
Pacific Journal of
Mathematics

NILPOTENT APPROXIMATIONS AND QUASINILPOTENT
OPERATORS

CONSTANTIN GELU APOSTOL AND NORBERTO SALINAS

Vol. 61, No. 2 December 1975



PACIFIC JOURNAL OF MATHEMATICS

Vol. 61, No. 2, 1975

NILPOTENT APPROXIMATIONS AND
QUASINILPOTENT OPERATORS

CONSTANTiN APOSTOL AND NORBERTO SALINAS

Let 2έf be a separable, infinite dimensional, complex
Hubert space and let £f{2t?) denote the algebra of all
(bounded, linear) operators on £$?. This paper is concerned
with some aspects of the uniform approximation of an operator
in Sf(£$f) by nilpotent operators.

If T is an operator in £?(3$f) we shall denote by σ(T) the
spectrum of T and r(T) the spectral radius of T. We recall that
an operator T in <£f(βέf) is said to be quasinilpotent if σ(T) = {0}
or equivalents τ(T) = l i m ^ || Tn\\1/n = 0. In j[5] [7] it wasproved
that a quasinilpotent operator T in £f(3ίf) is the uniform limit
of a sequence {Qk} of nilpotent operators on H (cf. [6, Problem 7]).
For each positive integer k let ok be the order of the nilpotent
operator Qk> that is ok is the smallest positive integer such that
Qlk = 0. In view of the result mentioned above it is natural to
ask whether there exists any relationship between the rate of
decrease of the sequence || T°k\\v°k and the rate of decrease of the
sequence | | Γ — Qk\\. Furthermore, it is reasonable to expect that
there exists a characterization of the set of quasinilpotent operators
in terms of its nilpotent approximations. These questions seem to
be rather hard and in this paper we present some insights into these
problems (cf. Corollary 3.4).

In Theorem 3.5 we prove that the distance from an arbitrary
operator T in £f(3ίf) to the set ^Γ{£έ?) of all nilpotent operators
in Sf(£έf) is at most r(T) and in Theorem 3.1 we give precise
estimates for the nilpotent approximations of T in the case that T
is a biquasitriangular operator and zero is in the essential spectrum
of T (see § 3 for the corresponding definitions). Another by-product
of our discussion (cf. Proposition 4.4) is that if T is an operator on
Sίf such that lim i n f ^ Vn \\ Tn \\1/n = 0, then the quasinilpotent
operator T is actually pseudonilpotent (cf. [10, Problem 1]).

We are indebted to D. A. Herrero for his very useful comments,
specifically, for his suggestions about the proof of Theorem 3.5 and
for providing us with the example of Remark 4.5.

2. The central lemma, The following lemma is central to our
purposes.

LEMMA 2.1. Let Te^f(£έf). Then for every a > 0, β > r(T)
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and every positive integer n there exists Q 6
at most n (i.e. Qn = 0) such that

I I (ΓΘO)- + β +
aβn

of order

Proof. Let U and V be two isometries in ^(Sίf) such that
* = 1 - UU*. We define for l^k^n the subspace ^ C of
®£ίf given by ^ = {T*-^ 0 aβ^V^Ux, x e £έ?}. Note that
is closed because it is the image under the isometry ( Q yk-γ jΛ

of the graph of the transpose of Tk~1l(aβk'"1). It is easy to see that
^ . Π ̂  = {0} if 1 ̂  j , k^n, j Φk. This is due to the fact that
the second components of the elements in ̂ ^ and ^£1 are orthogonal.
Let ^ = Σ*=i ^^u = {»i + + Vv Vk£ -^k, l^k^n}. Now we
prove that ^ is closed. Let {ym} be a sequence in ̂  s.t, limm_TO y Λ =0.
Since ^ ^ n ̂ ^ = {0}, i ^ fc, we can write uniquely ym = Σϊ=iy»,*»
where ym>fc = Tk~~ιxm,k ®aβk~ιVk~ιUxm,k1 for some %mΛz2!f, l<*k^n,
m = 1, 2, . Since l i m ^ ym = 0, then limm _ Σϊ^ i aβ1*'1 V"1 Uxm, k = 0.
Then lim^oo F^" 1 ?/^^ = 0, 1 <L k <L n and hence lim^oo xm,fe = 0,
1 ^ k ̂  n. Therefore, lim™^ ym>k = 0, 1 ̂  & ̂  w and hence ^£ is
closed. Now we define Q e ̂ T{Sίf 0 Sίf) by

Q = o, Σ
* = 1

»—l

Thus, the representing matrix of Q

/0 0 0 ••

* 0 0 ••

0 * 0 ••

0 0 0

on Σ*=i ~i€k is of the form

0 0\
0 0
0 0

* 0/ .

Therefore it is clear that Qn = 0. Let Pn be the projection onto
kernel F*\ Then

[(T®βPnV) - Σ
* = 1

- Γ

= Tnxn φ ΓP^/S"F" UX + g α ^ P , - 1) V"

= Tnxn φ 0 .
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Since

X. =
aβ'1-1

1

— /v/O71"1

~ aβn

We conclude that || [ ( T 0 βPnV) - Q] \^t || ^ || Tn \\/aβ-1. From
now on given a subspace gf of £ίf, P^ will denote the projection from

onto <%f. Then

II(ΓΘO)

/S

Thus in order to complete the proof it suffices to show that
P^tf- II ̂ 5 α. Notice that ^ x = {^0^: (y, x) + a(z, Ux) = 0

for all x e £ίf}. Hence ^^ί 1 = {( —α *7*z) 0 «, 2 e <^}. Therefore
lip p . II _ II p I I II < κy
II -^.^φo-^^r^ II — II - ^ ^ φ o l^r^ II = Ui

Following [9] we shall denote by Re(T) the reducing essential
spectrum of the operator Γ, that is Re(T) is the set of complex
numbers λ such that there exists a projection P in £?(£ίf) of infinite
rank and nullity such that (T — X)P and (T* — λ)P are compact
operators.

THEOREM 2.2. Lβέ T be in £?(<%?) such that Re(T) Φ 0 and
suppose that 0 e i2e(Γ). Tftίm /or ever?/ α: > 0, /9 > r(Γ), 7 > 1 απώ
ever?/ positive integer n there exists Q e ^V(Sίf) of order at most n
such that

(*> Q l l ^ T\\+ β
aβn~

Proof. From [9, Theorem 4.6] it follows that for every ε > 0
there exists a unitary transformation Uε: <§ίf'—• Sίf'0 Sίf such that
|| UtTΌ* - ( Γ © 0 ) | | < ε. On the other hand, from Lemma 2.1 we
deduce that there exists a nilpotent operator Q1 on Sίf 0 έ%f of
order at most n such that || Γ0O - Q ' || ^ α || T \\ + /S + || Tn WKaβ^1).
Letting now Q = ?7e*Q;?7£ we observe that || Γ - Q || - || USTU?-Q' \\ ̂
s + | | ( T 0 O ) - Q'\\ ^ ε + α | | Γ || + β + \\ Tn WKaβ"'1). The proof of
the theorem is completed by choosing ε small enough.

3* Nilpotent approximation of biquasitriangular operators*
In what follows, given an operator T in ^(Sίf) we denote by E{T)
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the essential spectrum of T, i.e. E{T) = {X e σ(T): T - λ is not
Fredholm}. Also Et(T) and Er(T) will denote the left essential spec-
trum and the right essential spectrum of the operator T, that is
Et(T) = {X e E(T): Γ - λ is not semi-Fredholm with dim [null (T-λ)]< 00}
and Er(T) = [^(ϊ7*)]*.

Following [6] we say that an operator T on £{f is quasitriangular
if there exists an increasing sequence {Pn} of finite rank projections
in £?(£ίf) tending strongly to the identity operator such that
lim^oo ||(1 — Pn)TPn\\ = 0 and we say that T is biquasitriangular if
both T and T* are quasitriangular [2], In [3] it was shown that
T is biquasitriangular if and only if the index of T — λ is zero for
every complex number λ such that T — λ is semi-Fredholm. In
particular, if T is biquasitrianglar E(T) = Et(T) Π Er(T).

In the following theorem we give some precise estimates for the
nilpotent approximation of a biquasitriangular operator.

THEOREM 3.1. Let T in ^f(J^) be a biquasitriangular operator
and suppose that QeE(T). Then for every a > 0, β > r(T), 7 > 1
and every positive integer n there exists a nilpotent operator Q in

of order at most An such that (*) is valid.

Proof. From [11, Proposition 3.2] it follows that for every ε > 0
there exists a unitary transformation V,\S^^^f@^f®3ίf@S^
and a compact operator Kε in £f(£έf) with \\Kt\\ < e such that

, 0 0 0 \

where Lί5 e £f(£έf), 1 ^ 3 < i ^ 4, and for each 1 ^ 3 ^ 4, S, is an
operator in £?{£έf) such that Sy is unitarily equivalent to M3 φ N3-
where Mό is a block diagonal operator on 3$f with E{M5)<^E{T)
and JVy is a normal operator in ^{3ίf) such that E(Nj) = E(T).
Since E(Nj) = Λ#(JVy) [9, Theorem 3.10], 0 e ί?(Γ) and Be(Md 0 iV» =
Λ#(Λfy) U Re(Nj) [9, Lemma 4.10], it follows that 0 6 J2.(Sy), 1 ^ i ^ 4.
Now we chose ε > 0 small enough so that r(T — i Q < β. Since
II SJ II ^ II (Γ - Kε)

k II, 1 ^ i ^ 4, A? = 1, 2, . . , we also have r ( ^ ) < /S,
1 ^ 3 ^ 4. Given a fixed number δ with 1 < δ < 7, from Theorem
2.2 we can find nilpotent operators Q3 in ^f(β^) of order at most
n such that || Sd - Q3 \\ ^ δ(a \\ Sf \\ + β + \\ Sj \\/aβn-% 1 ^ j £ 4.
Now let Q be the operator in ^f(βέf) defined by
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Qx 0 0 0 \

I/21 Q2 0 0
VtQVt= / γ

L/31 -^32 **3 "

\ ί/41 Z/42 x/43 Q4

It is obvious that Q is a nilpotent operator of order at most in
and we see that

|| T - if. - Q || = || Vε(T - if. - Q)Ff || = max || S, - Q/||

^ δfα || Γ - K || + β + lKΓ- g«)*lh .

Therefore,

T - Kt || + β

and hence the theorem follows by choosing ε small enough.

COROLLARY 3.2. Let T bea biquasitrίangular operator in
such that 0 e E(T). Then the distance dist (T, ΛT(2ί?)) ^ r(Γ).

Proof. From Theorem 3.1 we deduce that for an arbitrary
ε > 0 (taking a = ε, β = r(T) + ε and 7 = 1 + e) there exists a
nilpotent operator Q in £f{^f) such that

ε){ε || Γ|| + r(T)
~r

Since l i m , ^ || Tn \\1/n = r(Γ), it follows that for w sufficiently large

[|| Tn \\Vn/(r(T) + ε)]n < ε2 and hence

|| T - Q \\< (1 + ε)[ε || Γ || + (r(T) + ε)(l + ε)] .

Since ε is arbitrary the proof of the corollary is complete.

The following corollary expresses the fact that if T is a quasi-
nilpotent operator on Sff and | |Γ*| | 1 / n doesn't decrease very fast,
then there exists a sequence {Qn} in .yK(β^) where each Qn has
order oΛ, n — 1, 2, such that the rate of decrease of the sequence
||T°"|!1/0% is the same as the rate of decrease of the sequence
I I T - Q . H .

COROLLARY 3.3. Let T in ^f(β^) be quasίnilpotent and let
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δ > 1. Then there exists a sequence {Qn} in ^(Sίf) such that Qin = 0
and for some c > 0, || T - Qn\\ < c(\\ T\\ δ~« + || Tn |Γ) .

Proof. It is a direct consequence of Theorem 3.1 where a = δ~n,

COROLLARY 3.4. Let T in £f(£ίf) be quasinίlpotent. Then there

exists a sequence {Qn} in ^V^^^f) such that Q4

n

n = 0 and \\T — Qn\\ <Z

3(1 + \\T\\)(n\\Tn\\y/n+ί.

Proof. It is an immediate consequence of Theorem 3.1 taking
|| T\\))VΛ+ι and 7 = 3/2.

In the next theorem we shall need the following terminology:
If X is a compact subset of the plane we denote by X the comple-
ment of the unbounded component of the complement of X. If ε ̂  0
we denote by X£ the set Xε — {λ e C: inf^x I λ — μ | ̂  ε}. We notice that
if ε ̂  sup ; e x I λ I, then Xe = (X)ε = (Xε)" and 0 e Xε.

THEOREM 3.5. Let T be in ^f(^f). Then the distance
dist(T, ^r{£e?))^r{T).

Proof. Let ε > 0 and let Σ = <*(T)\E{T\. If Σ Φ 0 , then
^ == {λi, , λw} where each λyis an isolated eigenvalue of σ(T) such
that T — Xj is Fredholm, 1 ̂  i ^ m. Then the spectral idempotent
EΣ corresponding to Σ> associated with T, has finite rank. Let

= range JE7Σ, ^— ά?ΓL and let P be the projection from Sίf onto
It readily follows that σ(T\^) = Σ and σ ( P Γ | ^ ) = σ(Γ)\Σ.

Furthermore, ^[(PΓ) | ̂ T] = ̂ (Γ) and ^ [ P T | ^T] = ̂ ( Γ ) . Now
we recall that a normal operator M in ^f(β^) is called diagonalizable
if J ^ has an orthonormal basis consisting of eigenvectors of M and
M is said to have uniform infinite multiplicity if every eigenvalue
of M has infinite multiplicity. Notice that in this case M is unitarily
equivalent t o l © l and that σ(M) = E(M). From [3, Theorem 2.2]
there exists a unitary transformation Uε: ̂ £ —> ^ θ ££" and a
compact operator Kε on . ^ whose norm is so small that ||iΓe[| < ε,

- Kε]c:E(T)2ε and such that we also have

where M is a diagonalizable normal operator of uniform infinite
multiplicity in £f(£έ?) such that σ(M) = Et[PT | ^ # ] . Applying now
the same reasoning to the operator S we further deduce that there
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M
0

0

A
C

0

B
D

N

exist a unitary transformation F e ' . ^ ^ ^ θ ^ θ 3lf and a
compact operator Lε in £f(^f) with norm so small that | |L 6 | | < 2ε,

σ[PT I ,^~ £fε\ c J5(Γ)Sβ and such that

Tε = Vε[PT 1 ^ - J2ffi] V? =

where M is as before, N is a diagonalizable normal operator of infi-
nite uniform multiplicity in S^(^f), A, B, C, D are in J^{Sίf) and

σ(N) = Er{C) = Er(£ ^j(=.Er[PT \ Λ\. Now let δ - r(Λf), η - r(iV)

and notice that Ύ] <^ δ. From the remark preceding the present

theorem we see that σ(M)δ — σ(M)δi σ(N)η — σ(N)v c σ(M)δ and

Oeσ(N)v. Employing a minor variation of [3, Proposition 1.11] it

follows that there exist two normal operators M' and Nr in £^{^f)

such that σ(M') - E(M') = σ(M)δ+3ε = E7T)5+3: - E(T)δ+3ε, σ(N') =
E(N') = σ(N)v and || M - M' \\ = δ + 3e, || JV - iVr || = η. Let Γ,f be
the 3 x 3 operator matrix defined by

rpr

We claim that Eι(T'e) Π Er(T's) =- σ(Tε) - σ(M'). In order to prove

this assertion we first observe that, since M' acts on an invariant

subspace of T'e, it is obvious that σ(M') = Et(M') c Et{T[). Also, if

X$Er(T'β), then X$Er(9 ^,) and hence X £ Er(N') = σ(N'). Since

Et(C) c 4^(C) and Er(C) = σ(iV) c σ(iV;) = σjw'), it follows that

X ί E(C)( = Er(C) U S,(C)). Therefore λ g J ? ^ ^ , ) , and since λ g JB7r(Γβ')

we deduce that X g Er(M') — σ{M'). Now we shall prove the other

inclusion. To this end we note that σ(jί ?r)cα(Γ £ )c£(T) 3 . , and

hence σί ̂  ^ j c E(T)Mε = σ(M;). In particular, it follows that

σ(C) c (τ(M'). Thus, if λ g σ(M'), then λ g cr(C) U ̂ (JSΓ') and hence

The last observation establishes our claim. Let 7 = dist (ΓJ,
^ ^ θ ^ ) ) . Our first conclusion is that dist (PT \ ̂
l!Lβ|| + dist(Γβ, ^ί^(^f ® ^f ® ^f)) ^ 2ε + 7 + max(| |M~ Jlί'||,
II J\Γ — 2V"). Since |[ ikf' — M\\ = δ + 3ε ^ r(Γ) + 3ε and ||ΛΓ'- iV|| -
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η ^ δ, we deduce that dist (PT \ ̂  Λ\^£)) ^ 7 + r(T) + 5ε. Using
the fact that ^ is finite dimensional it is elementary to check that
dist (T I j r ^ ( J H ) ^ r(Γ I ^ H ^ r(Γ) and hence we conclude that

dist (T, Λ\3έf)) £ max [dist (T
dist (PT I ^ < > T ( ^ ) ) ] ^ 7 + r(Γ) + 5ε .

Since 0 e JK(TJ) and we have shown that T' is a biquasitriangular
operator we may conclude from Corollary 3.2 that dist (Γ, .yK(£έ?)) <£
r(Γ;) + r(Γ) + 5ε <; 2r(Γ) + 8ε. However, we are interested in a
sharper estimate. At this point we make use of the fact that T[
enjoys the further property that σ(T[) is simple connected and coin-
cides with E(T[) and therefore from [4, Proposition 1.6], 7 = 0. Thus,
dist(T, ^ r ( < ^ ) ) ^ r(T) + 5ε and since ε is arbitrary the proof of
the theorem is complete.

4* Concluding remarks* In this section we pose some problems
concerning the nilpotent approximation of quasinilpotent operators.
We motivate these problems by presenting some pertinent obser-
vations.

PROPOSITION 4.1. Let T be in ^f\^f) and suppose that there
exists a sequence {Qn} in ^V(<%?) such that Q°n

n = 0, n = 1, 2, and
lim inf^TO || T ~ Qn \\1/0^ = 0. Then T is quasinilpotent.

Proof. Since T°» = T°- - Q°« = Σi=i T°^j(T - Q^Qt1 then for
n sufficiently large there exists c>0 such that || T°* \\1/On ^\\T-Qn \\Vo".
[ΣJ"i II T \\°»-j || Qn \\*-ψ** ^ c ]| T - Qn |Γ° . This completes the proof
of the proposition.

PROBLEM 1. Is the converse of Proposition 4.1 valid? (We expect
a negative answer.)

REMARK 4.2. In a different circle of ideas we note that minor
modifications of the arguments given in this paper show that if we
replace ^f(£έ?) by the Calkin algebra over £ίf (i.e., the quotient
algebra of £f(£ίf) by the ideal of compact operators on S(f\ then
the conclusion of Theorem 3.5 still holds. Thus it is natural to ask:

PROBLEM 2. If J ^ is a C*-algebra and Λ* is the set of nilpotent
elements of Ĵ Γ when does it follow that the distance dist (A,
r(A), for every A e

If s*f is a finite type I von Neumann algebra, it is easy to see
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that the above question has an affirmative answer. On the other
hand, it is worth noting that, by a well known fact in the theory
of C*-algebras [8], any noncommutative C*-algebra contains nonzero
nilpotent elements. However, if & is a semi-simple Banach algebra,
then there exists no nilpotent element different from zero. In par-
ticular, if & is a semi-simple commutative Banach algebra such that
the Gelf and transformation is not an isometry, then the corresponding
version of the above question has a negative answer. This is the
reason that in the preceding problem we imposed the condition that

be a C*-algebra.
The following terminology was introduced in [10].

DEFINITION. Let T e £?{&?). We say that T is pseudonilpotent
if for every ε > 0 there exists a finite orthogonal family of projec-
tions Pl9 , Pn in Sf{Sίf) such that Σ*=i P* = l and || Σ*ai-P<ΪΉ H<ε

The set of all pseudonilpotent operators in Sf^Sίf) will be denoted
by

In [10], it was observed that Ψ(Sέf) = Ψ(gέf)* and it was shown

that ^ ( ^ r ) <z.ΦΨ(3έf) c * 3 F ( 5 F ) and that there are pseudonilpotent
operators which are not quasinilpotent.

LEMMA 4.3. Let Γ 6 ^ ( ^ ) and suppose that there exists a
sequence {Qn} in ^K(^f) such that Q°n

n = 0, n = 1, 2, and
lim inf̂ oo Vo~ \\ T — Qn \\ = 0. Then T is pseudonilpotent.

Proof. Given ε > 0, let n be sufficiently large so that
Vol || T - Qn ||" < ε. For each 1 ^ j ^ on let P3 be the projection
onto kernel Qί kernel Qt1. Also let x e £έf. Then

On °n

3=1 i=j
=

VII

°n

Σ

1

Therefore || Σ £ i ΣίΞy PiTPj II ^ Von \\ T - Qn\\ < ε, as desired.

PROPOSITION 4.4. Let T be in ^f(J^) such that

lim inf V7 n \\Tn \\υn = 0 .

T is pseudonilpotent and quasinilpotent.
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Proof. It is an immediate consequence of Corollary 3.3 and
Lemma 4.3.

REMARK 4.5. Let {en} be an orthonormal basis for £%f and let
{an} be a sequence of complex numbers. We recall that an operator
T in £f{£έf) is called a unilateral weighted shift with weights an,
n = 1, 2, if Ten = anen+1. Now we let T in £f(£έf) be a unilateral
weighted shift with weights ao = ax = = anι = 1, α.1+1 = =
α%2 = 1/2, , αnjfc_1+1 = ank = I/A?, , where {%*} is a strictly in-
creasing sequence of natural numbers. Given an arbitrary slowly
increasing sequence {cn} of real numbers cn > 1, tending to infinite,
it is not difficult to define the sequence {nk} inductively so that
lim^oo cnjk = oo. It follows that for k > 1, if nk^ < n <; nk, then
cn\\Tn\\Vn > cWJb-1|| Γ MΓ7** > o%h_Jc-\ Since Γ is a quasinilpotent
compact operator, from [10, Theorem 3.4], TzΨ{<%f) but

This shows that the sufficient condition of Proposition 4.4 (or any
reasonable relaxation of it) is not necessary. Moreover, T (x) 1^
provides a similar example with a noncompact quasinilpotent and
pseudonilpotent operator.

Finally, we pose two questions concerning pseudonilpotent oper-
ators which were already asked in [10].

PROBLEM 3. Is every quasinilpotent operator pseudonilpotent?

REMARK 4.6. From results of [3] and [4] it follows that every
operator in J*f(<&?) has a nontrivial invariant subspace if and only

if every operator in ^V{^f) has the same property.

PROBLEM 4. Does every pseudonilpotent operator have a non-
trivial invariant subspace?
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