup S_\alpha \) is clopen in \(\beta N - N \). Further, \(Y_1 \cap C_1 \) and \(Y_1 \cap C_2 \) are disjoint and \(Y_1 \) is saturated under \(\pi_4 \). Therefore, \(\pi_4 \) is a Hausdorff partition for \(\beta N - N \).

Lemma 2.22. Let \(\pi_4 \) be the Hausdorff partition of \(\beta N - N \) as given in Lemma 2.21. Let \(\pi_5 \) be the partition of \(M \) given by \(\pi_5 = \pi_4 \mid \{X \cap M \mid X \in \pi_4\} \). Then \(\pi_5 \) is a Hausdorff partition for \(M \).

Proof. Let \(D_{\alpha k}, p_\alpha, B \) and \(O_\alpha \) be as in above lemmas. Let \(E_\alpha = A_\alpha - \bigcap_{\alpha \leq \alpha' < \alpha} A_{\alpha'} \) for all \(\alpha \in [2, \Omega] \). Then, it is easy to see that the partition \(\pi_5 \) of \(M \) given by the collection \(\{D_{\alpha k}\}_{\alpha \in [1, \Omega]} \) and \(\{E_\alpha\}_{\alpha \in [1, \Omega]} \) and \(B \) is a Hausdorff partition for \(M \). Let \(K_1 = X_\alpha \) and \(K_\alpha = X_\alpha - \bigcup_{\alpha' \leq \alpha < \alpha'} X_{\alpha'} \) for all \(\alpha \in [1, \Omega] \). Also, let \(K_0 = K - \bigcup_{\alpha \in [1, \Omega]} X_{\alpha} \). Then, the partition \(\pi_7 \) of \(M \) given by the collection \(\{O_\alpha\}_{\alpha \in N} \) and \(\{K_\alpha\}_{\alpha \in [1, \Omega]} \) is also a Hausdorff partition for \(M \). Further, \(\pi_5 = \pi_5 \cap \pi_7 \). Hence, by Lemma 2.18, \(\pi_5 \) is a Hausdorff partition for \(M \).

Lemma 2.23. Let \(M, \pi_4 \) and \(\pi_5 \) be as in previous lemmas. Then \(M/\pi_5 \) is homeomorphic to \((\beta N - N)/\pi_4 \).

Proof. Let \((\beta N - N)/\pi_4 = Y \) and let \(q_4 : \beta N - N \rightarrow Y \) be the quotient map induced by the partition \(\pi_4 \) of \(\beta N - N \). Then, by Lemma 2.21, \(Y \) is Hausdorff. Now, the map \(q_4 : M \rightarrow Y \) is a continuous function from \(M \) onto \(Y \) where \(M \) is compact and \(Y \) is Hausdorff. Hence, the topology of \(Y \) is the quotient topology of \(M \) induced on
it by the function q_{JM}. But g_4 induces the partition π_δ on M. Therefore, M/π_δ is homeomorphic to $Y = (\beta N - N)/\pi_\delta$.

Lemma 2.24. Let all notations be as in previous lemmas. Then M/π_δ is homeomorphic to $\gamma N \times [1, \Omega]$ where γN is the compactification of N constructed by S. P. Franklin and M. Rajagopalan in [1]. (See also remark 1.6a).

Proof. Now $\pi_\delta = \pi_\delta \cap \pi_\gamma$ where π_δ and π_γ are Hausdorff partitions of M as given in the proof of Lemma 2.22. Let $q_\delta : M \to M/\pi_\delta$ and $q_\gamma : M \to M/\pi_\gamma$ be the corresponding quotient maps. Consider the function $(q_\delta, q_\gamma) : M \to M/\pi_\delta \times M/\pi_\gamma$ given by $(q_\delta(x), q_\gamma(x)) \forall x \in M$. Since $\pi_\delta \cap \pi_\gamma = \pi_\delta$, it follows from Lemma 2.18 that M/π_δ is homeomorphic to the range of the function (q_δ, q_γ) from M into $M/\pi_\delta \times M/\pi_\gamma$. But it can be seen that M/π_δ is homeomorphic to $[1, \Omega] \times [1, \omega]$ with its usual product topology and M/π_γ is homeomorphic to γN and that the range of the map (q_δ, q_γ) is homeomorphic to $[1, \Omega] \times \gamma N$. Hence, M/π_δ is homeomorphic to $[1, \Omega] \times \gamma N$.

Theorem 2.25. $N \cup \{p\}$ has a scattered Hausdorff compactification, when p is a P-point of order 2 for $\beta N - N$.

Proof. Consider the partition π_γ of $\beta N - N$ given in Lemma 2.21. Let π_γ be the partition of βN whose members are the members of π_γ and the singletons in N. Since, $(\beta N - N)/\pi_\gamma$ is Hausdorff, by Lemma 1.3, it follows that $\beta N/\pi_\gamma$ is Hausdorff. Since βN is compact, we have $\beta N/\pi_\gamma$ is compact. Since $(\beta N - N)/\pi_\gamma$ is homeomorphic to $[1, \Omega] \times \gamma N$ which is scattered, we have that $\beta N/\pi_\gamma$ is also scattered. Since N is dense in βN and $N \cup \{p\}$ maps homeomorphically onto itself under the quotient map from βN onto $\beta N/\pi_\gamma$ (Lemma 1.4), it follows that $N \cup \{p\}$ is dense in $\beta N/\pi_\gamma$. Thus, $\beta N/\pi_\gamma$ is a scattered Hausdorff compactification for $N \cup \{p\}$. Hence the theorem.

References

Received November 27, 1974 and in revised form July 21, 1975. The second author gratefully acknowledges his support from a grant from Memphis State University during the writing of this paper.

MEMPHIS STATE UNIVERSITY
AND
MADURA COLLEGE, MADURAI, INDIA
Jiří Adámek, V. Koubek and Věra Trnková, *Sums of Boolean spaces represent every group* .. 1
Richard Neal Ball, *Full convex l-subgroups and the existence of a*-closures of lattice ordered groups* .. 7
Joseph Becker, *Normal hypersurfaces* .. 17
Gerald A. Beer, *Starshaped sets and the Hausdorff metric* 21
Dennis Dale Berkey and Alan Cecil Lazer, *Linear differential systems with measurable coefficients* .. 29
Harald Boehme, *Glättungen von Abbildungen 3-dimensionaler Mannigfaltigkeiten* .. 45
Stephen LaVern Campbell, *Linear operators for which $T*T$ and $T + T*$ commute* .. 53
H. P. Dikshit and Arun Kumar, *Absolute summability of Fourier series with factors* .. 59
Andrew George Earnest and John Sollion Hsia, *Spinor norms of local integral rotations. II* .. 71
Erik Maurice Ellentuck, *Semigroups, Horn sentences and isolic structures* .. 87
Ingrid Fotino, *Generalized convolution ring of arithmetic functions* .. 103
Michael Randy Gabel, *Lower bounds on the stable range of polynomial rings* .. 117
Fergus John Gaines, *Kato-Taussky-Wielandt commutator relations and characteristic curves* .. 121
Theodore William Gamelin, *The polynomial hulls of certain subsets of C^2* .. 129
R. J. Gazik and Darrell Conley Kent, *Coarse uniform convergence spaces* .. 143
Paul R. Goodey, *A note on starshaped sets* .. 151
Eloise A. Hamann, *On power-invariance* .. 153
M. Jayachandran and M. Rajagopalan, *Scattered compactification for $N \cup \{P\}$* .. 161
V. Karunakaran, *Certain classes of regular univalent functions* .. 173
John Cronan Kieffer, *A ratio limit theorem for a strongly subadditive set function in a locally compact amenable group* .. 183
Siu Kwong Lo and Harald G. Niederreiter, *Banach-Buck measure, density, and uniform distribution in rings of algebraic integers* .. 191
Harold W. Martin, *Contractibility of topological spaces onto metric spaces* .. 209
Harold W. Martin, *Local connectedness in developable spaces* .. 219
A. Meir and John W. Moon, *Relations between packing and covering numbers of a tree* .. 225
Hiroshi Mori, *Notes on stable currents* .. 235
Donald J. Newman and I. J. Schoenberg, *Splines and the logarithmic function* .. 241
M. Ann Piech, *Locality of the number of particles operator* .. 259
Fred Richman, *The constructive theory of KT-modules* .. 263
Gerard Sierksma, *Carathéodory and Helly-numbers of convex-product-structures* .. 275
Raymond Earl Smithson, *Subcontinuity for multifunctions* .. 283
Gary Roy Spoar, *Differentiability conditions and bounds on singular points* .. 289
Rosario Strano, *Azumaya algebras over Hensel rings* .. 295