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Let A be a regular, semisimple, commutative F-algebra
with identity. For each point in the spectrum of A, let 7,
denote the local algebra of germs at p of elements of A and let
#, denote its maximal ideal. When -, is finitely generated
we show to what extent representatives of its generators
are generators of the maximal ideals in the algebras of
functions locally belonging to A on some neighborhood of p.
We show that if .7, is finitely generated, then all point
derivations of 4 at p are continuous. Using this last fact,
we describe the generators of maximal ideals when the
polynomials in finitely many elements of the algebra are
dense in the algebra.

1. Preliminaries. Throughout we assume that all algebras are
commutative algebras with identity over the complex field C and
that all homomorphisms of algebras carry the identity of one to
the identity of the other. For general references in topological
algebras we refer the reader to [1] and [6].

For X a Hausdorff topological space, we denote by C(X) the
algebra of all complex-valued, continuous functions on X where
C(X) has the pointwise operations and the topology of compact
convergence. The seminorms of this topology will be denoted ||-|ix
where K is a compact subset of X and for feC(X), ||fllx=
sup {| f(x)|: x € K}.

A locally m-convexr (LMC) algebra is a locally convex (Haus-
dorff) topological algebra A with a topology given by a family
{| +1l.: me (D, £)} of submultiplicative seminorms. An F-algebra is
a complete LMC algebra with a topology given by a countable
family of seminorms. It can always be assumed that these families
of seminorms are directed (i.e., if n < m in D, then ||a|, Z (el
for all ac A). If A is an LMC algebra and if {||-|,:»e D} is a
directed family of seminorms for A, then for each ne D, the set
{x:]|x]l. = 0} is a closed ideal in A and A/{x:||x]|, = 0} is a normed
algebra with norm |/ 7,z|| = ||«|/,, where x, is the natural map.
Let A, denote the completion of this algebra. If » <k, then the
maps 7, and 7, induce a norm-decreasing homomorphism r,, of A,
onto a dense subalgebra of A,, and {A4,, 7., D} forms a dense inverse
limit system. Moreover, liminv 4, is topologically and algebraically
the completion of A, where A is imbedded vian(z) = {m,2}. If 4
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is complete, then 7 is surjective and we identify A and liminv A4,.
Of interest to us later are the facts that an inverse limit of #-
algebras is a complete LMC algebra and that the inverse limit of a
countable family of F-algebras is an F-algebra.

The spectrum of A, denoted Sp (A), is the space of all nonzero,
continuous, multiplicative, linear functionals on A with the Gelfand
(relative weak*) topology. If A is a commutative F-algebra with
identity, {||-||.} is an increasing sequence of seminorms for A, and
A, and =, are as above, then m, induces a topological map of
Sp (4,) onto a compact set S, of Sp(4) such that S,cS,c --- and
Sp(4) = U S,. Moreover, every compact subset of Sp(4) is con-
tained in some S,; hence, Sp(A4) is hemicompact. This implies that
Sp (A) is Lindelof and Sp(4) is also completely regular and Hausdorff.
Since Sp(4) is both Lindelof and regular, it is paracompact and
normal. ~

For each fe A, define the mapping f: Sp (4) — C by f(x) = x(f),
x € Sp (4). f is called the Gelfand transform of f, and the mapping
f— f is a homomorphism of A onto a separating subalgebra A of
C(Sp(4)). A is called semi-simple if ac A and @=0 on Sp(4)
implies that @ = 0. If A is semi-simple, then the Gelfand mapping
a— & is an algebraic isomorphism and we can regard A as an
algebra of complex-valued functions on Sp(4) with the topology
transferred from A via this isomorphism. This topology is weaker
than the topology of compact convergence. Throughout, whenever
an algebra is semi-simple we assume that it has been identified in
this way.

A commutative LMC algebra A is said to be regular if for each
closed set F in Sp (A4) and each point x € Sp (4A)\F, there is an element
@ in A such that 4 =0 on F and d(x) = 1. The algebra A is
normal if for each pair F, and F, of disjoint closed subsets of
Sp (4), there exists an element @ in A such that @ =0 on F, and
=1 on F,. Regular F-algebras are normal (see [8, p. 160] or
[3, p. 266]).

Let A be a regular, semi-simple, commutative F-algebra with
identity. For S a subset of Sp(A4), let A|S denote the algebra of
restrictions of functions in A to the set S. Let F be a closed subset
of Sp(4). It is easy to see that the mapping f|F — f + k(F)
gives an algebraic isomorphism of A|F onto A/k(F) where k(F) =
{feA:f=0 on F}. But A/k(F) with the quotient topology is a
regular, semi-simple, commutative F-algebra with identity (see for
instance [2, p. 264]). We transfer the topology of A/k(F') to A|F
via the isomorphism described above.

If V is an open subset of Sp(4) and fe C(V), then we say
that f locally belongs to A on V if for each point xze V, there
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exists an open neighborhood U of z in V and an element ¢ e A such
that «|U = f|U. Let A(V) denote the collection of all such func-
tion. It is shown in [3, p. 271] that A(Sp(4)) = A. If Sp(4) is
locally compact and V is an open subset of Sp(A), then we shall
give A(V) a locally m-convex topology by realizing it as a dense
inverse limit of F-algebras of the form A| K where K is a compact
subset of V.

Let A be a regular, semi-simple, commutative F-algebra with
identity such that Sp(4) is locally compact and let V be an open
subset of Sp(4). Let {K;: A e 4} be the collection of all compact
subsets of V where 4 = {K: K compact, K V} is partially ordered
by < ¢ if and only if K,C K,. For each ne/ let 4;,=A|K,
with its F-algebra topology defined above (K, is closed in V).
Hence A4, is a regular, semi-simple F-algebra with identity. If » < g,
then K, K, and the restriction mapping 7r;: A,— A, is defined,
continuous, and surjective. Hence {A4,, r§, 4} is a dense inverse
limit system of F-algebras. Let A'(V) = liminv 4,. Since each 4,
is an F-algebra, we have that A'(V) is a complete, locally m-convex
algebra. We next show that A’'(V) is algebraically isomorphic to
A(V). If fe A(V), then we may represent f = {fi},.. where f;€ A4,
and r,f, = fi(» < #). For each fe A'(V), define f: V—C by f(x) =
Si(z) if xe K,. Suppose xe K; N K, and let v =\, ¢£. Then f(x) =
(i )@) = fx) = (mf) (@) = fu(x). Hence f is well-defined and f is
that unique function on V such that f|K, = fi(Ae 4). Since V is
locally compact, each f is continuous on V. If f=0, then f; =0
in 4, for each M\ since A; is semi-simple and thus f=0 in A'(V).
Therefore f— f is a monomorphism of A’(V) into C(V). Further-
more, it is clear that the image is {fe C(V): f| K, € A;(v € 4)} which
is just A(V) = {fe C(V): F locally belongs to A on V}. To verify
this statement, it is clear that {feC(V):f| K,e A;,(xe A)} S A(V)
because V is locally compact. To show the opposite inclusion, let
f€A(V) and let K be a compact subset of V. Let W be an open
set such that KcWcWcV. Since K and Sp(4)\W are closed
subsets of Sp(4) and since A is normal, there exists ¢ in 4 such
that g | K =1 and ¢ |Sp(A)\W = 0. Now, f-g locally belongs to A
on Sp (A); consequently, f-ge A. But f-g = f on K. Hence, fe Ax.
From this, the set inclusion is proven. Thus we may identify A(V)
via this isomorphism with A’(V) and transfer the topology of A’'(V)
to A(V). Call that topology 7.

Since A'(V) = liminv 4; and since U;.,Sp (4;) = U;..K, =V, it
is clear that we may identify Sp(4'(V)) with V. That identifica-
tion we will call # and it is given of course by: if @eSp(4'(V)),
then h(®) is that unique point in V such that o(f) = f(k(®)) for
every fe A. We need still show that the topologies are the same.
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Let ¢,—® in Sp(A4'(V)). Then f(p,)— f(®) for every fe A'(V).
If ge A, then ¢' = {g| K3} € A'(V). Hence g(h(®.)) = 9'(Pa) — 9'(®) =
g(h(®)). Hence, h(®,)— k(@) in V the relative topology from Sp (4).
Therefore h(®,) — k(@) in V. It is clear that A7 is continuous since
the functions f are in C(V). Thus Sp(4'(V)) = V.

Thus, if Sp (4) is locally compact and V is open, then (A(V), z;,)
is a semi-simple, commutative, complete, LMC algebra with identity
such that Sp (4(V)) = V. Furthermore, since A|V is contained in
A(V), we have that A(V) is regular.

If Sp(4) is second countable, then, since Sp(4) is also hemi-
compact, we have that Sp(4) is locally compact. Furthermore, if
Sp (4) is second countable, we can choose a sequence {K,} of compact
subsets of V covering V such that A'(V) =liminvA4|K,. Con-
sequently A(V) is an F-algebra if Sp(4) is second countable. This
topology will be used in Corollary 2.6 of the next section.

Notice that the topologies which have been given for A|F and
A(V) are natural generalizations of the relationship between the
topologies found in familiar examples: for instance, C(R), C((0, 1)),
and C([0, 1]).

2. Local maximal ideal structure. Throughout this section, A
is assumed to be a regular, semi-simple, commutative F-algebra
with identity. At each point pe Sp(4), we define the local algebra
7, of germs at p of functions in A. In this section information is
obtained concerning the algebra A when the maximal ideal of .97 is
finitely generated. Specific information is obtained about representa-
tives of generators of the maximal ideal, about the number of
generators of the maximal ideal, and about continuity of point
derivations.

For V an open subset of Sp(4), A(V) denotes the algebra of
all continuous, complex-valued functions on V which locally belong
to Aon V. If F is a closed subset of Sp(A4), then A|F denotes
the algebra of restrictions of elements of A to the set F; for a
description of the topology of A|F and a topology for A(V) when
V is locally compact see Section 1. For peSp(4) let M,, M(V),
and M, | F denote the maximal ideal of all elements of A, A(V),
and A | F, respectively, which vanish at p. Let J, denote the ideal
of all elements of A vanishing in neighborhoods of p, let .o denote
the factor algebra A/J, with 7, the natural projection of 4 onto .97,
and let _#Z, = 7,(M,). Thus .o is the algebra of germs at p of
elements of A. It is easy to see that .o is a local algebra (that
is, .%7 is a complex algebra with a unique maximal ideal) and that
#, is its unigue maximal ideal.
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LEmMMA 2.1. If {p,} %8 a sequence OJ_" distinet points such that
0, — D in Sp(A), then there exists GeJ, such that G(p,) = 0 for
each n.

Proof. Let {||-]|.}5=. be an increasing sequence of semi-norms
determining the topology of A. Since A is regular, there exists a
sequence {g,}o., contained in J, such that ¢,(p,) = 0 if k=, 9.(p,) # 0,
and |lg.ll. <1/2*. Let G, = 3\~ 9. Then {G,);., is a Cauchy
sequence in A and consequently converges to some GeJ,. Since for
each n, G(p,) = 9.(p,), the proof if complete.

If p is isolated in Sp(4), then J, = M, and .&4 = C. Through-
out the rest of this section, we assume that p is not isolated in
Sp(A4) and also that Sp (4) has a countable neighborhood base at p.
As an immediate consequence of these assumptions, Lemma 2.1
implies that J, is not closed; hence J, # M, and .97 is nontrivial.

We now obtain information about representatives of generators
of _#, when _#, is finitely generated. An ideal is n-generated if it
contains elements a,, ---, @, such that each element of the ideal is
of the form Y, a;b,. From the definition of .4, we see that _7,
is finitely generated if and only if there exist finitely many functions
fur =+ fu€ M, such that to each g€ A correspond an open neighbor-
hood V of p, functions g, ---,9,€4, and Gek(V) such that
g —9(») = X%, 9.f; + G. Notice that in general the neighborhood
V may depend on the function g. The next theorem states that it
is possible to choose the neighborhood independently of the particular
function. We first need two lemmas. For functions f, ..., fn€ 4,

let Z(fi, --+, fu) = {weSp(A): fi(®) = -+ - = ful@) = 0}

LEMMA 2.2. If fy, ++, fa€ M, and Y,(f), -+, V(f.) generate
My, then there is an open neighborhood V of p in Sp (4) such that

Z(f1y o, )NV = {p}. Comsequently [Sp(ANZ(f., -++, fIIU{p} is
open in Sp (4).

Proof. If not, since there is a countable neighborhood base at
P, there exists a sequence of points {p.};-. converging to » which
are contained in Z(f, -+, f.). By Lemma 2.1, there is an element
g of A such that g(p) =0 but g(p,) # 0 for each k. By earlier
comments, there exist a neighborhood U of p, functions g,,---,9.€ A
and Gek(U) such that g = >~ g.f. + G. Consequently g(p,) =0
for k sufficiently large which gives a contradiction.

LEMMA 2.3. Let V be an open subset of Sp (A) and let fiy +--, fa
be elements of A such that Z(f, -+, f)CV. If gek(V), then
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the/re exist Oy ¢y g”e A SuCh that g = ?:1 ngt'

Proof. Let F = Sp(A)\V. Since f,|F, ---, f,| F have no common
zero on F, the spectrum of A|F, there exist A, -+, h,€ A such
that O - h,f) | F = 1. Letting g, = gh,, 1 <4< n, we have that
g =2 9:f

THEOREM 2.4. Let f, ---, f, be representatives of generators of
Ay, let W =Spl(ANZ(fs, -+, fHIU{p}, and let V be an open
neighborhood of p such that VCW. Then for each ge A, there
exist g, -+, 9,.€ A and Gek(V) such that g — g(p) = > 9.f: + G.
Furthermore, if Z(f,, +++, f.) = {p}, then f,, «--, f. generate M,.

Proof. In the case that Z(f, ---, f.) = {p}, then W = Sp(4),
k(W) = {0} since A is semi-simple, and we may choose V = W. Let
ge A. By an earlier remark, there exist an open neighborhood U
of » (which is contained in V) and functions g¢i, ---, 9.€ A and
G’ € k(U) such that g — g(p) = 3., gif: + G'. Applying Lemma 2.3
to the algebra A |V where Z(f.|V, -, fulV)={p}cUcSp4]|V)
and G’|V vanishes on U, we have that there exist h, ---, h,€ 4
such that G' |V = (S hof)| V. Let g, =g, +h, 1=<1=mn, and
G=G" — 3", hf;. Then Gek(V) and g — g(p) = 23 0.f: + G.

Let N = N(p) and = = n(p) denote the minimal number of
generators of M, and _#, respectively. We have not been able to
show that N = n except in special cases (for instance, if A is closed
under complex conjugation), but we do get the following:

COROLLARY 2.5. M, 1s finitely generated if and only if _#, is
finitely generated. In fact, n < N < n + 1.

Proof. Assume that n < « and let f,, .., f, be representatives
of generators of _#,. Let U and V be open neighborhoods of »
such that UcV and Z(f, ---,f) NV = {p}. Since A is regular,
there exists a function fe A such that f(p)=0 and f=1 on
Sp (A\U. But since 7,(f), -+, Vo(fu), 7o(f) generate _#, and
Z(fis ++*s fur J) = {p}, Theorem 2.4 guarantees that f}, ---, fo, f
generate M, and thus N<n + 1. The rest of the proof of this
corollary is clear.

If f, «+-, fn generate the maximal ideal M,, then » must be
their only common zero. If f,, ---, f.. are representatives of genera-
tors of _#,, then p might not be their only common zero. To what
extent they can generate a maximal ideal is given in Theorem 2.4



FINITELY GENERATED IDEALS IN REGULAR F-ALGEBRAS 345

and the following corollary.

COROLLARY 2.6. If 7, (f), +++, Vu(fs) generate _#, fi, -+, fa OT€
representatives of these gemerators, and W = [Sp(ANZ(f,, -+, f)]U
{p}, then () i+f F is a closed subset of W containing p, then
fUF, <« ful F generate M,|F and (ii) ¢f U is a second countable
open subset of W containing p, them f,|U, -+, f,| U generate
MU).

Proof. Let V be an open set such that FcVcVcW. If
g€ A, there exist g, -++, 9,.€ A and Gek(V) such that g — g(p) =
» . 9.f; + G. By restricting to F, we see that (i) is established.
If U is second countable, then we give A(U) an F-algebra topology
such that A(U) is regular and Sp (A(U)) = U. (See Section 1 for
details.) But Z(£.|U, ---, f.| U) = {p}, and clearly the germs of
£ilU, «--, f,l U in the algebra of germs of A(U) functions at p
generate the maximal ideal; hence Theorem 2.4 applies to the
algebra A(U) and (ii) follows.

In order to obtain more information about generators of .4, it
is convenient to study point derivations and tangent vectors on A.
For pe Sp (4), there is a natural notion of the value of a germ «
at p since representatives of a must agree in value at p. Define
a(p) = f(p) where fe A and 7,(f) = a. A tangent vector of A at p
is a linear functional v on %7 satisfying v(ag) = a(p)v(B) + B(p)v(a)
for all a, Be 7. T(.) will denote the collection of all tangent
vectors of A at p. A point derivation of A at p is a linear
functional D on A satisfying D(f9) = f(p)D(9) + g(p)D(f) for all
fr9€ A. Let T,(A) denote the collection of all point derivations of
A at p.

T(.&4) and T,(A) with the natural operations of addition and
scalar multiplication are vector spaces over C. Let [_#Z;/ #]* and
[M,/M,]* denote the algebraic duals of the vector spaces .,/ #,’
and M,/M, respectively (vector spaces with the quotient operations).

LEmmA 2.7. [ 2. #2]F = T(85) = T,(A) =[M,/M:]*. If _#, is
finitely gemerated, then _#,/ #, = T(%)= T,(A)= M,/M: and each
of these wvector spaces is finite dimensional.

Proof. In the first statement, the outside isomorphisms follow
since T(.%4) consists precisely of those linear functionals on .97
which vanish on _#;* + C and that T,(A) consists precisely of those
linear functionals on A which vanish M2+ C (see [10, p. 263]).
Define @: T(.94) — T,(4) by @(v) = vov, for ve T(.7). It is clear
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that ¢ is linear and injective. Since every De T,(4) vanishes on
J, ® is surjective, and the first statement has been proved.

If _#, is finitely generated, so is M,. To establish this lemma,
we shall only show that M,/M: is finite dimensional since the
argument that _#,/ #, is finite dimensional is similar. The iso-
morphisms in the second statement follow from this finite dimen-
sionality and the isomorphisms in the first part. Let fi, ---, fa
generate M,, and let ge M,. Then there exist g, -+, g€ A such
that g = 3 0./, = 3% 0:(0)f: + 2 (90 — 94D))fi-  Since the latter
sum is in M;, we see that {f, + M2}, spans M,/M; and the proof
if complete.

To describe a basis for T(.%4) when _#, is finitely generated,
we suppose that n = wm(p) is finite and let «,, --., @, be generators
of #,. Defined, ..., 0,c T(57) such that d,(«;) = d,; (the Kronecker
delta) by 604(B) = B(p) where B, .-+, B,€.9 satisfy B8 — B(p) =
S B0 Since . is a local algebra and since # is the minimum
number of generators of _#,, we have that each ¢, is well-defined.
It is straightforward to verify that 4, ---, 6,€ T(.54). The proof
of the following lemma is omitted. (The proof is similar to a proof
in [7, p. 57].)

Lemma 2.8. If a, -+, a, generate _#,, then the tangent vectors
0, +++, 0, defined above form a basis for T(.4). If D, = 6,°7,
1<k <mn, then D, ---, D, form o basis for T,(4).

THEOREM 2.9. If _Z, is finitely generated, then every point
derivation of A at p s continuous.

Proof. Because ., is finitely generated, so also is M, finitely
generated, and M? has finite codimension in M,. We now prove
that M is closed in M, as follows. Suppose that f,, ---, f, generate
M,. Let A, be the direct product of = copies of M,. Now, M, is
a Fréchet space; consequently, A, with the product topology is also
a Fréchet space. Let @ be the mapping of A, into M, defined by
D(gyy ++y 9a) = fi0, + +++ + fu0,. Then, @ is a continuous linear map
of A, into M, whose range @(A4,) is M2 Thus its range has finite
codimension. Using the Open-mapping Theorem as in the proof of
the corresponding theorem for Banach Spaces (see [5, p. 186]), we
conclude that M? is closed.

To complete the proof, every element De T,(A) factors as D =
D*omoT where D*e(M,/M?)*, w is the natural projection of M,
onto M,/M}, and T: A— M, is defined by T(f) = f — f(p). Because
M? is closed, M,/M: with the quotient topology is a Hausdorff,
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finite-dimensional vector space. Hence D* is continuous and it is
clear that w and T are continuous; therefore D is continuous.

We will use the information that we have derived about point
derivations of A at p to obtain more information about generators
of _#,. As before we let n = n(p) denote the minimal number of
generators of _/,.

LemMA 2.10. Suppose that «,, ---, @, generate _#, and define
tangent wvectors 0, .-, 0, with respect to these generators. If Be
A, and 0,(B) # 0, then B, &, ---, o, generate _#,.

Proof. Let B, -+, B, € . satisfy 8 = 37, B,«;. [, is invertible
in .7 since B,(p) = 6.(8) # 0. Hence «, is in the span of g8, a,, ---, @,
and the conclusion follows.

The next theorem describes the generators of a finitely generated
maximal ideal when the polynomials in finitely many elements are
dense in the algebra. (This extends to regular F-algebras a theorem
of Banach algebras [4, Theorem 2.2]. Also, compare this theorem
to [9, Proposition 8.3] since n(p) is the dimension of T,(4) when
A, is finitely generated.)

THEOREM 2.11. Suppose that the polynomials in w,, -+, 4, are
dense in A and that _#, s finitely generated. Then M, is
generated by u, — w, (D), +++, U — Un(D), A, is generated by n = n(p)
of YVo(us — w(D))y +++, VoUn — Un(D)), and N(p) < m.

Proof. Let B, =7, (u; — u(p)), 1 <17 < m. It suffices to show
that n of B, - -+, 8. generate _#, since Z(u, — (D), +++, Up — Un(D)) =
{p}. This proof consists in inductively applying Lemma 2.10 to
specific sets of generators of _#,. Let «, --., «, generate _#, and
define the tangent vectors 64,, ---, 6,, with respect to these genera-
tors and let D, = 4,07, as in Lemma 2.8. Since each D,, is con-
tinuous on A and nontrivial, and since the polynomials in u,, +--, %,
are dense in A, there exist integers jand %k, 1 <7< m, 1<k < n,
such that 6,,(8;) = D(u;) # 0. For definiteness, we assume that
0,.(B) # 0 and by Lemma 2.10, we have that g, «,, ..., a, generate
A, If n =1, the proof is complete. If not, define tangent vectors
0y, +++, 0,, and corresponding point derivations D,, ..., D,, with
respect to B, a,, -+, &,. As before, we can conclude that for some
integers j and k, 2<j<m, 2=k <n, 0,(8;) = Dy(u;) # 0. Thus
we can replace B; and «a, in the system of generators of _#,.
Continuing this argument inductively gives the desired conclusion
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since it will be clear that » can be no greater than m.

We now give two examples; the first shows that there may be
strict inequality in the conclusion of the last theorem. Before we
consider the examples we prove a lemma which we will use.

LEMMA 2.12. If A is closed under complex-conjugation, then
N(p) = n(p).

Proof. By Corollary 2.5 we need only consider the case that
n = n(p) is finite. Since A is closed under conjugation, applications
of Lemma 2.10 to real and imaginary parts of generators give that
there are real-valued functions f;, ---, f, in A such that their germs
generate _#,. Let V be a neighborhood of p such that Z(f, ---, f)N
V = {p}. Since A is regular, it is also normal; hence, because
Sp (4) is a normal topological space, there is a real-valued function
f in J, such that f=1 in a neighborhood of Sp(4)\V. Since
71}(.][1 + 'Lf)’ 7p(f2): Tt 7p(fn) generate % and Z(fl + 'Lf! fz’ tt fn) = {p};
we conclude that f, + if, for « - -, f. generate M, and that N(p) < n(p).
Therefore N(p) = n(p).

ExAaMPLE 2.13. The algebra C=(R? is a regular, semi-simple,
commutative F-algebra with identity such that all of its maximal
ideals are two-generated. Let F = {(r, |r|): r€ R} and let A, be the
restriction of C*(R? to the set F' with the quotient topology (see
Section 1). Let 4: R-—F be the homeomorphism given by h(r) =
(r, |7]), and let A = {f<h: fe A}. Then A is algebraically isomorphic
to A, via the isomorphism induced by this homeomorphism and we
can transfer the topology of A, to A. Then A4 is a regular, semi-
simple, commutative F-algebra with identity such that Sp (4) = R.
Since the polynomials in the coordinate functions on R® are dense in
C=(R*, we see that the polynomials in x and |z| are dense in A
where x denotes the coordinate funection of R. Since A is closed
under conjugation N(p) = n(p) < 2 for every pcR. We will now
show that n(p) =1 for p =% 0 and %(0) = 2. Since the maximal
ideals of C=<(R% are generated by appropriate translates of the
coordinate functions, it is easy to see that M, is generated by x — p
and [x| — p for every pe R. But since 7,(x — p) = £7,(lz]| — |p])
for »p = 0, we see that for »p =0, _#Z is generated by 7, (x — p)
and n(p) = 1. To show that n(0) = 2, we assume that 7(0) =1 and
that # is a generator of M, Consequently, there exist A, and %, in
A such that x = hh and || = h.h. It is easy to show that £,(0) =
hy(0) = 0. But since the polynomials in x and |z| are dense in A4
and since there are nontrivial point derivations on A at 0, we have
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a contradiction. Therefore %(0) = 2.

The final example shows that in a regular F-algebra a finitely
generated maximal ideal can be isolated. This cannot happen in a
Banach algebra (see [4, Theorem 2.1)].

ExampLE 2.14. For all positive integers k¥ and =, let K, =
[—n,n), I, =(—1/n,1/n), and I,,=[—1/n + 1/nk, 1/n — 1/nk]. Let
A Dbe the algebra of all continuous, complex-valued functions on R
which are n-times continuously differentiable on I, for each n. For
a compact subset K of R, ||-|lx will denote the supremum semi-
norm, and for positive integers n and j, ||-1l,,; will denote the semi-
norm on A given by [[fll.; = 2 @/ f ], Give A the
topology induced by the semi-norms {||:ilx,, Il {57 Ji=12 -}
Then A with this topology is a semi-simple, commutative F-algebra
with identity. Furthermore, A contains C*(R), the polynomials in
the coordinate function x are dense in A, Sp(A) =R, and A is
regular. It is straightforward (for example, by using L’Hospital’s
rule repeatedly) to show that M, is generated by z. For p = 0,
M, is not finitely generated, for if it were it would have to be
generated by x — p (Theorem 2.11). But it is an easy matter to
construct functions in 4 which are not divisible by « — p (construct
such a function to have the minimum amount of differentiability
required at ). Hence, M, is the only finitely generated maximal
ideal in A. Every function in A is infinitely differentiable at 0; we
will now show that not only does there not exist a fixed neighbor-
hood of 0 such that all functions in A are infinitely differentiable
in that neighborhood, but that there exist functions in A which are
not infinitely differentiable in any neignborhood of 0. Let {||-l|l.} be
an increasing sequence of semi-norms determining the topology of A.
Let {f.}y-: be a sequence of functions in A satisfying (1) f{"*" does
not exist at some point p, of (1/(n+1), 1/n), (2) f, = 0 off 1/(n+1), 1/n)
and (3) ||full. = 1/2". Define g = 37, f., Which exists in 4 by (3).
Furthermore by (1) and (2), g"*“(p,) does not exist and hence,
since p,— 0, g is not infinitely differentiable in any neighborhood
of 0.
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