Vol. 61, No. 2, 1975

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
An inversion of the S2 transform for generalized functions

L. S. Dube

Vol. 61 (1975), No. 2, 383–390
Abstract

Define S2 transform of a member f of a certain space of generalized functions as

F(x) = ⟨f(t),K (t,x)⟩

where

        {
logxx−∕tt, x ⁄= t
K(t,x) =  1,     x = t
x

(0 < t < ,0 < x < ).

It is shown that

 lim Hn,x[F(x)] = f(x)
n→∞

in the weak distributional sence. Here Hn,x is a certain linear generalized differential operator.

Mathematical Subject Classification 2000
Primary: 46F10
Secondary: 44A05
Milestones
Received: 10 December 1974
Revised: 24 July 1975
Published: 1 December 1975
Authors
L. S. Dube