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Transfer theorems are obtained for the following mathe-
matical situations. B

7 is a dense substructure of the compact structure X.
1%} is the set of all finitely generated substructures of
X. F'is a structure of functions from Y to the structure X.

The sentences transferred in the above situations are
best described as ‘“‘almost’’ positive, variables appearing in
a negative subformula are quantified in a prescribed manner.

The main toocls of this investigation are the manipula-
tion of classical transfer theorems in the context of com-
mutative diagrams, the ultraproduct construction, and the
Z-limit operation of Chang and Keisler’s ‘““Continuous Model
Theory.”’

Introduction. Every subgroup of an abelian group is abelian,
any extension ring of a ring with zero divisors has zero divisors,
and each homomorphic image of a commutative ring is commutative
are instances of classical transfer theorems (LLemma 1). In this
paper transfer theorems are obtained for the following mathematical
situations:

X is a dense substructure of the compact topological structure
X,

{X,} is the set of all finitely generated substructures of X, and

F is a structure of functions from Y to the structure X.

The sentences transferred in the above situations are best
described as “almost” positive, variables appearing in a negative sub-
formula of the sentence are quantified in a prescribed manner.

The main tools of this investigation are the manipulation of the
classical transfer theorems in the context of commutative diagrams,
the ultraproduct construction, and the <r-limit operator popularized
by Chang and Keisler [3].

Consider a first order language .&© and its associated structures.
A formula o is identifined with its prenex normal form, i.e., ¢ is
assumed to be of the form

lelevzy Tty annM s

where each Q, is a quantifier (v or 3), each v, is a variable, and M
is a formula constructed from (positive) atomic formulae and their
negations, megative atomic formulae, using the connectives “and”

427



428 FRED HALPERN

and “or” (A and V). @, -+, Q,v, is the prefix, and M the
matrie, of 0. A variable or constant term is megative in o if it
occurs in some negative atomic formula of ¢. Formulae are classi-
fied on the basis of their prefix and matrix.

Assume a formula ¢ = Q,v,Q,v,, ---, Q,v,M. 0 is positive (nega-
tive) if its matrix M is constructed solely from positive (negative)
atomic formulae. o is universal (existential) if each quantifier of
its prefix is a universal (existential) quantifier. ¢ is universal-
positive if it is both universal and positive.

Vector notation will be used when convenient. (v, ---, v,) is
written o(v), o(c, --+,¢,) as o), and 3o, ..., 0,000, ---, v,) as
o (V).

Let & be a structure. & + o(@) denotes that the n-tuple @
of elements of .o satisfies the formula ¢(¥). Let ® be a function
between the structures .o and <Z. @ preserves the n-ary operation
F@®) if F(p(@) = ¢(F(d)) for all n-tuples @ of elements of & @
preserves the formula o(®) if & + o(@) implies <# + o(9(@). &
is a homomorphic image of % if there exists a function @ from
&7 onto <& which preserves all operations and positive atomic
formulae. 0(v) is preserved wunder homomorphic tmage if o(v) is
preserved by all onto homomorphisms. & is a substructure of <2
(and &7 is an extension of &) if there exists a 1 — 1 function @
from . to <#Z which preserves the operations, positive atomic
formulae, and negative atomic formulae of .o o(v) is preserved
under substructure if <Z  o(b) and @) = b imply . - a(@) for
every substructure morphism @:.& — <& 0(d) is preserved under
extension if o(v) is preserved by every substructure morphism.

LeEmMA 1 (Classical Theorems). Let o be a formula.

(i) (Los, Tarski) o is preserved under substructures iff o is
universal.

(ii) (Robinson) o 1is preserved wunder extensions tff o s
existential.

(iii) (Lyndon) o is preserved under homomorphic images iff o
18 positive.

1. Main results. . is a topological structure if its under-
lying set A is endowed with a Hausdorff topology wherein each
operation of . is continuous and wherein each w-ary relation of
&7 is closed as a subset of A", .7 is a compact topological struc-
ture if its underlying topology if compact. & is a dense substruc-
ture of the topological structure .o if .o is a substructure of .o~
whose underlying set is topologically dense in .%% The collection of
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compact structures .# compactifies the collection of structures .#
if each structure of .# is a dense substructure of a member of
A

The formula o is 3-generalized positive if the prefix of o
begins with an initial string of existential quantifiers (i.e., ¢ =
Qv + -, Q,v,M) such that every negative variable of ¢ is free
or existentially quantified in the initial string 3. The negation of
a 3-generalized positive formula is called a V-generalized negative
formula; it begins with an initial string of universal quantifiers
such that each of it nonnegative variables is free or universally
quantified in the initial string.

THEOREM 1. Let & be a denmse substructure of the compuact
structure %% Ewvery I-gemeralized positive sentence satisfied by .o
is satisfied by .57

This generalizes a result of Robinson [7].

THEOREM 2. Let _# compactify the collection of structures .77 .

(i) Every 3-gemeralized positive sentence satisfied in . is
satisfied in A .

(ii) Every V-generalized megative sentemce valid in _# 1is
valid in A

COROLLARIES TO THEOREM 2. Let 0 be a V-generalized megative
sentence (in an appropriate language).

2.1. o is valid for all extensions of the group & if o is valid
for all compact groups which are extensions of Z.

2.2. o is walid for all total orderings if ¢ is walid for all
complete total orderings.

2.3. o s [valid for all totally ordered lattices extending the
ordering F if 0 is valid for all complete totally ordered lattices
extending F.

2.4. o s wvolid for all distributive lattices if o is valid for
all complete distributive lattices.

2.5. ¢ is wvalid for all boolean algebras if o is walid for all
complete boolean algebras.

The corollaries to Theorem 2 follow from:
Every group is a dense subgroup of a compact group (Kelly

(6], p. 247).
Every total order can be (densely) embedded in a complete total
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order, and every complete total order forms a compact topological
space Wherein the lattice operations, A and V/, are continuous
(Birkhoff [2] pgs. 240-253).

The lattice (boolean algebra) of all subsets of a fixed set X
endowed with the interval topology forms a compact topological
space wherein the lattice (boolean algebra) operations are continuous.
Every distributive lattice is isomorphic to a ring of sets, and every
boolean algebra is isomorphic to a field of sets.

Corollary 2.3 considered the total order as a lattice so as to
enlarge the class of sentences preserved. The analog of Corollary
2.3 for arbitrary lattices in false. It is difficult to go from complete
lattice to compact-Hausdorff space. In fact,

Counterexample 1.1. (Birkhoff [2], pgs. 126-128.) The comple-
tion by cuts of the modular lattice of all subspaces of Hilbert
space which have finite dimension or codimension is nonmodular (i.e.,
does not satisfy the modular equation).

Counterexample 1.2. If in Theorem 1 the hypothesis, the topology

of .7 is compact, is replaced by the topology of .% is a complete
metric space, even positive sentences are not preserved.
Let ¢ = Vyax(y* — 2)x = 1. Rationals ~ o, but not Reals - o.

Counterexample 1.3. It does not seem that the class of sentences
preserved under the hypothesis of Theorem 1 can be enlarged. A
reasonable conjecture would be the class of all sentences whose
negative variables are existentially quantified.

Consider the sentence in the language of order which states no
first element exists,

o=vVxiylz(y <z and z <y and 2 = ¥) .

The open interval (0, 1) is dense in [0, 1]; (0, 1) ~ o, but not [0, 1] - 0.

The collection of substructures {.o7} generates the structure &
if each finite subset of .& is a subset of some .94. The formula
o is V*3-generalized positive if o = Qv, -+, ,v,39M (variables of
3% are called terminal) such that each existentially quantified variable
is terminal, or is nonnegative and does not appear in any atomic
formula in which a terminal variable appears.

A formula o is universal-existential if ¢ = ViwivM.

THEOREM 4. Let {.97] generate the structure .S
(i) (Los and Susco) Any universal-existential sentence valid in

{77} 1s satisfied by %
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(ii) If, in addition, 7 1is a compact structure, them every
V*3-generalized positive sentence valid in { .7} is satisfied by %

COROLLARIES TO THEOREM 4. Let 0 be a V*t3-generalized positive
sentence.

4.1. If o s valid for all finitely generated groups, then o is
valid for all compact groups. ,

4.2. If o is valid for all finite total orderings (viewed as a
lattice), then o is valid for all complete totally ordered lattices.

As an application of Corollary 4.2, every totally ordered complete
lattice must have a first element. The situation is radically different
if we inquire about second elements. We counterexample attempts
to weaken conditions on sentences preserved under the hypotheses of
Theorem 4 (ii). Examples are taken from the language of total
orderings with first element 0 and last element 1.

Counterexample 4.1. Consider the sentence which has a non-
terminal existentially quantified negative variable,

c=32Vy(x =0, and x <y or y =0).

o asserts the existence of a second element. ¢ is not satisfied by
the complete total ordering [0, 1], but every finite subset of [0, 1]
satisfies 0.

Counterexample 4.2. Consider the sentence which has a non-
terminal (nonnegative) existentially quantified variable which appears
in an atomic formula with a terminal variable,

0=32Vyiz(z =2 and 2% 0, and y =0 or 2 < ) .

Again, o asserts the existence of a second element. [0, 1] doesn’t
satisfy o, but each finite subset does satisfy a.

Let .&7 be a structure, .’ denotes the product structure whose
underlying set is the set of all functions from I to .% such that
operations on functions of .o77 are performed coordinatewise and,
such that an atomic relation holds in .97 iff it holds in each coordinate.
F is a functional structure of range . if F is a substructure
of .77 which contains all constant functions. The functional strue-
ture F'c .97 has finite solution property if, for all unequal f, f'e F,
{te I|f(%) = f'(@)} is finite.

The formula ¢ is V*-generalized positive if no negative variable
of ¢ is existentially quantified.
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THEOREM 5. Let F be a functional structure of range S

(i) Ewvery V'-gemeralized positive semtence satisfied by F s
satisfied by &7

(ii) If, in addition, F has the finite solution property then
every V*i-generalized positive sentence satisfied by F is satisfied by
o4

The negation of a V*-generalized positive sentence is a 3°-
generalized negative sentence; it has the defining property that each
variable appearing in a positive atomic formula is exXistentially
quantified.

COROLLARY 5.1. Ewvery 3t-generalized negative sentence is pre-
served under direct powers.

COROLLARY 5.2. (i) The ring of real polynomials in one
variable is fumctional over the ring of real numbers, with finite
solution property.

(ii) Theorem 5 (ii) may be applied to the ring of functions
analytic in the circle, |z| < 1.

(iii) Let <2 be a ring and M and M’ F-modules. The module
of homomorphisms from M to M’ is a functional structure of range
M.

If, in addition, M is irreducible (has no nontrivial submodules),
the above module of homomorphisms has the finite solution property.

2. Proof of theorems. The function @ from . to <Z is an
elementary embedding if, & — o(a@) implies & + o(e(a)) for all
formulae o(v).

Throughout this section I denotes a fixed index set. < is a
filter on I if <r is a subset of the power set of I, such that

if Xe & and X2 YZI, then Ye &, and
if X, Ye <z then XNYe 2.

An ultrafilter on I is a maximal filter on I, i.e., a filter & on I
such that, for all XCI, Xe = or [ — Xe 2. [l.a; X (I1ier %)
denotes the cartesian product of the sets {X.},.; (of the structures
{}icr). When Viel X, = X, [[..; X, is written X’, and similarly
for structures. X7 can be identified with the set of all functions
from I to X; an embedding diag: X — X7 is obtained by identifying
xe X with the function with constant value z. For fe[l..; X;, f(?)
denotes the ¢th coordinate of f.
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Assume a set of structures {.%},.; and an ultrafilter & on I.
The ultraproduct of {.97},.; by =, written [] .24/, is the homo-
morphic image of the product structure [[,.;.% induced by the
congruence relation

f 08 {0 f() ='(le 2, (f and fe]l 7).

In the case Vie I .o, = .4 the ultraproduct is called the ultrapower
of & by & and is written .o7’/<7. Members of [[ .87/ <> are written
fl12, fell .

LEMMA 2 (Los). The diagonal embedding diag: % — Y is
an elementary embedding.

DEFINITIONS. (i) % is the outside of a .<#-sandwich if there
exist functions

4

¢ . i

& —— F

such that @ is a substructure morphism, + is a substructure
morphism, and

poq = diag: & — /T .
(ii) &7 is a retract of <& if there exist functions

14

—_

7 v B
P
such that @ is a substructure morphism, + is an onto homomorphism,
and @o+ = identity of o4
(iii) . is a strong retract of <& if there exists functions

14
1@ o
—

such that .o~ is the outside of a Zsandwich by .o 5 & Yo &
and &7 is a retract of < by

¢
—_

.,Q/(_X___@

(iv) 7 is an ultrahomomorphic image of .o lis there exists
a commutative diagram
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L

N/
dlag\ S
B ez

such that @ is a substructure morphism and + an onto homomorphism.

THEOREM 6. Let o(%) be a formula, . a substructure of <&
by & —2> Z and G an n-tuple of elements of X a shall also
denote the n-tuple of elements of <Z, @(a). & +— o(@) implies
&+ o(a@) iof

(i) (Keisler) .o~ is the outside of a F-sandwich and o is a
universal-existential formula.

(ii) (Keisler) .% is a retract of <& and o is a V'-generalized
positive formula.

(ili) &7 4s a stromg retract of & and ¢ is a YV 3I-generalized
positive sentence.

(iv) If <& 4is an ultrahomomorphic image of .7 and 0 is a
3-generalized positive sentence, them .7 +— (@) implies & + o(a).

Proof. Results follow by induction on the number of quantifiers
in o(»). We assume our language has constants for each element
of .2, {a}ucs, and constants for each element of 2Z, {b};c... The
interpretation of constants will be specified in each situation.

(i) Let .ov —%» & Y5 o'/ r be a F-sandwich.

The constant symbol a is interpreted as @(a) in <& and as
a - B(a) = diag (e) in &7/ <7 (it is here ‘that we use a8 = diag, to
obtain an unambiguous interpretation of @ in .97 ,/<7). b is inter-
preted as +(b) in .77/% and is not assigned an interpretation in .o

Assume <&  satisfies a  universal-existential formula,
B —~YwIvM(w, v, a). We show that .o~ satisfies same formula. It
suffices to show that, for each n-tuple @’ of elements of .o

&+ 3 M(a’, ¥, d) .

Clearly, &% ~ 3vM(a/, ¥, @). Thus, for some b, F - M@, b, @).

Sinee <Z. -is a substructure of ¥/, ¥,/ +— M(@,b,a).
Thus &'/ < + IWM(a@/, ¥, a). Hence, &7 + 35M(d’, v, a).

(ii) Let

be a retraction.
a is interpreted as ®(a) in <Z (note that, since @o+ = identity
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of .97 the interpretation of ¢ in .%” is unambiguous). b is inter-
preted -as (b)) in .7

Consider a V*-generalized positive sentence ¢ (G, b) in which no
constant of b is negative. We show that

(1) Z + o(d, b) implies . + 0(a, b) .

(1) is trivial if o(@, b) has no quantifiers.

Now consider o(a, b, v) where no constant of b is negative.

Assume that vbe &Z, (1) holds for o(a, b, b).

If & +~ vvo(d, b, v), then Yae ., & + 0(d, b, a). By induction
hypothesis, Vae .o; .o + 0(a, b, a). Thus % + Vvo(a, b, v). This
completes the first part of our induction.

Now assume that v is not a negative variable of a(d, b, v) and
assume % +— 3vo(d, b, v). For some be & & - 0(a, b, b). Since v
was not a negative variable, b does not appear negatively in o(a, b, b)
and hence (G, b, b) falls under the induction hypothesis. Thus
57 + 0(G, b, b) which implies .o — 3v0(G, b, v). This completes the
induction.

We shall prove (iv) and then prove the difficult (iii).

We assume a language with special symbols for true and false,
t and f; we will also assume these symbols may be subscripted by
a formula o, ¢, and f,. p, shall vary over {t, f,}. o[®/+] denotes
the formula resulting from replacing each occurrence of the formula
@ in ¢ by +; and similarly for finite sets of formulae @, o[®/V]sco.

(iv) Assume the ultrahomomorphism

RNy

N S
dlag\ /\[/
|z

a is interpreted as @(a) = (diago+) (a) in <& b is not inter-
preted.

Let 3%0(a, v) be a '3-generalized sentence, i.e., (@, v) has no
negative constants or variables other than those of @ and v. Note
that o(a, ¥) may contain- other quantified nonnegative variables.
Assume . + 3vo(a, v). We show Z + Ivo(a, v). & + Jvo(a, v)
implies %7 + o(a, @') for some d@'. Let N, denote the set of negative
atomic formulae appearing in g(a, a’). By the form of o(a, v), each
formula « of N, has no variables and contains only the constants
of @ and a'.

(2) Vae N, ¥ +aiff Z+ «a.
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Write p,=t, if &%+ a; p, = f. otherwise (aeN,), and define
o*(a, @) = 0(a, @) @/Pulacy, Since .97 is a substructure of <& and
&7 = > Py,

(3) B - A— D, .

Now, .&  0*(a, &') whence .7/ — o*(a, p'). Also o*(a@, a') is a
positive sentence. <# + 0*(d, ¢') by Lemma 1 (iii) since <& is a
homomorphic image of &7/ .

F +0*@,d) [pAlecy, by (3). Thus, Z + o(a, a’) and
Z + Fvo(a, V).

(iii) Let M—ﬁ%’i{&/’/,@, Z L o bea strong retract.

a is interpreted as ®(a) in Z and as Qo+ = diag (a) in /2.

b is interpreted as (b) in .o’/<r and as () in . To
emphasize interpretation in .& (and to avoid confusion), x(b) is
written b.

Let 0(@, b) = Qv,, -+ -, Q0,30 M(G, b, 3) be such that
(4) No existentially quantified variable of

{v, +++, v,y and no constant of b is negative or appears in any
atomic formula with a variable of .

(5) # - 0(a, b) implies .57 - 0(d, b), notice b ,

is shown by induction on the length of Q,v,, ---, Q...

If n=0, o(@b) is of the form 3IvM(@, b, 7). Assume
B +— WM, b, 7). Set A, = the set of positive atomic formulae of
35M(a, b, v) in which variables % do not appear. VYae A, write
Po = t, if Z + a(a, b); p. = f. otherwise, and define

I M*(d, ¥) = I9M(G, b, D)/ Pelae sy, -

Now, & + 35M*(a, v) and no constant of b occurs in 35M*(a, v) by
4). '+ IWM*(a, v) since 7/ <7 is an extension of <& Thus,
&7 + 39 M*(a@, ¥) as no variable of b occurs in M*(@, v). Consider
IM* @, V)[Pu/@ues,- If F + a(@, b), then o7 (@, b) since a(d, b)
is positive and & is a homomorphic image of Z(a(a, Z)GA:{,).
Thus, if < ~ a@, b) (i.e., p, = t.), then .& + IWM*(@, v)[p./a(@, b)].
Now, if not <#  a(a, b), then P. = fo and it does no harm (by the
form of M*) to replace f, by a(a, b). Thus . + IwM*(a, V)[Do/A e 4y
Thus, . — 3w M@, b, v).

We complete the induction.

Let Vvo(a, b, v) obey (4) and let <& + Vvo(a, b, v). Vae
&, # oG, b a) and o(d, b, a) obeys (4). Thus by induction
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hypothesis, Vae .o, & + d(a, b, ). Hence . + Vva(d, b, v).

Let 3vo(d, b, v) obey (4) and let <& +— 3wo(d, b, v). For some
be &, F + o, b, b) where o(a, b, b) obeys (4) since 3vo(, b, v)
obeys (4). By induction hypothesis, . + o(a, b, 5). Thus
&7 + Ivo(a, b, v).

We prove Theorems 1-5 by showing that each situation yields
a diagram to which Theorem 6 applies. Let I be a set. S.(I)
denotes the set of all finite subsets of I. < is a regular ultrafilter
on S,(I) if <7 is an ultrafilter on S,(I) such that

Viee I, {Se S.,(I)|1,e S}e & .

It follows that {Se S,(I)| Tc S}e & for each finite T C L

Assume a topological space X and ultrafilter <7 on I. For each
ze X and fe X', z = o-limit f if {i|f(d)e V,}e &r for each open
set V, containing x. .

Essentially the &r-lim operator on sequences fe X’ acts like the
limit operation on countable sequences, with the added property that,
if X is a compact space, <=-lim f always exists. The properties of
the <-limit operator are listed below. A more complete teatment
is provided in Chang and Keisler [3], pgs. 6-15.

Let X be a topological space with basis 6 (i.e., for each open
set V, V= U(‘}é;’, 0) and let & be an ultrafilter on I. f will vary

over elements of X7.

-L0 <-limf is unique.

-L1 If {i|f(t) =f'(i)le =z, then Z-limf= o-limf (or both
don’t exist).

-L2 -lim{f, -, for ={F-limf, ---, &-lim f,>.

2-L3 <=-limf belongs to the closure (in X) of the range of f,
(range f={xe X|3iecl, (1) = z}).

-L3 The <-limit of a constant sequence equals that constant
value.

9-L4 If F is a continuous function from X to Y, then <o-
lim F(f) = F(=-lim f).

2-L4 If R is a closed m-ary relation and Vie I, R(f.(?), ++-, fu(2)),
then R(=z-lim f,, --., &2-lim f,).

2-L5 If X is a compact space, then Vfe X! <r-lim f exists.

-L6 If =7 is a regular ultrafilter on I = S,(6), § a basis for X,
then, for each set S< X and limit point x, of S, there
exists a sequence fe S’ such that &-limf = x,.

2-L6 If X is dense in X, for each x,¢ X, there exists an X-
sequence fe€ X’ such that <-limf=12x, (i.e., the map

Zdim o,
X=X is onto).
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THEOREM 7. Let &7 be a demse substructure.of the compact

structure 7, o7 -» .7, For some set I and ultrafilter & on I, 7
is @ homomorphic image of 7'/ <= (via the map %) such that

diag/' Nz

Jé/< lv
O\ o

commutes.

Proof. Let .o have basis 6. Let <7 be any regular ultrafilter
on I = S,0).

Define the function 7: ¥/ — .o by 9(f/2)= 2-linmf.
Since .%7 is compact, by <&-L5, 7 is defined Vf/oe /2. 7 is
well defined by =-L1, 7 is a homomorphism of structures by < -L4
and —-L4', and 7 is onto by <-L6'. Finally, by =2-L3, the
diagram of Theorem 7 commutes.

THEOREM 8.

(1) If &7 is a dense substructure of the compact topological
structure .57, then .7 is an ultrahomomorphism of

(ii) If {54} generate &4 them 7 1is the outside of a
ic: 7/ 2-sandwich for some ultraproduct I[,.; /2.

If, wn addition, &7 is a compact structure, then 7 is a strong
retract of Il:c; S/ 2.

(iii) If F< 7' is a functional structure of range .7, then
7 1s a retract of F.

If, in addition, F' has the finite solution property, then &7 is
a strong retract of F.

Proof. (i) follows from Theorem 7.

(ii) Let {.%4};.; generate &% Let I = S,(%) and & be a
regular ultrafilter on I. Assign to each i€ S,(.%) some structure
& from {.%%};., such that ¢ < .%7. Consider [];.; ./ =2.

. is a substructure of [],.; /<> by the map @, where
®(a) = f/l<r such that f(i) = a if ac ¢ and f(¢) is arbitrary otherwise.
Also, since % . [l,e; /2 C XD,

Finally, if .97 is a compact structure, then <-lim is a map
from .77/ to &% Since [[,.:.-%/< contains all constant func-
tions, the restriction of <r-lim to [1;.; %/ < is onto.

(iii) Since F' contains all constant functions the map .&7 4LF
is obvious. Choose any ac€ .%; the projection map Fit% defined
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by ¥(f) = f(a), is onto since F' contains all constant functions.

If, in addition, F'c .®7 has the finite solution property, then
{e1f@) = f'G)} | f # f'e€ F} has the finite intersection property and
can be expanded to an ultrafilter & on I. Clearly, the canonical
map F— ¥/ is 1-1 (Fc.&79).

Theorems 1-5 readily follow from Theorems 6 and 8.

FINAL REMARKS. Theorems 1 and 2 apply to dense substruc-
tures of compact topological structures. We consider the non-
compact case. A sentence ¢ is (3-generalized V)-positive if ¢ =
IvvwM(v, w) where M is quantifier-free and every negative variable
of M is existentially quantified in 3%.

THEOREM 3. Let &7 be o dense substructure of the (Hausdorff)
topological structure . FEvery (3-generalized V)-positive sentence
satisfied by &7 is satisfied by ¥

The proof of Theorem 3 is similar to the proof of Theorem 1.
Instead of a homomorphism from an ultrapower of .9 onto .% one
obtains a homomorphism from a subset of an ultrapower of . onto
&7 (the domain of the homomorphism is the set of all sequences
whose =-limits do exist). Theorem 3 then follows from a result of
Keisler [5].

LEMMA 3 (Keisler). If & s a substructure of <& such that
B is & homomorphic tmage of a substructure of an wultrapower
of & such that Yo € . the image of a under the homomorphism
18 a € 7, then every (3-generalized V)-positive sentence satisfied by
&7 s satisfied by 7.

It is also shown in Keisler [5] that the sentences preserved
under inverse limits are precisely the negations of (3-generalized V)-
positive sentences.

Theorem 6 (iii) and (iv), as well as (i) and (ii), are characteriza-
tions, i.e., the classes of sentences described are the set of all
sentences preserved under the indicated algebraic operation. Other
preservation theorems and concepts may be found in Bell and
Slomson [1] and Chang and Keisler [4].

We have just recently been able to extend Theorems 1-4 applied
to groups to a weak second-order language where quantification
over subgroups and normal subgroups are permitted. One must
restrict the notion of subgroups to topologically closed subgroups.
These results will appear elsewhere.
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