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CARATHEODORY AND HELLY-NUMBERS OF CONVEX-
PRODUCT-STRUCTURES

GERARD SIERKSMA

Let ¢; and ¢; be the Carathécdory-numbers of the con-
vexity-structures &, for X,, respectivily &, for X.. It is
shown that the Carathéodory-number ¢ of the convex-product-
structure &, @ %, for X, X X, satisfies the inequality ¢, +
=200+ 0 6,6 =2,

The upper bound for ¢ can be improved by one, resp.
two, if a certain number, namely the so-called exchange-
number, of one resp. each of the structures &, and <, is less
than or equal to the Carathéodory-number of that structure.

A new defirition of the Helly-number is given and Levi’s
theorem is proved with this new definition. Finally it is
shown that the Helly-number of a convex-product-structure
is the greater of the Helly-numbers of <, and &,.

1. Preliminary remarks and definitions. KExisting notations
and definitions have been taken from [3], [4] and, in particular,
from [8]. Let & be a collection of subsets of a set X; by N &
and J & we denote the intersection and the union respectivily, of
the elements of &. & is called a convexity-structure for X iff
pew, Xezw and N~ €% for each subcollection F C%’; the
pair (X, &) is called a convexity-space. The F-hull of a set SC X,
denoted by Z(S), is defined by &(S) =N {C|Ces& ASc(C}. We
shall write & (a,, - --, @,) instead of & ({a,, ---, @,}), and < (p U (4A\a))
instead of Z({p} U (A\{a})).

Let X, be a nonempty set and let &, be a convexity-structure
for X;; 1=1,2. Then . @&, ={A X B|Ace&, N Be%,} is a
convexity-structure for the Cartesian-product X, x X,. The pair
(X, X X,, &, D %) is a called the convex-product-space, also called
the Eckhoff-space. Note that the &, @ &»-hull of FC X X X, is
given by (&, B &) (F) = (7, FE) X En,F), where m, is the pro-
jection of X, x X, on X;; ¢=1,2. Also note that if e¢,e, ¢
X, x X, with e #e¢ and =w(e)=rme) for ¢=1,2, then ¢e
(&, D G)ey, @)

2. The Carathéodory-number and the exchange-number. A
convexity-structure & for X is said to possess the Carathéodory-
number ¢ if ¢ is the smallest nonnegative integer such that Z(S) =
US| TcSA|T| =, for all Sc X. The following lemma is
an immediate consequence of this definition.
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276 GERARD SIERKSMA

LEMMA 2.1. Let & be a -convexity-structure for X with
Carathéodory-number ¢ and let te N (N=1,2,8,--:). Then the
following holds:

(1) QAIACXAAl=cANF(A)zU{Z(4\)]ac A)];

(ii) AA[ACXAA|=tANZFTA U {FEAa)|ac A}]=c=t.

DEFINITION 2.1. The exchange-number of a convexity-structure
% for X is the smallest positive integer e, such that

(VAYYDIACXApeXANes|A|l <o
— (A cU{F(p U (4A\a))lac A}].

Of course, if the exchange-number ¢ of the convexity-structure
for X exists then e=1; if & is a T'-convexity-structure (see [4]) then
e=2;if AcX, [A|=e and pe & (A) then Z(4A)=U {F(pU(4A\a))|a <€ 4},
see [3], axiom C38; if the Carathéodory-number ¢ of & exists too,
then e < ¢ + 1, which follows directly from Lemma 2.1(ii).

ExavpLE 2.1. Take X = R"(te N) and & = conv, the usual
conveXxity-structure for the Euclidean-space R*. The classical theorem
of Carathéodory implies that ¢ = n + 1; see [2]. In [6] J. R. Reay
proved that e = n + 1.

ExaMPLE 2.2. Let @ ={X}U{A|Ac XA A| =1}, teN. Then
¢c=ft+1 and e = 2.

ExampLE 2.3. Take McC X, | M| =m (me N), and define & =
{(X}JU{A|ACX AN Mg A}. Because &(A) = X if MC A, and & (4) =
Aif Mg A, it follows that c=m and e=m + 1.

EXAMPLE 2.4. The convexity-structure & = {(XJU{A|AC X A

|A] < =}, with | X]| = o, has no Carathéodory-number, but the
exchange-number is 2.

ExampPLE 2.5. The convex-product-structure convé conv for
R X R has Carathéodory-number 2 and exchange-number 3.

THEOREM 2.1. Let &, be a convexity-structure for X,;, X,+ O;
let ¢, and e, be the Carathéodory-number respectivily the exchange-
number of &; 1=1,2. The Carathéodory-number ¢ of &, P %
exists and the following assertions hold:

I. If min(c, ¢,) = 1 then
a. ¢, +¢—1=ZcLe +0
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b. @)ie{l,2l Ne <¢]=c=¢ +¢ — 1.
II. If min(c, &) = 2 then
a. ¢, +6—2=¢c=¢ 0
b. @)ie{l,2lAe,=Z¢]l=¢+¢—2=<¢e<c +¢—1
c. (Vi[ie{l,2lANe, Z¢]=c=¢+¢c —2.

Proof. First we show that the Carathéodory-number ¢ of &, H %,
exists and that c=c¢ 4+ ¢ Let g% EFcCcX x X, and (o, @))€
(G P EINE) = E(n E) X Em.E). Hence there exists a set S;,C
n,H, |S;|<c such that a,eZ(S;); ¢=1,2. S,cxnE implies,
there exists a set F,C E such that n,F, = S, and | F,;|=|S;]; 1 =
1, 2. So (a,, @) € Z(S) X B8 =B (7. F) X Eym,Fy) C&(n(F,U FY)) x
GAr(F, U F)) = (. D S)(F, U Fy). Obviously [FLUF| = ¢ + ¢
Because (&, P &)F) (T, P E.)N(E) for each FC E, we have
(FPEIE)=U{(E BEL)F) FCEAN|F| < + ¢); hence ¢ exists
and c = ¢, + ¢,

To determine the lower bound for ¢ we choose, according to
Lemma 2.1.(i), a set A,cC X, such that |A,|=¢ and ¥, (A4) &
UE(4\a)|ac 4;)}; 1 =1,2. Take b e A, and b, € 4,, and consider
the set G=(4, x (b,DU{b} X 4)c X, x X, Obviously |G|=¢c, +¢,—1.
There are two cases (take ¢, < ¢,):

1. Letc,=1. Then 4, =1{b}and G=1{b}x A4, So we have (&, P
FNG) = Bub) X Td:) & Zu(b) X U{Z4:\b) | be 4} = U{(Z. D
& )NG\e) | ec G}, and it follows from Lemma 2.1(ii) that c¢=r¢, +
¢, — 1.

2. Letc¢, =2. Then also ¢,=2. So there exists an element d; € A4,
withd, = b;; =1, 2. Note that 7,((b;, b,)) = 7,((b,, d,)) and 7w, ((b,, b,)) =
7((d, by)). The last remark of §1 gives us that (b, b,) e (¥, D F%)
((dy, ba), (by, d2)) C(Z DZLNG\(by, by)). Define F' = G\{(b,, b,)}. Clearly
|Fl=¢ +¢—2and 7,F = A; i=1,2. Moreover (Z, D &)F) &
U{&E. D F)NF\e) |ec F}. From Lemma 2.1(ii) it follows that ¢ >
¢ +¢ — 2.

We now prove I.b and II.b. Let us assume that ¢ <. Take
o, =1, @+ EcX, x X, and (a,, @) € (&, D F)(E). We show that
there exists a set F such that

(@, a,)e (&, PBZF)NF), FcE and |F| ¢, +c¢—1.

The first part of the proof of this theorem implies that there exists
a set F, such that a,e &« F,), F,CcE and |z F;|=|F;|<c¢;
1=1,2. We may assume that |F,|=c¢c, vie{l, 2}, because if
|F;|<c¢, —1 for some i€{1,2} then |F,UF,|=<¢ +¢ —1, and we
are done. If F\N F,# @, then define F= F,UF,. So |F|<Z¢ +
¢, —1 and (a,a)e (B, PENF). If F,.nNF,= @, we distinguish
two cases: ‘
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1. @)ie{, 2} An,FiNnnF,+ @). Take i =1. Hence 7, F, N
mF,+ @. Now there exist elements ¢, ¢ F, and e¢,€ F, such that
7 (e,) = m(e;). Note that e, = e, Define F = (F\{e,})) U F,. Clearly
| Fl<¢g+¢—1 and n,F,cm,F; 1=1,2. So (a,a,)e & (n.F) X
gz(ﬂze) C Eu(rm ) X %2(77:217) = (&, D gz)(F)

2. (vi)lie{l,2}=mF,NnF,= @)]. Take ecF,. Then x,(e¢)¢
n.F,. Because ¢ =< ¢, there exists an element e¢ € F, such that
o, € Zy(m(e) Um F\m,(e)) C Zy(m(e U Fl\e,)). Define F = (Fi\{e,}) U F.
Obviously |F|< ¢ + ¢, — 1, a,€ (7. F) and a,€ Eun.F.) C Eo(n.F).
Hence (a,, a,) € (&, P E)(F).

Finally we prove Il.c. Take again @ # ECcX, x X, and
(@, a,)e (&, P ENE). We shall show that there exists a set F
such that

(@, 0)e (T, BFNF), FCE, and |F| <S¢ +6—2.

In the proof of II.b we found a set G,c E such that |7,G,| =
|G| £¢,0,eF(®,G) and |GGUG | ¢, +¢,—1; ¢=1,2. As in
the proof of Il.b we may assume that |G,{=c¢; ¢=12, If
|G, UG,| > 1 then define F = G, U G,, hence a,c &(w,F) and |F| <
¢, +¢ — 2, so we are done. The case that |G,N G,| = 1 still remains.
Assume G, NG, ={¢}, and |G,;| =2 for 7=1,2. Throughout the
remainder of the proof we take 4, je€{l,2} with ¢+ 5 =3. Let
e, € Gj, e, # e. There are two cases:

1. If m,(e)¢n,G, then, because e, < c;, there exists an element
u; € G, such that u, # ¢, and a, € Z(xw(e;) U (,G\7(w,))) C F(mw,(e; U
(G\u))-

2. If mie;)em G, then there exists an element v, € G; such that
v,#¢; and 7,(e;) = w,(v,;); hence 7,G, = 7, (¢; U(G\v,)), s0 a,€ &(n,G,) =
zu(w.(e. U (G:\vy)))-

We may conclude that in both cases there exists an element
d,e G; such that d; + ¢; and @, € &i(xw,(e; U (G,\d.))).

If d,=¢=4d, then define F = G, U G\{e}. Hence |[F|=¢ +
¢, —2 and, because e¢,€G;, ¢ #e¢ we have (a,a)¢cZ (m,(e,U
(G\) x BTye, U (G:\e))) C(Z, D TG, U Goe) = (. D ENF). If
d, + ¢ for some i¢e{l, 2} then, taking e.g. ¢ =1, we define F =
G, UGMd,}). Clearly |F|<c¢ + ¢ —2 and because ¢,€G, we have
(a'u a'z) € %1(751(61 U (Gl\dl))) X (g‘z(ﬂsz) - ((g; @ g2)(G1 9 GZ\dl) = ((gl @
ENE).

It follows that c < ¢, + ¢, — 2 and because c=¢, + ¢, — 2, as we
have seen already, we may conclude that c¢=¢ +¢ — 2. This
completes the proof of Theorem 2.1.
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ExampLE 2.6. Take X, = R™ and X, = R" (m,ne N), and &, =
conv = &, (see Example 2.1). Because ¢, =¢=m-+1 and ¢, =
e, =1 + 1 it follows from Theorem 2.1. (IL.c) that the Carathéodory-
number of the convex-product-structure conv conv for R"™" is
c=¢+¢6—2=m-+n

ExXAMPLE 2.7. Take &, ={X;JU{A|AcC X, A |A|SE}, =21,
then because ¢, =2 =¥, + 1 =¢;, Vie{l, 2}, it follows from Theorem
2.1(II.c) that c=1¢, + ¢, — 2 =¥ + £,

ExampLE 2.8. Take M;c X,, | M;| = m, and define &, = {X;} U
{AlAc X, AN M,z A}; ©=1,2. Because e, =m, +1>m, =¢, it
follows from Theorem 2.1(I.IL.a) that ¢c<¢ +¢,=m +m,. We
shall show now that even ¢ = m, + m,. Consider a set Fc X, X X,
such that F= E UE, with |E,|=m, |7,E,|=1, n,E; =M, and
nENmE,=@; 1,5€{1,2} and ¢+ j=38. It is easy to see that
(FOFNE) = X, x X,. However, in general, |J {(Z.DF)(E\e) |ee
E}=@mEx X,) UX, X m,F) # X, x X,, Hence ¢c =m, + u,

ExAmPLE 2.9. Take Mc X,, |[M|=m and &, = {XJU{4|Ac
X,ANMg A}. Take X, = R" and &, = conv. We know that ¢ =
m+1l1>m=¢, and ¢, =1n-+1=¢. From Theorem 2.1(IL.b) it
follows that ¢<¢,+¢,—1=m+ 1. As in the previous example
we can show that ¢ =m + n. In order to prove this we have to
look for a set Ec X, X X,, | E| =m + 1, such that the convex hull
of FE is not the union of the convex hulls of proper subsets of E.
Take K = E, U E, with |E,|=m, |E,|=n, |n,E;| =1, n,E.NnE, =
@, mE =M and FnE) = U&E(nE\) | acmE); i jeil, 2),
i+ j=3. Notethat |7,E| =1+ 1. Now we have (¥, @ &)(E) =
X, X &«m,E). But, in general, U {(&, D F)(E\e)|ecE}+ X, x
&y, E). Hence ¢ =m + n.

The main result of this section, Theorem 2.1, is a generalization
of J.R. Reay’s Theorem 1 (first part) together with Example (1) on
pg. 229 of [7]. In fact, Reay proves that the Carathéodory-number
¢ of the convex-product-structure, whose component spaces are
Euclidian-spaces with dimensions m, and n, and with the wusual
convexity-structure, satisfies the condition ¢ = m, + n,. (See Ex. 2.6.)

3. The Helly-number. Let & 2%, |F| =¥, te N, for some
set X. Define NuyF={NA|lAcF}. lLe. @¢MNwF implies that
each intersection of ¥ elements of & is not empty.

DEFINITION 3.1. A convexity-structure & for X has the Helly-
number § if B is the smallest integer such that [F Cc& A
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| F <o ADeNuFl=NF = O.

Note that if X = @ then § does not exist, and if ) exists then
H = 1. The following characterization of the Helly-number gives
rise to another definition of it; see also [1] and [4].

LEMMA 38.1. Let & be a convexity-structure for X with Helly-
number Y. Then the following assertions are equivalent:

(i) p=¢

(i) [FceANIF|=t+1ACeN0F |=NF = O;

(ii) [ cXA|A|=t+1]=N{F(A\)|acd}# O;

(iv) [ACXAI+1Z Al < o]=N{TA\) | ac A}l =+ D.

Proof. We shall go through the following implication-cycle:
(D) = (iv) = (iii) = (ii) = (i).

(i) = (iv): Take Ac X, |A|=ft+n (meN) and define & =
{z(A\a) |ae A}. Note that | & | <t + n. If there exist elements
a,be A, such that a#b and % (A\a) = ¥ (4A\b) then of course
N{&(A\e)|ae A} =+ @, and we are done. So we may assume that
| F | =ft+n If ¥ 'c, with |&'| =1, then & = .# and
there exists an element a@,€ A such that Z(A\e)¢ & '. From
a, € A\{a} c Z(A4\a) for each ac A4, a # a,, it follows that a,e N .F,
and hence @¢fwn.%#. Because H<f we have [@¢Nn F =
2 ¢ Ny F |. From Definition 8.1 it follows that N {Z(4\a) |a € A}=
Ny + 9.

(iv) = (iii) is trivial and (ii) = (i) follows by induction. It remains
to be shown that (iii) = (ii): Take &# c%, |F|{=t+1 and O¢
NoweZ. Let & ={F,|i=12,---,t+1}. Then @¢NuwF =
N{FWFH}=-2, vi=1,2,.--,t+1. For each 1=1,2, .-, f +1
we choose an element a,€ N {&F \{F.}}. Define A={a;|7=12, ---,
f+1}. Hence |[A|=<f+ 1. If |A| <t+ 1, then there exists an index
% such that a;e F,. But then ¢,€ N .#. Hence N.¥ +# O, and we
are done. So we may assume that |A| = + 1. From (iii) it follows
that N(F(A\a)|t =1,2,---,t +1}+ @. Foreachi=1,2,...,f+1
we have A\{a;}CF,, so € (A\e,)CF;. Hence N{&(4\a)|t=1,2,---,
f+1lcN.#, and we conclude than N & = &.

DEFINITION 3.1'. A convexity-structure & for X has the Helly-
number % if § is the smallest integer such that [ACX A 4] =
§+1]=N{&E4\a)|ac d} + @.

With the aid of Lemma 3.1. it is easy to verify that Definitions
3.1 and 3.1’ are equivalent. We now prove the classical theorem of
Levi with the aid of Definition 3.1'. See [5], Theorem H.
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THEOREM 3.1 (Levi). Let & be a convexity-structure for X.
Then the existence of a Radon-number t tmplies the existence of a
Helly-number ), such that § < ¢ — 1.

Proof. Each Ac X with |A| =t has a &-Radon-partition; see
[2]. So there exists a set BC A, with @ # B# A and &€ (B)N
& (A\B) # @. Because € (B)c N {¥(4\a)|ac A\B} and ¥ (A\B) C
N{Z(A\a)|a e B}, we have N {Z¥(A\e)|laec A}DE(B)N & (A\B) # Q.
Hence Y exists and ) < v — 1.

THEOREM 3.2. Let &, be a convexity-structure for X, X, # O,
with Helly-number 9; 1 =1,2. Then the Helly-number %) of the
convex-product-structure ,P&, for X, x X, exists and h=max (9, H,).

Proof. We may assume that § = §,. Take Fc X, x X, with
|E| =% + 1. There are two posibilities for the projection 7, E of
Eon X;; 1=1,2.

—If |m,E| <9, for some ie€{l, 2}, then there exist elements
¢, ¢, € such that e e, and such that w,(e) = 7,(e;). Clearly
Ti(e) € Fi(r(E\e,)). Hence m(e,) e N {& . (E\e)) |ec E} # D.

—If |mFE|=9+1, for some 4e{l,2}, then it follows
from Definition 3.1' that N {&F(7.E\x)| zexn,F}+= @. Hence
N{&(z(E\e)) | ec B} D N{Z.(x,E\n,(e)) |ec E} = @ and we may
conclude that N {F(7.(E\e)) |ec E} = @; 1 =1, 2.

Hence N {(Z, D EI(E\e)} = N{Z(m.(E\e)) X Eom(E\e)} # O,
and so § =< 5, = max (h, §).

Next we show that h= Y. Assuming H =% — 1, Ac X, with
|A] =9, and be X, we have, because |4 X {b}| = §, N {(Z. D ZF)(A %
P\ b)lae A} = @. Hence N {&(A\)]ac4) = N{F@(A ¥
{d\(e, B))) |a€ A} + @. This contradicts the fact that 5, is the
Helly-number of &7, so that, indeed, % = %, = max (§, 5,) and the
final conclusion is that § = §, = max (§, 5,).

It is well known that the Carathéodory-number ¢, the Helly-
number ) and the Radon-number 1 of the usual convexity-strueture
conv for R" satisfy the equalities c=9% =1t —1 (=n + 1), that is,
in Levi’s theorem equality holds. There are however convexity-
structures & where the equality does not hold. This is even the
case when & is a convex-product-structure:

We know that (see also [8]):

G+ —2=Zcg -+

b = max (bu bz)

max (v, ) Sr=1 41— 2
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¢;, §, and 1, are resp. the Carathéodory-, Helly- and Radon-number of
&5 1=1,2.

If e, =9 =1 —1, 2=1, 2, then we have:

a. if ¢, =83 (e.g. when & is T)) then c = b.

b. if c=¢ + ¢, then ¢ >1 — 1.

if the exchange-number, ¢, < ¢, and if t=1,+1,— 2 (e.g. in

the case X, = R, &, = conv) then c < ¢ — 1.

c. if r>max(r,1,) (e.g. in the same case as in b) then
h<r—1.

The results in this paper can be extended to convex-product-
structures which are products of finitely many convexity-structures.

In a next paper we shall pay more attention to the properties
of the exchange number. For example we shall show that under
certain conditions, the exchange-number of a convex-product-structure
exists and how it can be derived.
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