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SCATTERED COMPACTIFICATION FOR N U {p}

M. JAYACHANDRAN AND M. RAJAGOPALAN

In this paper, it is shown that the scattered space N U {p}
admits a scattered Hausdorff compactification for a large
class of points p in SN — N. This gives a partial solution to
the following problem raised by Z. Semadeni in 1959: “‘Is
there a scattered Hausdorff compactification for the space
NU {p} where p is any point of AN — N?” (See *‘Sur les
ensembles clairsemés,”’ Rozprawy Matematyczne, 19 (1959).)
The proofs are purely topological and the compactifications
are easy to visualize.

In 1970, C. Ryll-Nardzewski and R. Telgarsky [5], using deep
results from Boolean Algebras, have proved that N U {p} has a scat-
tered compactification if p is a P-point of SN — N. In the first
section of this paper, it is shown that the space YN constructed by
S. P. Franklin and M. Rajagopalan [1] serves as a scattered compac-
tification for N U {p} when p is a P-point of SN — N. In the second
section, a scattered Hausdorff compactification for N U {p} is provided,
when p is a P-point of order 2 for SN — N (definition follows). In
this case, it is also shown that the compactification of N U {p} is a
space Y such that ¥ — N is a homeomorph of [1, 2] X 7N.

DEFINITION 1.1. A P-point of SN — N is said to be P-point of
order 1 for BN — N. Suppose that for n e N, we have defined a P-
point of order n». Then we define a P-point of order n + 1 to be
a P-point of the derived set of a countable set of P-points each being
of order » in BN — N.

We will now proceed to get a scattered compactification for N U
{p} where p is a P-point of order 1 for SN — N, by constructing a
suitable quotient space of BN which is scattered and Hausdorff and
which contains N U {p} as a dense subspace. The following two
lemmas are easy to prove and their proofs are omitted.

LEMMA 1.2. Let » be a P-point of order 1 for BN — N. Then
using continuum hypothesis BN — N — {p} can be written as the
union of a collection {F,},er,00 0f clopen sets in BN — N such that
F,C Fs for all a, pell, Q) such that a < B.

LEMMA 1.3. Let @ be a partition of BN — N such that the
quotient space (BN — N)/m is Hausdorfl in its quotient topology.
Let % be the partition of BN where each member of N is a member
of # and each member of w is also a member of T. ThenY = BN|T
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18 compact and Hausdorff and the image of N in Y is an open
discrete dense subspace of Y.

Further, if (BN — N)/m is scattered in quotient topology, Y is
also scattered im quotient topology.

LEMMA 1.4. Let p€ BN — N. Let w be a partition of BN — N
such that {plerw and (BN — N)/x is Hausdorff. Let T be the par-
tition of BN as described in Lemma 1.3. Let §: BN— BN/T =Y be
the canonical map. Then § is a homeomorphism when restricted to
NU {p}.

Proof. Clearly q|(N U {p}): NU {p} — N U {p} is continuous, one-
to-one and onto. Also §: BN — GN/7 is continuous, SN is compact
and by Lemma 1.8, Y is T,. Therefore § is a closed map and hence
upper semi-continuous. Let O C NU {»} be open relative to N U {p}.
Then O = (NU{p})N U where U is open in @N. Let W be the union
of all partition classes with respect to # within U. Then, by the
upper semicontinuity of §, W is open in BN. Since W is also saturated
under 7%, §(W) is open in BN/Z. Also WN (N U {p}) = O and hence
FWYNGNU{p} = §(0). The refore, §(0) is open relative to (N U {p}).
Thus, §|(N U{p}) is an open map. Therefore, §|(N U{p}) is a
homeomorphism.

LEMMA 1.5. Let p be a P-point of BN — N. Then there exists
a partition w for BN — N such that (i) {p}exm and (ii) the induced
quotient space X = (BN — N)/x 1is homeomorphic to [1, 2].

Proof. By Lemma 1.2, BN — N — {p} can be written as U e, 00 Fl
such that F, is clopen in BN — N for each a and F,C Fyve, Bell, Q)
such that @« < 8. Put H, = F, and for each « such that 1 < a < 2,
put H,= F, — U,cr<. Fy, and put Hy = {p}. Then the collection {H,},c1,.
forms a partition 7 of BN — N by closed sets in BN — N. Let ¢:
BN — N— (BN — N)/n be the induced quotient map. Let q(H,) = b,
for all ac[l, 2]. Let 7, be the usual order topology induced on
{b,]1 £ @ < 2} by the bijection b, — a from {b,|1 < a < 2} onto [1, 2]
and let 7, be the quotient topology on {b.]1 < a £ 2} induced on it
by the partition # of BN — N. Then the topologies 7, and 7, on
{b,]1 £ @ < 2} are both compact and Hausdorff and comparable and
hence they are homeomorphic.

THEOREM 1.6. Let p be a P-point of order 1 for BN — N. Then
N U {p} has a scattered compactification.

Proof. Let w be the partition of SN — N obtained as in Lemma
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1.4. Then {p}ex and the quotient space (3N — N)/x = X is homeo-
morphic to [1, 2]. Hence X is a compact, scattered and Hausdorff
space. Let 7 be the partition of AN as in Lemma 1.3. Then, by
Lemma 4, SN/% contains a homeomorphic copy of NU {p}. Since N
is dense in BN, N U {p} is dense in gN/#. Thus, SN/7 is a scattered,
Hausdorff compactification for N U {p}.

REMARK 1.6a. The above scattered Hausdorff compactification
of NU {p} is a space X such that the remainder X — N is homeo-
morphic to [1, 2]. This compact Hausdorff space X is called YN by
by S. P. Franklin and M. Rajagopalan in [1].

2. Scattered Hausdorff compactification for N U {p} where p is
P-point of order 2 in BN — N:

NoTATIONS. Let pe 8N — N. Let » be a P-point of order 2
in BN — N. Then there exists a countable set {p, D, ***Du *-*}
of distinet P-points in BN — N such that P is a P-point of the
set

B= C1PN—N{p1y D2y D3y ==y ***y Doy "'} - {ply D2y =D "'} .

LeEMMA 2.7. There exists a countable collection {0,},.y of clopen
sets tn BN — N such that (1) 0,10, = @ for n, m e N such that n+m
and (i) p,€0,vn=1,2,8, ---.

Proof. Using the zero dimensionality of SN — N and the fact
that p,, is a P-point for SN — N, we can get a clopen set O, in
BN — N containing p, and disjoint with {p, Ds -+*, Du, -~} U {p}.
Since, p, is a P-point of BN — N, we get a clopen set F,in BN — N
containing p, and disjoint with p,, Dy, Dy +++, Dpy +++, . Put O, =
F, — O0,. Proceeding like this, by induction, for each ne N, we can
get a clopen set O, in BN — N satisfying the conditions (i) and (ii)
of the Lemma 2.7.

LEMMA 2.8. Let O be any o-compact subset of BN — N. Then
cloy-_y = BO.

Proof. This follows from the fact that O is a dense subset of
the compact set ¢l;y_y (0) and any continuous function f:0 — |0, 1]
admits a continuous extension to SN.

COROLLARY 2.9. Let the collection {O,},.y be as in Lemma 2.7.
Let ey y (Up=10,) =M. Then U,-.0, ts a o-compact subset of
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BN — N and M = S(U.-.0.)-

COROLLARY 2.10. Let {D;, Dsy +++, Du, *+-} be a countable collec-
tion of P-points of BN — N. Let B = clay_y {0y, D2y ) Duy +++} —

{plr Doy ==y Duy "'}° Then BU{pu D2y =y Doy "'} = B({pl’ ey Day "')}'

NotTE 2.11. Let X be any Tychonoff space. Let A C X be clopen
in X. Then cl;y A is clopen in BX.

Proof. The function f: X — [0, 1] given by

f(x) =0, for all xc A
=1, forallze X — A

is continuous on X. Therefore, f admits a continuous extension f:
@X-—»[O, 1]. Then, it is clear that f(x) =0 for all zecl;; A and
f(@) =1 for all xe 8X — clsxA. Hence, the result follows.

LeMMA 2.12. Let the collection {0,},.y be as in Lemma 2.7.
Let B be as in Corollary 2.10. Let clsy_y (U,=:0,) = M. Let M —
U.-.0, = K. Then, there exists an increasing collection {A,},er,0
of clopen sets relative to K such that Uyepo 4. = K — B.

Proof. For each ne N, p, is a P-point of AN — N and p,€O0,.
Hence, p, is a P-point of O, for all n =1,2,3, ---. Therefore, as
in Lemma 1.2, using continuum hypothesis, for each n€ N, O, — {p,}
can be expressed as the union of an increasing collection {A,,}.cr.0 Of
clopen sets relative to O, (and hence relative to SN — N also). For
each ne N, put A, = [elsy_y (U7-: 4..)]1 N K. Then, by Corollary 2.9
and Note 2.11 above, A, is clopen relative to K for all ac[l, Q).
Since 4,,C 4;, for a < B, a, Be[l, 2), it follows that A, < A, for all
a, Be[l, 2) such that a < 8.

Now it remains to show that U,e;,00 4. = K — B. Clearly 4, N
B = ¢ for all «€]l, 2) and hence U, A, K — B. To get the other
inelusion, let z,¢ K — B. Now, K — B is open relative to K and K
is zero-dimensional. Therefore, there exists a clopen set V relative
to K such that 2,¢ Vc K — B. Since Vc K is clopen in K and
BN — N is zero dimensional, there exists a clopen set W in SN — N
such that V=WnK. Put WNnO,=W, forall n=1,2,8,..- We
note that p, can belong to W, for at most a finite number of =’s.
Therefore, 3k,€ N such that p,¢ W,¥vn > k,. Hence, for each n >k,
there exists a countable ordinal «, such that A, ,D>W,. Let the
supremum of «, for n >k, be Y. Then 4,,DW,Vn >k, Therefore,
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Hence,

i
1C
3
D
o

=UJwno)nk

n=1

=WnMnK
wnkK
=V.

Also z,¢ V. Therefore, Uuerr,00 4. = K — B.

ll

LEMMA 2.13. Let B be as defined in Corollary 2.10 and let K
be as in Lemma 2.12. Then, there exists a collection {X, )}t Of
clopen sets relative to K such that X, X,Va, gell, 2) such that
a< B ond [UsenoX]N B=B— {p}

Proof. Now, p is a P-point of B and hence, using continuum
hypothesis, B — {p} can be written as the union of an ascending
collection {B,},er.0) Of clopen sets relative to B. Since, by Corollary
2.10, BU{Dy Dy =+*, Dy =»+} = B({Dy, +++, Pu, +++}), each B, gives a
subset N, = {p,%, -+, 0,2, +-+} of {p,, Dy, -+, D,, -+ -} such that

cliy-y(No) N B. = B..

Since B,C B; for @ < B, we have N, is almost contained in N; for
a < pB. Put [epy_y(Ui-1 091N K = X, Vae[l, 2]. Then X, is clopen
in K vaell, Q), X,c X; for a < 8, X,NB= BYac]l, 2) and also
U.X)NB=U.(X.NB)=U.B.= B — {p}.

LeMMA 2.14. Let the collection {O,},.x, M and K be as in Lemma
212, Let BN— N—M=T. Let {C,}) ac]l, 2) be an ascending
collection of clopen sets relative to K. Then, there exists an ascending
collection {L}scrr,00 Of subsets of TU K such that each I, is clopen
in T,UK, I, NK=CYvae]l, 2) and U.I,— U.C, = T.

Proof. Using the fact that @GN — N is zero-dimensional and is
of weight ¢ and also using the fact that the clopen sets of SN — N
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satisfy the Dubois-Reymond separability condition, we can write T
as the union of an ascending collection {G.}..;.o0 of clopen sets in
BN — N such that G, N M = ¢Va el 2).

Now, C, is clopen in K. Since 8N — N is zero-dimensional, 3 a
clopen set J, in BN — N such that J N K = C,. Put[J.N(T U K)|U
G, = 1. Then I is clopen in TU K and I,N K = C,. Suppose that
we have construected clopen sets I, I,, ---, I, in TU K for ne N such
that [cL,c.--.cI, and ;[ N K=C, for =1,2,-.-,n. Then we
construct I,,, as follows: Since C,,, is clopen in K and SN — N is
zero-dimensional, there exists a clopen set J,., in BN — N such that
JouNK=Cpp. Put I, =[J,u N(TUK)UIL UG,y Then I, is
clopen in TUK, I,,,oI, and I,.,,N K = C,,,. Having constructed
LLcLc...cl,c.-- we now proceed to construct I,. First, we
claim that cl;y_y Uz L)NEK — C,) = @. For, let v,k — C,, which
is clopen in K. Since BN — N is zero-dimensional, there exists a
clopen set H, in SN — N such that H,NK = K — C,. Let H,NI, =
H,v,=12,8,-... Then H,, is closed in SN — N. We will now
prove that H,, is also open in BN — N. Since, I, is clopen in TUK
and BN — N is zero dimensional, there exists a clopen set I°, in SN — N
such that ', N(TUK)=1,. Then ', N[(TUK)NK]=I,NK =C,.
Now

H,,=H,NI)=H,N[l.N(TUK)]
=H,N[l.NnT)U N K)]
=H,NT,NTYUEH,NT,NK)
=HNTI,NTYUK - C)NT,]
=H,NTL,NTUIKENEK - C)NT,]
=H,NT, NTHUC. N (K - C)]
= H,NI,N T which is open in BN — N.

Therefore, H,, is clopen in BN — N. Also SN - N -0, BN — N —
(0. U0,), --- form a decreasing countable collection of clopen sets in
BN — N such that (BN — N — Ur.0,)>H,.Vm,n=1,2,8, --- The-
refore, by Dubois-Reymond separability condition, there exists a clopen
set H in BN — N such that HC T and H>D U H,.. Therefore,
(BN—N—H)NH, is a clopen set in BN—N and z,€ (AN—-N—H)N H,.
Also [(BN-N-H)N H,JN(U3-: )= 2. Therefore ,¢ clyy_x U,z L,).
Hence, (K — C,) N (N, I,) = @. Now C,Ucliy_y(Us-: L) and K — C,
are disjoint closed sets in SN — N which is normal. Threfore, there
exist disjoint open sets D,, D, in BN — N such that

D,>CoU el (UL) and D,OK-C..
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Now BN — N is zero dimensional, C, U elsy_y (U= I,) is a compact
subset of BN — N and D, is an open set in SN — N containing C, U
cly_y (U= I,). Hence, there exists a clopen set J, in SN — N such
that D, J,DC, U elsy-y (Ui I). Now, J,ND,= @ and hence (K —
C)NnJ, = @. Therefore, J,N K = C,. Take I, = [J,N(T U K)]U H,.
Then I, is clopen in TUK, I,D Uy, I, and I, N K = C,. Continuing
this process, we get an increasing collection {I,.},.[, o of clopen sets
in TUK such that I, N K = C,vae][l, 2). It can also be seen that

sz-[a - UaCa = T'

COROLLARY 2.15. Let the collection {A.}ecior be as in Lemma
2.12. Then, there exists a collection {S,}icr,o 0f clopen sets in TUK
such that S,CS;Va, Bell, Q) such that a < B8, S,NK=ANYac]l, 2)
and Uasa - UaAa = T.

COROLLARY 2.16. Let the collection {%.}yen00 be as in Lemma
2.18. Then, there exists an increasing collection {L.}eer 0f clopen
sets in TU K such that L,Nx = X ,Vae[l, Dand U, L, - U. X, = T.

DEFINITION 2.17. Let o, and o, be two partitions of a nonempty
set X. Then we define 0,N 0, to be the partition of X given by
the collection {AN B|Aco, Beo,, AN B+ @} of nonempty subsets
of X.

LEmMMA 2.18. Let X be a compact Hausdorff space. Let o, 0,
be two Hausdorfl partitions for X. Then 0,00, is also a Hausdorff
partition for X.

Proof. Let X/o, =Y, and X/o,=Y,. Letgq:X—Y, and ¢.: X—7Y,
be the corresponding quotient maps. Define (g, ¢,): X —Y, X Y, by
(qy, ¢2)(x) = (g.(x), g-(x))Vx € X. This is a continuous function form X
into Y, X Y,. Now Y, X7, is Hausdorff. Consider (¢, ¢,) as a map
from X onto (¢, ¢,)(X). Let the partition induced on X by this map
be 0. Then ¢ = 0,N g,. Let ¢: X — X/o be the corresponding quotient
map. Let g: X/o— (g, ¢:)(X) be the natural fill-up map making the
following diagram commutative.

Cont, onto (g, 2)(X)

(91, g2) Compact, T
. Onto
continuous ¢ \ /" 9 one-to-one
Onto \ X/ continuous
o

Compact
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Now X/o is compact, (g, 9.)(X) is Hausdorff and g is one-to-one, onto
and continuous. Hence ¢ is a homeomorphism. Since (¢, ¢.)(X) is
Hausdorff, it follows that X/o is Hausdorff. Therefore g,N o, is a
Hausdorff partition for X.

In the above proof, we also note that the quotient space induced
by o, N o, is homeomorphic to the range of the function (g, ¢,) in
Y, XY,

LeMMA 2.19. Let T and K be as in Lemma 2.14. Let B and
p be as in Lemma 2.13. Then, there ewxists a Hausdorff partition
for TU K with {p} as a separate partition class.

Proof. Let the collection {S,}.cr1,0) be as in Corollary 2.15 and
let the collection {L,}.cr,o) be as in Corollary 2.16. Put H, = S, and
for each ac[2, 2), H,=8S, — Uicy««S; and H,= K - {J, A, = B.
Also, let M, = L,; for each ae[2, @), M, = L, — Uisr<a Ly and M, =
K — Ueer.2X,. Then, the collection {H,},cr,00 gives a partition x, for
T U K such that the quotient space (T'U K)/x, is homeomorphic to [1, 2].
Therefore, w, is a Hausdorff partition for 7 U K. Similarly, the
collection {M,},er,c1 gives a Hausdorff partition 7, for TU K. Let
7, N7, = w,. Then, by Lemma 2.18, 7, is a Hausdorff partition for
TuU K. Also

Hy0 My = B (K - U X.)
=B-U(BNX)
ZB_LHJBa:{p}'

LEMMA 2.20. Let X be a topological space. Let A, and A, be
closed in X. Let A,UA,= X. Let AC X be such that AN A, s
open relative to A, and AN A, is open relative to A, Then A is
open in X.

Proof. This follows from the fact that
A=(0,-4)U (0. - A4)u(0.n0O,y).

LEMMA 2.21. Let m; be the partition of TU K as obtained in
the proof of Lemma 2.19. Let the collection of sets {As}icr,00 be as
keN

obtained in the proof of Lemma 2.12. Let {p,, ps +++, Du, -+-} be as

in Corollary 2.10. For each ke N, let D,, = A,, — Uisr<a 4r,. Then

the collection of sets {D,,k}az[l,m and {D,}..y together with the members
EN

of w; form a Hausdorff partition m, for BN — N.
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Proof. Clearly «, is a partition for SN — N. We will now prove
that (BN — N)/x, is Hausdorff. Given any two partition classes C,
and C, of BN — N with respect to 7,, we must prove that there
exists a clopen set Y, in BN — N containing C,, disjoint with C, and
saturated under m,. The cases where either C, or C, is a D, or a
p, are easy to handle and we consider the following cases:

Case 1. Let C,= H,N M; and C, = H, N\ M, where a, B, 7Y€ [1, 2]
and B # 7. Without loss of generality, we can assume that 8 < 7.
Now, by definition X; = clpy_y(Us-: 0,,]5) N K where clyy_y ({p,,f, cee,
Dty ++-})NB = B; (see the proof of Lemma 2.13). Also L,NK = X,
where L; is clopen in T U K (see Corollary 2.16). Now, Y, =L, U
clyy_y (Ur=1 0,;) is closed in BN — N and using Lemma 2.20, we can
see that it is also open in BN — N. Further Y.OC,and Y,NC,= Q.
Also, Y, is saturated under =«,.

Case 2. Let C,=H,NM; and C,= H,N M, where a, 3, 7,0¢
1, 2] and a = 7. Without loss of generality, we can assume that
« < 7. In this case, using Lemma 2.20, we can verify that the set
Y, = clpy_y (U1 4,,) U S, is clopen in BN — N. Further, ¥, D C, and
Y,NC,= @. Also Y, is saturated under z,. Therefore, x, is a Haus-
dorff partition for SN — N.

LEMMA 2.22. Let &, be the Hausdorff partition of SN — N as
gtven in Lemma 2.21. Let wy be the partition of M given by w; =
m,M={XNMXer,). Then s is a Hausdorff partition for M.

Proof. Let D,,, ., B and O, be as in above lemmas. Let E, = A4,
and E, = A, — Nisr<a 4, Y €[2, 2). Then, it is easy to see that the
partition 7, of M given by the collection {D,}ae]l, 2lkc N, [p.}aey,
{E)sen,ey and B is a Hausdorff partition for M. Let K, = X, and
K,=X, — Uisr< X;Vae[l, 2). Also, let Ko= K — Upepy, X, Then,
the partition 7, of M given by the collection {0,},.»y and {K,}.cq 0 is
also a Hausdorff partition for M. Further 7, = 7, N 7,. Hence, by
Lemma 2.18, 7, is a Hausdorff partition for M.

LEMmA 2.23. Let M, &, and 7, be as in previous lemmas. Then
Mz is homeomorphic to (BN — N)/=x,.

Proof. Let (BN — N)/z, =Y and let q,: BN — N—Y be the quo-
tient map induced by the partition =, of SN — N. Then, by Lemma
2.21, Y is Hausdorff. Now, the map q/M: M—Y is a continuous
function from M onto Y where M is compact and Y is Hausdorff.
Hence, the topology of Y is the quotient topology of M induced on
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it by the funection ¢/M. But ¢, induces the partition 7, on M.
Therefore, M/x, is homeomorphic to Y = (8N — N)/z,.

LEMMA 2.24. Let all notations be as in previous lemmas. Then
Mry s homeomorphic to YN X [1, 2] where YN 1is the compacti-
fication of N constructed by S. P. Frankline and M. Rajagopalan
in [1]. (See also remark 1.6a).

Proof. Now m;=n,N 7, where 7, and 7, are Hausdorff partitions of
M as given in the proof of Lemma 2.22. Let ¢;: M — M/7g and q,: M —
M/m, be the corresponding quotient maps. Consider the function (g,
q): M— My X M/m, given by (gs, ¢-)(x) = (g5(%), ¢:(x))Vx € M. Since
s N T, = 7y, it follows from Lemma 2.18 that M/z, is homeomorphic
to the range of the function (g ¢;) from M into M/m, X M/m,. But
it can be seen that M/m, is homeomorphic to [1, @] X [1, w] with its
usual product topology and M/z, is homeomorphic to YN and that
the range of the map (¢, ;) is homeomorphic to [1, 2] X YN. Hence,
M/m, is homeomorphic to [1, 2] x TN.

THEOREM 2.25. N U {p} has a scattered Hausdorff compactifica-
tion, when p is a P-point of order 2 for SN — N.

"Proof. Consider the partition 7, of SN — N given in Lemma
2.21. Let #, be the partition of SN whose members are the members
of 7, and the singletons in N. Since, (8N — N)/zx, is Hausdorff, by
Lemma 1.3, it follows that ASN/Z, is Hausdorff. Since BN is compact,
we have @N/%, is compact. Since (BN — N)/m, is homeomorphic to
[1, 2] X YN which is scattered, we have that SN/%, is also scaterted.
Since N is dense in BN and N U {p} maps homeomorphically onto
itself under the quotient map from AN onto gAN/Z (Lemma 1.4), it
follows that N U {p} is dense in BN/#, Thus, BN/%, is a scattered
Hausdorff compactification for N U {p}. Hence the theorem.
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