A RATIO LIMIT THEOREM FOR A STRONGLY SUBADDITIVE SET FUNCTION IN A LOCALLY COMPACT AMENABLE GROUP

JOHN CRONAN KIEFFER
A RATIO LIMIT THEOREM FOR A STRONGLY SUBADDITIVE SET FUNCTION IN A LOCALLY COMPACT AMENABLE GROUP

J. C. Kieffer

It is the purpose of this paper to prove that the following property holds: Given a locally compact, amenable, unimodular group G, if S is a strongly subadditive, nonpositive, right invariant set function defined on the class \mathcal{K} of relatively compact Borel subsets of G, and if $\{A_a\}$ is a net in \mathcal{K} satisfying an appropriate growth condition, then

$$\lim_a \lambda(A_a)^{-1} S(A_a)$$

exists independently of $\{A_a\}$, where λ is Haar measure on G.

Let G be a locally compact group. Let λ be right Haar outer measure defined on the subsets of G. Let \mathcal{K} be the class of relatively compact Borel subsets of G. If A is a subset of G and $K \in \mathcal{K}$, let $[A]_K = \{g \in A : Kg \subset A\} = \bigcap_{k \in K, k \neq 1} k^{-1} A$, where 1 is the identity of G. In this paper, we call a locally compact, amenable, unimodular group a leau group.

DEFINITION 1. Following [1], we define a net $\{A_a\}$ in \mathcal{K} to be a regular net in the locally compact group G if

(D. 1.1) $\lambda(A_a) > 0$ for each a;
(D. 1.2) $\lim_a \lambda(KA_a)^{-1}\lambda([A_a]_K) = 1$, $K \in \mathcal{K}$, $K \neq \phi$.

(Even though KA_a and $[A_a]_K$ may not be Borel measurable, (D. 1.2) makes sense because we required λ to be right Haar outer measure, which is defined for all subsets of G.)

LEMMA 1. A locally compact group G possesses a regular net if and only if G is a leau group.

Proof. A locally compact group G is amenable if and only if for any $\varepsilon > 0$, and for any nonempty compact subset K of G, there exists a compact subset U of G, of positive measure, such that $\lambda^*(U)^{-1}\lambda^*(KU) < 1 + \varepsilon$, where λ^* is left Haar measure. (See [2].) We call this necessary and sufficient condition for amenability of G condition (A).

Now suppose G possesses a regular net $\{A_a\}$. Then (D. 1.2) implies that
Taking $K = \{g\}$, where g is any element of G, we see that $A(g) = 1$. Thus G is unimodular. It then follows that (1) implies condition (A), and thus G is also amenable.

Conversely, suppose now G is lcnu. Given $\epsilon > 0$ and a nonempty compact subset K of G, we may find by condition (A) a compact set $U = U_{(K, \epsilon)}$, of positive measure, such that $\lambda(U)^{-1}\lambda(K^2U) < 1 + \epsilon$. We direct the set $W = \{(K, \epsilon): K$ a nonempty compact set in $G, \epsilon > 0\}$ as follows: $(K_1, \epsilon_1) > (K_2, \epsilon_2)$ if and only if $K_1 \supset K_2$ and $\epsilon_1 < \epsilon_2$. Then $\{V_{(K, \epsilon)}: (K, \epsilon) \in W\}$ is a regular net of compact subsets of G, where $V_{(K, \epsilon)} = KU_{(K, \epsilon)}$.

DEFINITION 2. Let G be a regular group. Throughout this paper, we consider a set function $S: \mathcal{H} \to \mathbb{R}$, the set of real numbers, which satisfies the following properties:

1. $S(\emptyset) = 0$.
2. S is strongly subadditive; that is, $S(A \cap B) + S(A \cup B) \leq S(A) + S(B)$, $A, B \in \mathcal{H}$.
3. $S(A) \leq 0$, $A \in \mathcal{H}$.
4. $S(A_g) = S(A)$, $A \in \mathcal{H}$, $g \in G$.

The main result we will prove in this note is the following theorem.

THEOREM 1. Let G be a lcnu group. Let $S: \mathcal{H} \to \mathbb{R}$ satisfy Definition 2. Then there is an extended real number r^* such that $\lim_a \lambda(A_a)^{-1}S(A_a) = r^*$ for every regular net $\{A_a\}$ in \mathcal{H}.

A special case of this theorem, for vector groups, was proved in [7] in order to define entropy in statistical mechanics for classical continuous systems. The theorem can be used to define the entropy of a measurable partition relative to a discrete amenable group of measure-preserving transformations on a probability space, thereby enabling one to generalize the concept of the Kolmogorov-Sinai invariant [5].

One may construct a set function S satisfying Definition 2 as follows: Let (Ω, \mathcal{M}) be a measurable space. For each element g of the regular group G, let T_g be a measurable transformation from Ω to Ω. We suppose that $T_{g_1} \cdot T_{g_2} = T_{g_1g_2}$, $g_1, g_2 \in G$. Let \mathcal{F} be a fixed sub-sigmafield of \mathcal{M}. If E is a nonempty subset of G, let \mathcal{F}_E be the smallest sub-sigmafield of \mathcal{M} containing $\bigcup_{g \in E} (T_g)^{-1}\mathcal{F}$. Define $\mathcal{F}_\emptyset = \{\emptyset, \Omega\}$. Let P, Q be probability measures on \mathcal{M}, such that P is stationary with respect to $\{T_g: g \in G\}$ and the fields $\{(T_g)^{-1}\mathcal{F}: g \in G\}$
are independent with respect to Q. For each $E \in \mathcal{X}$, let $S(E)$ be the negative of the entropy of P with respect to Q over \mathcal{F}_E, which we assume finite. The function $S: \mathcal{X} \to \mathbb{R}$ defined in this way can be shown to satisfy Definition 2 in a manner analogous to that employed in [7] for vector groups.

Lemma 2. If Theorem holds for all sigma-compact lcau groups it holds for all lcau groups.

Proof. Let d be a complete metric on \mathbb{R}^*, the set of extended real numbers, which induces the usual topology on \mathbb{R}^*. Let (A_n) be a regular net for a non-sigma-compact lcau group G. Suppose $\lim_n \lambda(A_n)^{-1}S(A_n)$ does not exist. Then for some $\varepsilon > 0$, we may find a sequence (F_n) of elements of (A_n) and a sequence (E_n) in \mathcal{X} such that

(a) F_0 is any A_n and E_0 is an open symmetric neighborhood of the identity.

(b) $d(\lambda(F_n)^{-1}S(F_n), \lambda(F_{n-1})^{-1}S(F_{n-1})) > \varepsilon$, $n \geq 1$.

(c) $\lambda(E_{n-1}F_n)^{-1}\lambda([F_n]_{E_{n-1}}) > 1 - n^{-1}$, $n \geq 1$.

(d) E_n is an open symmetric set containing the closure of $[E_{n-1} \cup F_n]^*$, $n \geq 1$.

Let $G' = \bigcup_n E_n$. It is easily seen that G' is an open, sigma-compact subgroup of G.

If we restrict λ to G', we get right Haar measure on G'. Thus (F_n) is a regular sequence for G', and G' is a lcau group. Assuming Theorem 1 holds for sigma-compact lcau groups, $\lim_n \lambda(F_n)^{-1}S(F_n)$ would have to exist, a contradiction of b). Thus $\lim_n \lambda(A_n)^{-1}S(A_n)$ exists. Let (B_n) be another regular net in G. Let $s_1 = \lim_n \lambda(A_n)^{-1}S(A_n)$, $s_2 = \lim_n \lambda(B_n)^{-1}S(B_n)$. We show that $s_1 = s_2$. Define sequences $(C_n)^*$, $(D_n)^*$, $(E_n)^*$ in \mathcal{X} such that

(a) E_0 is an open symmetric neighborhood of the identity, $(C_n) \subset [A_n]$, $(D_n) \subset [B_n]$.

(b) $d(\lambda(C_n)^{-1}S(C_n), s_1) < n^{-1}$, $d(\lambda(D_n)^{-1}S(D_n), s_2) < n^{-1}$, $n \geq 1$.

(c) $\lambda(E_{n-1}C_n)^{-1}\lambda([C_n]_{E_{n-1}}) \geq 1 - n^{-1}$, $\lambda(E_{n-1}D_n)^{-1}\lambda([D_n]_{E_{n-1}}) \geq 1 - n^{-1}$, $n \geq 1$.

(d) E_n is open, symmetric and contains the closure of $[E_{n-1} \cup C_n]$, $C_n \cup D_n]^*$, $n \geq 1$.

It follows that $G' = \bigcup_n E_n$ is an open, sigma-compact, lcau subgroup of G and that (C_n) and (D_n) are regular sequences for G'. Therefore, $\lim_n \lambda(C_n)^{-1}S(C_n) = \lim_n \lambda(D_n)^{-1}S(D_n)$, and so $s_1 = s_2$ by b).

Definition 3. If G is a locally compact group, if $S: \mathcal{X} \to \mathbb{R}$ satisfies Definition 2, and if $A, B \in \mathcal{X}$ with $A \cap B = \emptyset$, define $S(A \mid B) = S(A \cup B) - S(B)$.
Lemma 3. Let G be a locally compact group, and let S : \mathcal{A} \to \mathbb{R}

satisfy Definition 2. Then S obeys the following laws:

(L. 3.1) \(S(A) \leq S(B) \) if \(A \supset B, A, B \in \mathcal{A} \).

(L. 3.2) If \(A_1, A_2, \ldots, A_k \) are elements of \(\mathcal{A} \) which partition \(A \), then \(S(A) = \sum_{i=1}^{k} S(A_i \mid \bigcup_{i=1}^{k} A_i) \), where an empty union is the null set.

(L. 3.3) \(S(\emptyset) \leq S(E \setminus D) \leq S(\emptyset) \leq 0 \), \(E, D \in \mathcal{A} \), \(E \cap D = \emptyset \).

(L. 3.4) \(S(\emptyset) \leq S(E) \leq 0 \), \(E, D \in \mathcal{A} \), \(E \cap D = \emptyset \).

Proof. (L. 3.2) follows easily from Definition 2. The strong subadditivity of \(S \) is equivalent to saying \(S(A \setminus B \setminus B) \leq S(A \setminus B \setminus A \cap B) \), \(A, B \in \mathcal{A} \). Letting \(A = E \cup D \) and \(B = D_1 \), where \(E, D_1, D_2 \) satisfy \(D_1 \cap E = \emptyset \) and \(D_1 \supset D_2 \), we have \(A \cap B = D_1 \) and \(A \setminus B = E \), whence (L. 3.3) follows. In (L. 3.3) if we take \(D_2 = \emptyset \), (L. 3.4) follows because \(S(E \setminus \emptyset) = S(E) \). If \(A \supset B \), where \(A, B \in \mathcal{A} \), then \(S(A) = S(B) + S(A \setminus B \setminus B) \leq S(B) \), and thus (L. 3.1) follows.

Definition 4. We define a locally compact group \(G \) to be a \(P \)-group if there exists for some positive integer \(n \) a triple \((K, \{G_i\}^n, \{H_i\}^n)\) such that:

(D. 4.1) \(K \) is a nonempty relatively compact Borel set in \(G \).

(D. 4.2) \(\{G_i\}^n \) and \(\{H_i\}^n \) are sequences of closed subgroups of \(G \) satisfying \(G_1 \subset H_1 \subset G_2 \subset H_2 \subset \cdots \subset G_n \subset H_n \).

(D. 4.3) The index of \(G_i \) in \(H_i \) is countable, \(i = 1, 2, \ldots, n \).

(D. 4.4) If \(E_i \) is any set of coset representatives of the right cosets \(\{G_i h : h \in H_i\} \) of \(G_i \) in \(H_i \), \(i = 1, 2, \ldots, n \), then each \(g \in G \) has a unique factorization in the form \(g = k e_i e_{i-1} \cdots e_1 k_1 e_1 \cdots e_{n-1} k_{n-1} e_{n-1} \cdots k e_n \), \(i = 1, 2, \ldots, n \). Also, \(K = \prod_{i=1}^{n} E_i G_i = K(\prod_{i=1}^{n} E_i), i = 1, 2, \ldots, n \), where an empty product is the identity in \(G \).

In order to prove Theorem 1 for sigma-compact leau groups, we need to show that such groups are \(P \)-groups. This we now do, by means of several lemmas. To see how the following lemma may be proved, see [2], page 379.

Lemma 4. Let \(G' \) be a closed normal subgroup of a connected Lie group \(G \). Let \(\phi : G \to G/G' \) be the canonical homomorphism. Then there exists a map \(\tau : G/G' \to G \) such that

(L. 4.1) \(\tau \) is a cross-section; that is, \(\phi \cdot \tau \) is the identity map on \(G/G' \).

(L. 4.2) If \(U \) is a relatively compact subset of \(G/G' \), then \(\tau(U) \) is a relatively compact subset of \(G \).

(L. 4.3) If \(U \) is a Borel set in \(G/G' \) and \(V \) is a Borel set in \(G' \), then \(\tau(U)V \) is a Borel set in \(G \).
Lemma 5. Let G be a connected Lie group and G' a closed normal subgroup of G such that G/G' is either a vector group or compact. Then if G' is a P-group, so is G.

Proof. Let $\tau: G/G' \to G$ be the cross-section map provided by Lemma 4. Since G/G' is a vector group or compact, it is easy to see that there exists a closed countable subgroup G'' of G/G' and a relatively compact Borel set K' in G/G' such that $\{K'g: g \in G''\}$ partitions G/G'. If G' is a P-group with respect to the triple $(K, \{G_i\}^\infty_i, \{H_i\}^\infty_i)$, then G is a P-group with respect to the triple $(\tau(K)K, \{G_i\}^{n+1}_i, \{H_i\}^{n+1}_i)$, where $G_{n+1} = G'$ and $H_{n+1} = \phi^{-1}(G'')$.

Lemma 6. If G is a sigma-compact locally compact group and G' is an open subgroup of G which is a P-group, then G is a P-group.

Proof. Let G' be a P-group with respect to the triple $(K, \{G_i\}^\infty_i, \{H_i\}^\infty_i)$. Then G is a P-group with respect to the triple $(K, \{G_i\}^{n+1}_i, \{H_i\}^{n+1}_i)$, where $G_{n+1} = G'$, $H_{n+1} = G$.

Lemma 7. If G is a locally compact group and G' is a compact normal subgroup of G such that G/G' is a P-group, then G is a P-group.

Proof. Suppose G/G' is a P-group with respect to the triple $(K, \{G_i\}^\infty_i, \{H_i\}^\infty_i)$. Let $\phi: G \to G/G'$ be the canonical homomorphism. Then G is a P-group with respect to the triple $(\phi^{-1}(K), \{\phi^{-1}(G_i)\}^\infty_i, \{\phi^{-1}(H_i)\}^\infty_i)$.

Theorem 2. Every sigma-compact locally compact amenable group is a P-group.

Proof. Every connected amenable Lie group G possesses a series of closed subgroups $G_0 \subset G_1 \subset G_2 \subset \cdots \subset G_n = G$, where G_0 is the identity, G_i is normal in G_{i+1}, and G_{i+1}/G_i is either a vector group or compact, $i = 0, 1, \cdots, n-1$. (See [3], Theorem 3.3.2, and [4], Lemma 3.3.) Now G_0 is clearly a P-group, so by using Lemma 5 repeatedly we conclude every connected amenable Lie group is a P-group. Applying Lemma 6, every sigma-compact amenable Lie group is a P-group. For every locally compact group G there exists an open subgroup G' of G and a compact normal subgroup K of G' such that G'/K is a Lie group. (See [6], page 153.) Assuming G in addition is sigma-compact and amenable, so is G'/K. Thus G'/K is a P-group and then so is G' by Lemma 7. Then G is a P-group by Lemma 6.
We fix \(G \) to be a sigma-compact lcau group for the rest of the paper. We need to show Theorem 1 holds for \(G \). This we accomplish by means of some lemmas and Theorem 3.

Let \((K, \{G_i\}_i; \{H_i\}_i) \) be a triple with respect to which \(G \) is a \(P \)-group. Let \(E_i \) be a set of coset representatives of the right cosets of \(G_i \) in \(H_i \) such that \(1 \in E_i \), \(i = 1, 2, \ldots, n \), where 1 is the identity of \(G \). For each \(i \), let \(\tilde{H}_i \) be the collection of right cosets of \(G_i \) in \(H_i \). (Since \(G_i \) is not necessarily normal in \(H_i \), \(\tilde{H}_i \) need not be a group.) For each \(i \), let \(\phi_i: H_i \rightarrow \tilde{H}_i \) be the map such that \(\phi_i(h) = G_i h, h \in H_i \); let \(\tau_i: \tilde{H}_i \rightarrow E_i \) be the unique map such that \(\phi_i \cdot \tau_i \) is the identity map on \(\tilde{H}_i \). By a total order \(< \) on a set \(W \), we mean a transitive relation such that for \(x, y \in W \) exactly one of the following holds: \(x < y \), \(x = y \), or \(y < x \). For each \(i \), let \(<' \) be a total order on \(E_i \); if \(h \in H_i \), let \(<' \) be the total order on \(E_i \) such that if \(e, e' \in E_i \), then \(e <' e' \) if and only if only if \(\tau_i \cdot \phi_i(eh) <' \tau_i \cdot \phi_i(e'h) \). If \(h \in H_i \), let \(P_i(e) = \{e' \in E_i; e <' e'\} \). Let \(E = E_1 E_2 \cdots E_n \). Let \(H \) be the locally compact amenable group \(H = H_1 \times H_2 \times \cdots \times H_n \). If \(h = (h_1, h_2, \ldots, h_n) \in H \), let \(< \) be the lexicographical order on \(E \) defined as follows: if \(e = e_1 e_2 \cdots e_n \) and \(e' = e_1' e_2' \cdots e_n' \) are elements of \(E \), where \(e_i, e_i' \in E_i \), then \(e < e' \) if and only if there exists an integer \(k \), \(n \geq k \geq 1 \), such that \(e_k < e_k' \) and for \(n \geq j > k \), \(e_j = e_j' \). If \(h \in H \), \(e \in E \), let \(P(e) = \{e' \in E; e < e'\} \). If \(A \in \mathcal{X} \), \(e \in E \), let \(\phi_A: H \rightarrow R \) be the function such that \(\phi_A(h) = S(Ke|KF_k(e) \cap Ae) = S(K|KF_k(e)e^{-1} \cap A), h \in H \).

Lemma 8. If \(A \in \mathcal{X} \) and \(e \in E \), then \(\phi_A \in L^0(H) \), the space of bounded Borel-measurable real-valued functions with domain \(H \).

Proof. Fix \(A \in \mathcal{X} \), \(e \in E \). By (L. 3.4), \(\phi_A \leq 0 \). To achieve a lower bound, let \(E' = \{e \in E; Ke\cap Ae \neq \phi\} \). Since \(KE' \subset KK' \cap Ae \), \(E' \) is finite. Let \(F = \{e\} \cup E' \). By (L. 3.2), \(S(KF) = \sum_{f \in F} S(Kf|KP_k(f) \cap KF) \). By (L. 3.3) and (L. 3.4), \(S(KF) \leq S(Ke|KF_k(e) \cap KF) \leq S(Ke|KF_k(e) \cap Ae) = \phi_A(h) \), where the fact that \(KF \supset Ae \) was used. Thus \(\phi_A \) is a bounded function. We now show that it is a Borel measurable function. It is easily seen that \(\phi_A \) is a simple function with possible values \(S(Ke|KF' \cap Ae), F' \subset F \). If \(F' \subset F \), then \(\phi_A = S(Ke|KF' \cap Ae) \) on the set \{\(h \in H; P_k(e) \cap F = F' \)\}, which is equal to the intersection of the sets \(\bigcap_{f \in F'} \{h; f \in P_k(e)\} \) and \(\bigcap_{f \in F'} \{h; f \in P_k(e)\} \). Thus \(\phi_A \) is Borel measurable if for each \(f \in F \), \(\{h \in H; f \in P_k(e)\} \) is a Borel set. If \(f = e \), this set is empty. Thus, fix \(f \in F, f \neq e \). Let \(f = f_1 f_2 \cdots f_n, e = e_1 e_2 \cdots e_n \), where \(e_i, f_i \in E_i \) for each \(i \). Let \(j = \max \{i; f_i \neq e_i\} \). Then \(\{h \in H; f \in P_k(e)\} = \{h \in H; f_j \in P_k(e_j)\} \), where \(h_j \in H_j \) is the \(j \)th component of \(h \in H \). This is a Borel set in \(H \) if \(\{h \in H_j; f_j \in P_k(e_j)\} \) is a Borel set in \(H_j \). Now this latter set is the union of the sets \(\{h \in H_j; g \in G_j, \ G_je_1h = G_je_2\} \) where \((g_1, g_2) \) ranges over all ordered
pairs such that $g_1, g_2 \in E_j$ and $g_1 \prec g_2$. Since the union is a countable union of closed subsets of H_j, Borel measurability follows.

Lemma 9. Let μ be a left invariant mean on $L^*(H)$. Then $\mu(\phi_n) = \mu(\phi_i)$, $A \in \mathcal{X}$, $e \in E$.

Proof. Fix $A \in \mathcal{X}$, $e \in E$. We observe that

$$K \prod_{i=1}^{n} \left(\prod_{j=1}^{n} E_i \right) = \left[\bigcup_{i=1}^{n} K \prod_{i=1}^{n} \left(\prod_{j=1}^{n} E_i \right) \right].$$

by (D. 4.4), where $h = (h_1, h_2, \ldots, h_n) \in H$ and $e = e_1 e_2 \cdots e_n$. It is routine to show that $G_t \prod_{i=1}^{n} \left(\prod_{j=1}^{n} E_i \right) = G_t \prod_{i=1}^{n} \left(\prod_{j=1}^{n} E_i \right)$. Also, since $e_3 \prec e_2 \prec e_1$ for $j < i$, we have $\phi_i(e_1 e_2 e_3) = \phi_i(e_0 e_1 e_2 e_3)$. Thus, $K \prod_{i=1}^{n} \left(\prod_{j=1}^{n} E_i \right) = \left[\bigcup_{i=1}^{n} K \prod_{i=1}^{n} \left(\prod_{j=1}^{n} E_i \right) \right].$

Theorem 3. Let $\{A_n\}$ be a regular net in the sigmacompact lcav group G. Then $\lim_{n} \lambda(A_n)^{-1} S(A_n) = \inf_{\beta \in \mathcal{X}} \lambda(K)^{-1} \mu(\phi_\beta)$.

Proof. Fix the regular net $\{A_n\}$. Now $KE_a \subset A_n \subset KE_a$, where $E_a = \{e \in E: Ke \cap A_n \neq \emptyset\}, E_a' = \{e \in E: Ke \subset A_n\}$. Thus by (L. 3.1), $S(KE_a) \leq S(A_n) \leq S(KE_a')$. We show that $\limsup_n \lambda(A_n) \lambda(K) \lambda(KE_a) \leq L$, where $L = \inf_{\beta \in \mathcal{X}} \lambda(K)^{-1} \mu(\phi_\beta)$. Now $S(KE_a) = \sum_{e \in E_a} S(Ke) \lambda(KP_h(e) \cap KE_a) \geq \sum_{e \in E_a} \phi_h(e)$, where $B_a = \bigcup_{e \in E_a} KE_a \lambda^{-1} e^{-1}$. Applying μ to the inequality and using Lemma 9, $S(KE_a) \geq |E_a| \mu(\phi_\beta) \geq |E_a| \lambda(K) L = \lambda(KE_a) L$, where $|E_a|$ denotes the cardinality of E_a. Since $KE_a \subset KK^{-1} A_n$, we have $\liminf_n \lambda(A_n)^{-1} \lambda(KE_a) = 1$, by the regularity of $\{A_n\}$. Thus $\liminf_n \lambda(A_n)^{-1} S(KE_a) = L$. Fix $B \in \mathcal{X}$. We suppose that $B \supset K$. Now $S(KE_a) = \sum_{e \in E_a} S(Ke) \lambda(KP_h(e) \cap KE_a) \leq \sum_{e \in E_a} \phi_h(e) \lambda(KF_a) \lambda(K)^{-1} \mu(\phi_\beta)$. Applying μ, $S(KE_a) \leq \lambda(KF_a) \lambda(K)^{-1} \mu(\phi_\beta)$. We could conclude that $\limsup_n \lambda(A_n) \lambda(K) \lambda(KE_a) \leq L$, provided $\liminf_n \lambda(A_n)^{-1} \lambda(KF_a) = 1$. This limit is one by the regularity of $\{A_n\}$, since $[A_n]_{KK^{-1} e \in \mathcal{X}} \subset [A_n]_{KK^{-1} e \in \mathcal{X}}$. By definition, $KK^{-1} BK^{-1} x \subset A_n$. Now $x \in Ke$ for some $e \in E$. We have $Ke \subset KK^{-1} x \subset KK^{-1} BK^{-1} x \subset A_n$. Thus $e \in E_a'$. It will follow that $x \in KF_a$ if $Be \subset KE_a'$. To see this, let $x \in [A_n]_{KK^{-1} e \in \mathcal{X}}$. By definition, $KK^{-1} BK^{-1} x \subset A_n$. Now $x \in Ke$ for some $e \in E$. We have $Ke \subset KK^{-1} y \subset KK^{-1} BK^{-1} x \subset A_n$. Thus $e' \in E_a'$ and $y \in KE_a'$.

REFERENCES

Received May 15, 1975.

UNIVERSITY OF MISSOURI-ROLLA
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiří Adámek, V. Koubek and Věra Trnková</td>
<td>Sums of Boolean spaces represent every group</td>
<td>1</td>
</tr>
<tr>
<td>Richard Neal Ball</td>
<td>Full convex l-subgroups and the existence of a*-closures of lattice ordered groups</td>
<td>7</td>
</tr>
<tr>
<td>Joseph Becker</td>
<td>Normal hypersurfaces</td>
<td>17</td>
</tr>
<tr>
<td>Gerald A. Beer</td>
<td>Starshaped sets and the Hausdorff metric</td>
<td>21</td>
</tr>
<tr>
<td>Dennis Dale Berkey and Alan Cecil Lazer</td>
<td>Linear differential systems with measurable coefficients</td>
<td>29</td>
</tr>
<tr>
<td>Harald Boehme</td>
<td>Glättungen von Abbildungen 3-dimensionaler Mannigfaltigkeiten</td>
<td>45</td>
</tr>
<tr>
<td>Stephen LaVern Campbell</td>
<td>Linear operators for which T^T and $T + T^$ commute</td>
<td>53</td>
</tr>
<tr>
<td>H. P. Dikshit and Arun Kumar</td>
<td>Absolute summability of Fourier series with factors</td>
<td>59</td>
</tr>
<tr>
<td>Andrew George Earnest and John Sollion Hsia</td>
<td>Spinor norms of local integral rotations. II</td>
<td>71</td>
</tr>
<tr>
<td>Erik Maurice Ellentuck</td>
<td>Semigroups, Horn sentences and isolic structures</td>
<td>87</td>
</tr>
<tr>
<td>Ingrid Fotino</td>
<td>Generalized convolution ring of arithmetic functions</td>
<td>103</td>
</tr>
<tr>
<td>Michael Randy Gabel</td>
<td>Lower bounds on the stable range of polynomial rings</td>
<td>117</td>
</tr>
<tr>
<td>Fergus John Gaines</td>
<td>Kato-Taussky-Wielandt commutator relations and characteristic curves</td>
<td>121</td>
</tr>
<tr>
<td>Theodore William Gamelin</td>
<td>The polynomial hulls of certain subsets of C^2</td>
<td>129</td>
</tr>
<tr>
<td>R. J. Gazik and Darrell Conley Kent</td>
<td>Coarse uniform convergence spaces</td>
<td>143</td>
</tr>
<tr>
<td>Paul R. Goodey</td>
<td>A note on starshaped sets</td>
<td>151</td>
</tr>
<tr>
<td>Eloise A. Hamann</td>
<td>On power-invariance</td>
<td>153</td>
</tr>
<tr>
<td>M. Jayachandran and M. Rajagopalan</td>
<td>Scattered compactification for $N \cup { P }$</td>
<td>161</td>
</tr>
<tr>
<td>V. Karunakaran</td>
<td>Certain classes of regular univalent functions</td>
<td>173</td>
</tr>
<tr>
<td>John Cronan Kieffer</td>
<td>A ratio limit theorem for a strongly subadditive set function in a locally compact amenable group</td>
<td>183</td>
</tr>
<tr>
<td>Siu Kwong Lo and Harald G. Niederreiter</td>
<td>Banach-Buck measure, density, and uniform distribution in rings of algebraic integers</td>
<td>191</td>
</tr>
<tr>
<td>Harold W. Martin</td>
<td>Contractibility of topological spaces onto metric spaces</td>
<td>209</td>
</tr>
<tr>
<td>Harold W. Martin</td>
<td>Local connectedness in developable spaces</td>
<td>219</td>
</tr>
<tr>
<td>A. Meir and John W. Moon</td>
<td>Relations between packing and covering numbers of a tree</td>
<td>225</td>
</tr>
<tr>
<td>Hiroshi Mori</td>
<td>Notes on stable currents</td>
<td>235</td>
</tr>
<tr>
<td>Donald J. Newman and I. J. Schoenberg</td>
<td>Splines and the logarithmic function</td>
<td>241</td>
</tr>
<tr>
<td>M. Ann Piech</td>
<td>Locality of the number of particles operator</td>
<td>259</td>
</tr>
<tr>
<td>Fred Richman</td>
<td>The constructive theory of KT-modules</td>
<td>263</td>
</tr>
<tr>
<td>Gerard Sierksma</td>
<td>Carathéodory and Helly-numbers of convex-product-structures</td>
<td>275</td>
</tr>
<tr>
<td>Raymond Earl Smithson</td>
<td>Subcontinuity for multifunctions</td>
<td>283</td>
</tr>
<tr>
<td>Gary Roy Spoar</td>
<td>Differentiability conditions and bounds on singular points</td>
<td>289</td>
</tr>
<tr>
<td>Rosario Strano</td>
<td>Azumaya algebras over Hensel rings</td>
<td>295</td>
</tr>
</tbody>
</table>