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A commutative cancellative idempotent-free semigroup
(CCIF-) S can be described in terms of a commutative cancel-
lative semigroup C with identity, an ideal of C, and a function
of C X C into integers. If C is an abelian group, S has an
archimedean component as an ideal; S is called an %-semi-
group. A CCIF-semigroup of finite rank has nontrivial
homomorphism into nonnegative real numbers.

1. Introduction. In this paper, a commutative cancellative
semigroup without idempotent is called a CCIF-semigroup (in which,
by “IF” we mean “idempotent-free”) and a commutative cancellative
semigroup with identity is called a CCI-semigroup. In particular,
an N-semigroup is an archimedean CCIF-semigroup. The structure
of N-semigroups has been much studied [1, 2, 3, 6, 7, 8] and also it
is well known that every CCIF-semigroup is a semilattic of -semi-
groups. In this paper CCIF-semigroups will be studied by means of
the representation by the generalized .- and @-functions and also
through homomorphisms into the nonnegative real numbers.

Throughout this paper, R denotes the set of real numbers; R
the set of rational numbers; R, the set of positive real numbers; R%
the set of nonnegative real numbers; Z, the set of positive integers
and Z9 the set of nonnegative integers. Each of these is a semigroup
under the usual addition. If S is a semigroup and if X is a sub-
semigroup of the group R, then the notation Hom (S, X) denotes the
semigroup of homomorphisms of S into X under the usual operation.

At the end of §1 we show that if S is a CCIF-semigroup,
Hom (S, R) = {0}, and the homomorphism group is transitive in some
sense. In Section 2 we shall try to generalize the representation of
RN-semigroups to CCIF-semigroups. It will be understood as the so-
called Schreier’s extension to build up complicated CCIF-semigroups
from simpler CCIF-semigroups. Most of the results in [7] will be
extended to CCIF-semigroups. In §3 we shall treat the important
case, i.e., the case where the structure semigroup is a group. Such
a CCIF-semigroup will be called an N-semigroup. In §4 we shall
show that every CCIF-semigroup of finite rank has a nontrivial
homomorphism into R%. In particular we will characterize CCIF-
semigroups S having the property Hom (S, R.,) = O&.

(1.1) Let S be a CCIF-semigroup. Then x + xy for all x, y € S.
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Proof. Suppose, for some x, y €S, we have x=2y. Then zy =
2y® which implies ¥ = y* by cancellation. This is a contradiction.

ProposITION 1.2. Let S be a CCIF-semigroup.

(1.2.1) Hom (S, R) is a nontrivial vector space over the field R.

(1.2.2) For each acS and each recR,r =0, there is an
heHom (S, R) such that h(a) = 7.

Proof of (1.2.1). Let S be a CCIF-semigroup. Let Q(S) be the
quotient group of S (i.e., the group of quotients of S), and D(S) be
the divisible hull of Q(S)

(1.2.3) D(S) = @ R © @ C(v") -

D(S) is a direct sum of copies R, of the group of rational numbers
under addition and quasi-cyclic groups C(p=) with respect to prime
number p. We view S as a subsemigroup of D(S). Let w, be the
projection of D(S) upon R, for each @el’. Let x be an element of
S. Suppose . (x) = 0 for each awe'. It follows that = € @,.,C(p>),
a torsion group. This is a contradiction as x has infinite order.
Thus, for some a,€ I', m,(x) # 0. Note that z, ¢ Hom (S, R) and is
not the trivial homomorphism. It is obvious that Hom(S, R) is a
vector space over R in the usual way.

Proof of (1.2.2). Let ac S and r<€ R be given. In establishing
(1.2.1), we have shown that there exists h, € Hom (S, R) with k,(a) = 0.
Let s = h(a). Now define & by h = (r/s)h,, Then h(a) =r, and
h € Hom (S, R).

2. Schreier Extension. We consider the following problem.
Let C be a CCI-semigroup and ¢ be its identity. Given C, find all
CCIF-semigroups S such that there is a homomorphism &7 of S onto
C satisfying the condition.

eS| F@)=¢}= Z, .

In this section we shall show that S always exists for every C and
shall describe S in terms of elements of C, integers and a certain
function of C x C into the integers. The extension S is called a
Schreier extension (of Z,) by C. (The terminology is due to [5].)
Schreier extension by C is significant because we shall see that every
CCIF-semigroup is isomorphic to a Schreier extension by some CCI-
semigroup C.

THEOREM 2.1. Let C be a CCl-semigroup and C, a proper ideal



COMMUTATIVE CANCELLATIVE SEMIGROUP 443

of C. (C, can be empty.) Let I: C X C— Z be a function which
satisfies
2.1.1) IKa, B)e Z! if aB¢C,
2.1.2) Ka, B) = I(B, o) for all a, BeC
(2.1.3) Ka, B) + IaB,7) = Ka, BY) + I(B,7) for all &, B,7€C
(2.1.4) I(s, @) = 1 (¢ the identity element of C) for all aeC.
Given C, C,, I, the set (C, C;; I) with its operation is defined by

(C,CsI)={(x,)eZ X CxeZ) if a¢C}

(2.1.5) (x, o)y, B) = (x + ¥ + Ia, B), ap).
Then (C, C; I) is a CCIF-semigroup.

Conversely if S is a CCIF-semigroup, then (S = C, C;I) for
some C, C, I.

Proof. It is routine to prove that (C, C; I) is a commutative
cancellative simigroup. To show idempotent-freeness, assume (z, )=
(x, @), that is, @* = a« and 2z + I(®, @) = . It follows that @« = ¢
and v +1 = 0. Since C, is a proper ideal of C, ¢¢ C,, hence x =0
and we arrive at a contradiction.

Conversely assume that S is a CCIF-semigroup. Let a€S, and
define a relation p, on S by

(2.1.6) zp,y iff a™x = a"y for some m, n € Z,.

It is easy to see that o, is a congruence relation. To show that
S/p, is cancellative, assume xz0,y2. Then a™xz = a"yz for some
m, n€Z,.. Since S is cancellative, we get a™r = a"y, i.e., x0.Y.
Obviously axp,x for all xe S, that is, the p,-class containing a is
the identity of S/p,. Let C = S/p,. C is a CCI-semigroup. In each
o.~class define x <,y by x = a™y for some m e Z? where a’y = ¥.
Because of cancellation, each p,-class forms a chain with respect to
<. Let T=N7-,a"S and let C, be the image of T under the natural
homomorphism S— C. If T+ @, it is a proper ideal of S (since
a¢ T) and thus C, is a proper ideal of C. Under the homomorphism
S — C we have a partition of S: S = Ui S:. If £e€C\C, S; contains
a maximal element with respect to <,; but if £¢eC, S, contains no
maximal element. For each £eC, define p, to be a <,-maximal
element in S, if £€ C\C,, and p, to be arbitrarily chosen from S, if
e (C,. Since C, is a proper ideal, ¢ ¢ C,, hence p, = a because of (1.1).
Then every element of S has a unique expression

x = a"p, where me Z if ¢eC;meZ! if £eC\C,.
Define I: C x C— Z as follows:

—_ I(a,
Dals = &' PPy .
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It is easy to see that I satisfies (2.1.1), (2.1.2), (2.1.3) and (2.1.4). S
is isomorphic to (C, C,;; I) under the map a™p, — (m, &).

The representation (C, C,; I) of S depends on the choice of a.
The element @ is called the standard element of the representation
(C,CsI) of S. S/p, is called the structure CCI-semigroup of S with
respect to a; C is the structure CCI-semigroup of (C, C;; I), and (0, ¢)
is the standard element. A function I: C x C— Z satisfying (2.1.1),
(2.1.2), (2.1.3), (2.1.4) is called an _“-function on (C, C).

THEOREM 2.2. Let C be a CCl-semigroup, and C, be a proper
ideal of C. (C, can be empty.) Assume that @: C— R satisfies

(2.2.1) P(a) + P(B) — P(ap) e {gg 7{; 32 ; gﬁ.

(2.2.2) @(e) = 1.
Given C, @, and C,, define ((C, C,; ®)) by

(2.2.3) (G, Cs9) = {((x + Pla), @):aeC,xeZ aecZ, if a¢C}
and

(2.2.4) ((x + 2(a), (¥ + P(B), B)) = ((x + y + P(a) + P(B), aB)).

Then ((C, C;; ) is a CCIF-semigroup.

Conwversely every CCIF-semigroup s isomorphic to ((C, Cy; ®)) for
some C, @ and C,, that is, (C, C;I)= ((C, C; ®)) under (x, a)—
(@ + (), @), La, B) = P(a) + P(B) — P(ap).

Proof. Assume S is a CCIF-semigroup. By Theorem 2.1, we let
S = (C, C; I) for some C, I, C,. By (1.2.2), thereis an »€Hom (S, R)
such n(0, €) = 0. Define »: C— R by
_ k0, @)
2.2.5 =1 7
( ) P(@) 70, 2)
If (e, B) = 0, then (0, @)(0, B) = (0, &)*“#(0, «B) implies

10, @) + h(0, B) = I(a, B) - h(0, &) + h(0, aB) .
If (e, B) <0, then (0, a)(0, B)(0, ) *=# = (0, @B) implies
M0, &) + h(0, B) — I(a, B) - h(0, €) = h(0, ap) .

In both cases, using (2.2.5), we have

2.2.6) I(a, B) = p(a) + #(B) — ¢(aB) for all a, e C. It is easy
to see that ¢ satisfies (2.2.1) and (2.2.2); and S=(C, C; I)= ((C, C;; ®))
under (x, @) — ((z + P(@), @)).

Conversely assume @ satisfies (2.2.1) and (2.2.2), define ((C, C,; ®))
by (2.2.3) and (2.2.4), and define I by (2.2.6). Then we can see that
I satisfies (2.1.1), (2.1.2), (2.1.8) and (2.1.4), and ((z, a))— (z — P(a), )
gives an isomorphism of ((C, C;; ®)) to (C, C; I).
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A function @: C— R is called a defining funection on (C, C)) if it
satisfies (2.2.1) and (2.2.2); let Dfn(C, C,, R) denote the set of all
defining functions on (C, C,). If @ satisfies (2.2.6) for a fixed I, @ is
called a defining function belonging to I, and the set of all ® belonging
to I is denoted by Dfn, (C, C, R).

COROLLARY 2.3. S is a CCIF-semigroup if and only if S is
isomorphic to the subdirect product of a CCl-semigroup C and «
subsemigroup of R by means of @ on C (i.e., by means of ¢ with
(2.2.1) and (2.2.2) in the sense of (2.2.4)).

COROLLARY 2.4. Let S be a CCIF-semigroup. S is a subdirect
product of a subsemigroup P of R’ and a CCl-semigroup C if and
only if there exists h € Hom ((S, R)) with h + 0.

The problem posed at the beginning of the section is solved, that
is,

Z: (& + pla), @) — «a

has kernel K = {((x + 1,¢)):2€ Z?} and K= Z, under ((x + 1, ¢))—
x + 1.
Let S = (C, C; I).

PROPOSITION 2.5. Let @,€ Dfn,;(C, C,, R) be fixed. IffeHom(C, R)
then @ = @, + f€Din,(C, C,, R). Ewvery element @ of Dfn,(C, C, R)
can be obtained im this manner.

PROPOSITION 2.6 (2.6.1). Let ®,€Dfn,(C, C, R) be fixed and
feHom (C, R). Define h: S— R by

Mz, @) = sz + pfa) + f(@)), seR.

Then heHom (S, R) Ewvery element h of Hom (S, R) satisfying
h(0, €) == 0 can be obtained in this manner.

(2.6.2) Let p: S— C be the natural homomorphism. Then every
h of Hom (S, R) satisfying h(0,€) =0 s obtained by h = fp where
fe€Hom (C, R).

Proof (2.6.1). As the former half is easily proved, we prove
the latter half. By (1.2.1) Hom (S, R) # {0}, so there is i such that
hO0,¢e)= 0. If x=0,

h(xr C() = h’((O’ 6)2(0’ C()) =& h(oy 6) + h(O! (X)
= M0, &)z + P(a)) = s(x + P(a))
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where s = (0, €); P(a) = M0, a)/h(0, €), » € Dfn, (C, C,, R). If z =0,
(0, &) is regarded as void. If x <0, —x —1 =0, then

Mo, @) = M(—x — 1, &)=, a)) = (0, &)*(z, @))
= (—x) - 10, ¢) + h(x, )

hence h(z, @) = h(0, &)(x + #(a)). By Proposition 2.5, @ is expressed as
@, + f. Thus we have the conclusion.

Proof. (2.6.2) Let heHom(S, R) with h(0,¢)=0. If =0,
h(z, a) = z-h(0, &) + h(0, &) = k(0, &). If z <0, k0, @) = (—x)-k(0, &) +
Mz, ) = h(z, ). Hence h(x, @) = h(0, ) for all (x,a)eS. Define
f:C— R by f(a) = h(x, @) where (z, )€ S. By the above result, f is
well defined. Now

fo(x, @) = f(a) = h(x, @) , hence h = fp.

It is easy to see that fp € Hom (S, R) with f»(0, ¢) = 0.

By the notation S = (C, C;; I) = ((C, C;; #)) we mean that S has
representation (C, C;; I) and ((C, C;; ®)) identifying (z, @) of (C, C,; I)
with ((z + 2(a), @) of ((C, C; ®)).

PROPOSITION 2.7. Let S be a CCIF-semigroup. If a€S and if
there is am h € Hom (S, R’) such that h(a) # 0, then C, = @ using o
as the standard element.

Proof. Let S = (C, C;1I)=((C, C; ®)) and let a denote (0, ¢) in
(C, C;; I) and at the same time ((1, ¢)) in ((C, C;; #)). Let « € C,. Then
(x, ®)e(C, C; I) for all xe€Z. By Proposition 2.6

hx, ) = (0, )z + P(@)) .

Since 1(0,¢) >0 and 2z is arbitrary, A(x, a) <0 if, z < —@(a); a
contradiction to the assumption. Hence C, = O&.

A subsemigroup 7T of a commutative semigroup S is called confinal
if, for every x €S, thereis a ¥ € S such that xy e T. Let S=(C, C; I).
The following are easily obtained.

LEMMA 2.8.

(2.8.1) If C\C, contains a cofinal subsemigroup of C, then
C, = .

(2.8.2) If C is an abelian group, then C, = Q.

We will now make a further investigation into defining functions

and C,.
Let U denote the group of units of C. Let @ be a function
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C— R. Define a set D) by

De(p) = {ae C: 9(§) + #(7) — p(a) <0
for some & neC with a = &9} .

We define defining functions from the point of C.

DEFINITION 2.9.
(2.9.1) A function @: C— R is called a defining function on C
if it satisfies

Pe)=1.
P(a) + P(B) — p(aB)e Z for all a, BeC.
Dy(p)= C\U.

The set of defining functions on C is denoted by Dfn (C, R).

(2.9.2) A defining function on C is called a normal defining
function on C if D/®) = @, and a nonnormal defining function on
C if Dy(®) + @. Dy®) is called the nonnormal domain of ®. The
set of normal defining functions on C is denoted by NDfn (C, R).

ProposITION 2.10. Let @: C— R be a defining function on C.
Let C, be a proper ideal of C such that Di®) < C,. Then @e
Dfn (C, C, R). Conversely every defining function on (C, C,) s @
defining function on C.

The following three cases are possible:
(i) @ is normal and C, = ¢

(ii) @ is normal and C, # @

(iii) @ is not normal and C, # Q.

DEFINITION. In each case we consider the CCIF-semigroup
((C, C;; ®)). ((C, Cy; @)) is called a normal representation in case (i);
seminormal representation in case (ii); nonnormal representation in
case (iii). In case (i), ((C, C; ®)) is denoted by ((C; #)). When @ is
normal (nonnormal), the .“-function I defined by I(a, B) = ®(a) +
?(B) — (ap) is called normal (nonnormal); the corresponding semi-
group is denoted by (C, C; I), in particular (C; I) in case (i).

ProprosiTION 2.11. Let S = ((C, C;; ®)) with standard element a.
Then ((C, Cy; ®)) is a normal representation if and only if ez a*S= .

PROPOSITION 2.12. For every CCl-semigroun C there exist normal
defining functions on C. If C is a CCl-semigroup and C, is a non-
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empty proper ideal of C, there exist monnormal defining functions
@ such that the monnormal domain of @ is contained in C..

ExampLESs 2.13. Let C be a CCl-semigroup.
(2.13.1) Define @ by

P(a) =1 for all ¢eC.
Then @ € NDfn (C, R), and ((C; ¢)) = Z, x C.

(2.18.2) Let U be the group of units of C. Let ®, be a non-
negative integer valued normal defining function on U. Define
. C— 7} by

o) if xeU

Pla) = {c if aeU

where ¢ is a constant nonnegative integer. Then @ is a normal
defining function on C.
(2.18.3) Let C, be a nonempty proper ideal of C. Define @ by

1 a¢C,

g)(a):{—l aeC,.

The @ is a nonnormal defining function on C such that Dy () € C,.
(2.18.4) Assume that ¢ is the only unit of C. Suppose @,: C\{¢}—R
satisfies, for all a, B e C\{e}.

QDO(C() + @0(6) - ¢o(a6) eZ.

Define @: C— R by
a=c¢

Pla) = @) a+¢€.

Then @ is a defining function on C.

As another example, consider the case C = Z!.

(2.14) Let C= Z°. Let 0:Z,— Z be a function with (1) =0
and let » be a real number. Define #: Z° — R by

(m) 1 m =20
m) =
7 mr — do(m) m>0.

If Dyo(®)+# @, take a proper ideal C, with C, 2 Dp, (). Then @e
Dfn (C, C;; R). Every defining function on C is obtained in this
manner. In particular if 6 satisfies

o(m) + o(n) < d(m + n) for all m,neZ,,
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then @ is a normal defining function on C.

We are interested in the important case, i.e., case where C is a
group. In the next section we discuss the structure of ((C, ®)) where
Cis a group. Then we will see that Example (2.14) is isomorphic to
a Schreier extension by a group.

3. 9-Semigro ups.

DEFINITION 3.1. If Sis a commutative semigroup and v €S such
that for all x €S there exist me Z, and ye S with v™ = zy, then S
is called a subarchimedean semigroup and the element v is called a
pivot element of S.

DEFINITION 3.2. An 9t-semigroup is a subarchimedean CCIF-
semigroup.

LEMMA 3.3. The pivot elements of a subarchimedean semigroup
form an archimedean component and ideal of the semigroup.

Proof. Let A be the set of pivot elements of a subarchimedean
semigroup S. Let ve A and x€S. There exist me Z, and y €S such
that »™ = xy. Then (v2)" = x(yz™) for every z¢€S; hence vze A.
Thus A is anideal of S. To see that A is archimedean, let u, v € A.
Then there exist meZ, and yeS such that v™ = uy, therefore
™ = yu(yv) and yve A. Therefore A is archimedean. Let A, be
the archimedean component containing v € A. Obviously 4 £ 4,. Let
wed, so u*=vy for some neZ, some yeS. Let ze€S. As
vE A, v* =zt for some ke Z,, some t€S. Then u™ = v*¥y* = 2(ty"),
hence ue A, A, = A. Thus we have proved A4 = A4,.

LEMMA 3.4. A homomorphic image of a subarchimedean semi-
group is a subarchimedean semigroup.

Proof. Let S be a subarchimedean semigroup, and f a surjective
homomorphism of S onto a semigroup 7. Let v be a privot element
of S. Then for all x€S there exist meZ, and yeS such that
v™ = xy. Hence (f(v))™ = f(x)f(y), and we see that f(v) is a pivot
element of T.

LEMMA 8.5. Let S be a CCIF-semigroup. S is subarchimedean
if and only if S/p. is subarchimedean for (some) all a€S.

Proof. If S is subarchimedean then S/o, being a homomorphic
image of S is subarchimedean for all a € S by Lemma 3.4. Conversely,
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if aeS and S/p, is subarchimedean let Z denote the p,-class of x € S.
Let ¥ be a pivot element of S/0,. Then for all e S/p, there exists
meZ, and yeS/p, such that v™ = Zy. Hence, by the definition of
0., we have v™a* = xya' for some k,leZ,. Therefore, (va)"** =
2(ya*™v*) and we see that va is a pivot element of S.

LEMMA 3.6. If S is an N-semigroup then Hom (S, R%) = {0}.

Proof. By Lemma 3.3, S contains an N-semigroup A which is
an ideal of S. By [2, 7, 8] Hom (4, R,) = {©®}. Let hcHom (A4, R.).
Then h # 0. Define h: S— R by h(x) = h(ax) — h(a) for ac€ A and
rxeS. Leta,be A, and x€S. Then h(ax)+h(b) = h((ax)b) = h((bx)a) =
h(bx) + h(a), so h(ax) — h(a) = h(bx) — h(b). Thus k is well defined.
Also, R(xy) = Mawy) — h(a?) = h(azx) — k() + hay) — (@) = h(x) +
h(y), hence h is a homomorphism. If h(x) < 0 for some x €S, choose
neZ, such that A(a) + nh(z) <0. Since ax"c A, h(ax”) >0, but
Waz™) = h(a) + nh(z) < 0, a contradiction. Hence k< Hom (S, R>).
As h|A = h = 0, Hom (S, R) = {0}.

LEMMA 3.7. Let S be an N-semigroup. Then acS is a pivot
element if and only if S/p, ts an abelian group.

Proof. Let A be the archimedian ideal of pivot elements of S,
and let a€ A. Then A/(0,| A) is an abelian group, and for all xe€S
we have (z, za) € 0, where za€ A. Hence S/p, = A/(0.| A) and S/p,
is an abelian group. Conversely if S/p, is an abelian group then for
all x €S there exists y € S such that @ = Z7 in S/p,. (See the notation
in the proof of Lemma 3.5.) Thus a™=xya' for some m,l € Z,. Hence
acA.

THEOREM 3.8. Let S be a CCIF-semigroup, and for acS let p,
be defind by (2.1.6). The following are equivalent:

(8.8.1) S is an N-semigroup.

(3.8.2) S/p, is subarchimedean for all acS.

(3.8.3) S/p, is subarchimedean for some a€S.

(3.8.4) Some archimedean component of S is an ideal of S.

(3.8.5) S/p. is an abelian group for some acS.

(3.8.6) S=(G;I) where G is an abelian group and I is an
S -function on G.

(8.8.7) S is isomorphic to a subdirect product of an abelian
group G and a subsemigroup of R' by means of a defining function
® on G.

Proof. By Lemma 3.5, the first three conditions are equivalent.
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By Lemma 3.7, (3.8.1) implies (3.8.5); obviously (3.8.5) implies (3.8.3).
By Lemma 3.3 and Lemma 3.7, (3.8.5) implies (3.8.4). Assume (3.8.4).
Let I be the ideal and archimedean component, and let a€l, x €S.
Since ax € I, a™ = axy for some m € Z, and some y € I, hence a™ = z(ay),
that is, a is a pivot element of S. By Lemma 3.7, (3.8.5) holds. By
Theorem 2.1 and Lemma 2.8, (3.8.5) implies (3.8.6). Conversely
if S=(G;I), then G = S/p,.,. Thus the first six conditions are
equivalent. To see that (3.8.1) and (3.8.6) imply (3.8.7), let S be an
N-semigroup. By Lemma 3.6, there exists a nontrivial homomorphism
h of S into RY%, and by (3.8.6), S = (G;I) for some abelian group
G and an “-function I. Let ®(a) = k(0, @)/h(0, ) for all aed.
(Clearly we can assume h(0, €) = 0.) Then by the proof of Theorem
2.2 we have (3.8.7). Finally if we.assume (3.8.7), S = ((G; )) for
some @: G— R’, then when we define I(«, B) = @(a) + o(B) — 2(«, B),
we have S = (G;I) as before. Hence (3.8.7) implies (3.8.6). The
proof has been completed.

COROLLARY 3.9. Let S be a CCIF-semigroup. S s an N-semi-
group if and only if S/p, is an abelian group for all a€S.

Proof. Let A be the set of pivot elements of S. If S is an
N-semigroup then S = A and so S/p, is an abelian group for all e € S.
Conversely if S/o, is an abelian group for all ¢ €S then S = A by
Lemma 3.7. Hence S is archimedian, hence an t-semigroup.

4. Homomorphisms into R’. As seen in §3 every -
semigroup has a nontrivial homomorphism into R’. The following
question is raised.

Is a CCIF-semigroup nontrivially homomorphic into R°? We
cannot answer this question in general, but in some special case it
is affirmative.

Let S be a CCIF-semigroup. As defined in §1, Q(S) denotes
the quotient group and D(S) the divisible hull of Q(S).

D(S) = @ Cr") & @ B

where R, is a copy of the additive group of rationals and C(p~) is
a quasicyclic group. The cardinality |I"| of I is called the rank of
S. In the present case the rank of S is not zero since @,., C(p=) is
torsion while S is torsion-free.

In particular, assume that S is of finite rank. Let T be the
torsion subgroup of D(S), then D(S) = THA R, P --- @ R, where n is
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the rank of S. We can assume R, {0} for 4 =1, ---,n. Let P,=
R&O---BR, foreach:=1,2, .--, u. Then P, =P, PR, if n>1,;
and DS)=T&@P, if n=1. Let a,d, o0, , 7, be the respective
projection homomorphisms:

a:DS)— T, G:DS)—>P,, 6=5l|S,
n’n:Pn__—_)Pn-—lr T:P'n'—_——)Rn (ngl)

THEOREM 4.1. If S is a CCIF-semigroup of finite rank, then
Hom (S, R?) == {0}. (R is the additive semigroup of nonnegative
rationals.)

Proof. S is viewed as a subsemigroup of D(S). We will prove
the theorem by induction on n. Let V,=mx,0(S), W,=7,0(S), V=0(S),
T =aS). As D(S)=T& P,, we have

S=T@,V,andif n>1, V=V, @ W.,

where @, denotes a subdirect sum, V< P,, V, < P,.,, W,S R,, and
T'C T, hence T' is a torsion group. First we prove

(4.1.1) V does not contain 0.

Suppose V contains 0. There is ¢ € T" such that (z, 0)€S. Since
T' is a torsion group, mx=0 for some m € Z.. Then (0, 0)=(x, 0)" e S.
This is a contradiction as S has no idempotent.

In case n=1,S =T @, W, where W, = VCR,. By (4.1.1), W,
must be isomorphic to a positive rational semigroup R!, say, under
f, l.e., f(W)) = R}, hence fr,oc € Hom (S, R)\{0}.

Assume n > 1 and that the theorem holds for all semigroups of
rank 7 such that ¢ < n — 1. As denoted above,

S:T'®3Vy V:VnesWn

where V,ZS P,_,, W,Z R,. We can assume V, # {0}, otherwise it is
reduced to the case n = 1.

If V,is a CCIF-semigroup, V, has a nontrivial homomorphism
f from V, into R% by the induction assumption, hence fz,0¢
Hom (S, R%)\{0}.

If V,is a CCl-semigroup which is not a group, then V, =V, UH
where V, = @, H+ @, V) is an ideal of V, and it is a CCIF-semigroup,
and H is a group. Define S’ by S’ = ((z,0) (V.)NS and W, = 7,0(S").
Then S’ is an ideal of S and

S=V. W,.
'By the preceding paragraph, Hom (S’, R’) contains a nontrivial
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element f. However, since S’ is an ideal of S, f can be extended to
FfeHom (S, R%). In fact f is obtained by defining f(x) = f(ax) — f(a)
where z€8S,aeS. It is easy to show that f is well defined and a
homomorphism. Suppose f(x,) <0 for some «,€S. There exists
m e Z, such that mf(x,) + f(a) < 0. However

mf(@,) + fla) = flaxr) =0

since ax e S’. This contradicts the assumption. Therefore f(x) =0
for all x € S. Hence Hom (S, R%) # {0}. Assume V, is a group. Let
W, ={0,z2):2ze W,}n V. It is obvious that W, is a subsemigroup
if W,% @. If xeV,x has the form ¢ = (v, z,)e V, D, W,, 2,€ V,,
2,€ W,. Since V, is a group, there exists y,e W, such that y =
(—x, ¥,)€ V. Then zy = (0, ¢, + y,) € W,. This proves that W, = @
and it is cofinal in V. Suppose z€V and a,zaec W,. We write
z = (x, x,), @« =(0,a,) viewing them as in V,@, W,. Then za =
(,, %, + a,) € W, implies z, = 0, hence xz € W,. Thus W, is unitary
in V. Since W, does not contain (0, 0) by (4.1.1), W, is isomorphic
to a positive rational semigroup R, under f: W,— R.,. By (4.1.2)
below, f extends to feHom (V, R%). Therefore fo e Hom (S, R%)\{0}.

(4.1.2) Let S be a CCIF-semigroup and let U be a unitary cofinal
subsemigroup of S. Then every homomorphism of U into R’ extends
to a homomorphism of S into RY.

This is immediately obtained from [4].
The proof of Theorem 4.1 has been completed.

REMARK 4.2. Let S = R, B (Buer B.) Where |I'| = o, R, is the
group of rationals. We note that Hom (S, R%) == {0}, yet S is not of
finite rank. Thus the converse of Theorem 4.1 does not hold.

Next we consider the relation between nontriviality of Hom (S, R%)
and the property

(4.3) roo_] a"S = @ for some aeS.

PrOPOSITION 4.4. If Hom (S, R%) == {0}, then there is an element
ac S satisfying (4.3).

Proof. Let heHom (S, R%), h =+ 0. There is aeS such that
h(a) = 0. Choose a as a standerd element. We have C,= @ by
Proposition 2.7 and then have (4.3) by Proposition 2.11.

The converse of Proposition 4.4 is still open.
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Problem 4.5. Let S be a CCIF-semigroup. If N, a"S = @ for
some a €S, then is the following true

Hom (S, R%) = {0}?

However, we give a few examples with respect to the related
problems.

ExAMPLE 4.6. Let Ny, a"S = @. There does not necessarily
exist h € Hom (S, R%) such that A(a) == 0.
Let S = ((Z!; ®)) where @: Z% — Z is defined by

P(m) =1 —m?.

It can be easily shown that @ is a normal defining function on Z°,
and that if @ = ((1, 0)), Ny-. a"S = @. Every element f, of Hom(Z!, R)
has the form

fm) = tm teR,
but there is no ¢ satisfying
o(m) + f(m) =1 —m* +tm =0 for all meZ; .
By Proposition 2.6, (2.6.1), there is no & € Hom (S, R%) with h(a) = 0.
However the projection k,: S— Z! is a nontrivial element of Hom (S, R’)
such that h(a) = 0. Thus Hom (S, R") = {0} and so Example 4.6 is

not a counterexample to the converse of Proposition 4.4. In fact the
semigroup S is an Y-semigroup.

ExXAMPLE 4.7. We exhibit an example of a CCIF-semigroup S
which satisfies

fi]a,"S;é @ for all ae S,

and hence Hom (S, R%) = {0}.
Let S={(a, -+, an):ma,€Z,a,€Z, 1 <1< m}
and define a binary operation on S as follows: if m < n,

(a'u M am)(bu M) bn) = (bu ] bn)(au MRS a'm)
= (a’l + bu ety Oy + bm’ bm+u ] bn) .

Then, with this produect, S is a CCIF-semigroup. Let S, = Z, and
S, =2Z"'x Z, for 1> 1. Then S is the union of the infinite chain
of S’s, S=U:x. S, and S;S; < S;if 1 < 5. If aeS, then

NaS=US..

i>m
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DEFINITION 4.8. A semigroup S is called an -semigroup if S
is isomorphic to a subsemigroup of an RN-semigroup.

THEOREM 4.9. Let S be a CCIF-semigroup. S is an N-semigroup
if and only if

Hom (S, R,) + @ .

Proof. Assume that S is a subsemigroup of an N-semigroup T.
By [6, 7] there is an he Hom (T, R,). Let h, be the restriction of A
to S. Then h, € Hom (S, R.).

Conversely let Hom (S, R,) # @. By Proposition 2.7, C, = @.
By Theorem 2.2 and its Corollaries, S = (C; ) where C is a CCI-
semigroup and @ € DNfn (C, R); and S is isomorphic to a subdirect
product of a subsemigroup P of R, and C,S= P x,C. Let Q be
the group of quotients of C. Then P X C is a subsemigroup of
the direct product R, x @, but the last direct product is an N-
semigroup. Consequently S is an '-semigroup.

The two concepts, N-semigroup and W-semigroup, are independent
of each other.

EXAMPLE 4.10. Let S=Z,U(Z X Z,). A binary operation is
defined to be the same as Example 4.7, that is, S is a subsemigroup
of the semigroup in Example 4.7. Sis an E)-?-semigroup, but we prove
Hom (S, R,) = @ as follows:

Letxe Z, and (a, a;) € Z X Z,. There exists (b, b,) € Z X Z, such
that
x - (b, b,) = (a, a,) .
Suppose heHom (S, R,) + @. Then
hx) < h(a,, a,) for all xeZ, and all (a, a,)eZ X Z, .

In particular a(1) < h(a, a,), but there is x € Z, such that z-h(1) >
h(a,, a,). Accordingly h(x) = x-h(l) > h(a, a,). This contradiction
proves Hom (S, R,) = @, hence S is not an N'-semigroup.

ExAMPLE 4.11. Let S be the free commutative semigroup generated
by infinitely countable letters a, a,, ---, @,, ---. (The empty word is
not considered.) S isobviously a CCIF-semigroup and Hom(S, R,) # @
since

azl...a;';ck|_>ml+ cee 4+ my

gives a homomorphism of S into Z,. However S is not an f-semi-
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group, as the greatest semilattice homomorphic image of S does not
have a zero.

REMARK. According to his recent personal letter to one of the
authors, Professor Yuji Kobayashi, Tokushima University, has nega-
tively answered Problem 4.5 by showing a counter example.

ACKNOWLEDGMENT. The authors express their heart felt thanks
to the referee of his kind advice to this paper.

REFERENCES

1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, vol. 1, Amer.
Math. Soc., Providence, Rhode Island, 1961.

2. Y. Kobayashi, Homomorphisms on N-semigroups into R, and the structure of
N-semigroups, J. Math. Tokushima University, 7 (1973), 1-20.

8. M. Petrich, Introduction to Semigroups, C. E. Merril Publ. Co., 1973.

4. M. S. Putcha and T. Tamura, Homomorphisms of commutative cancellative semi-
groups into nonmmegative real numbers, to appear in Trans. Amer. Math. Soc.

5. L. Rédei, Die Verallgemeinerung der Schreierscher Erweiterungstheorie, Acta Sci.
Math., Szeged., 14 (1952), 252-273.

6. T. Tamura, Commutative nonpotent archimedean semigroup with cancellation law.
I., J. Gakugei Tokushima Univ., 8 (1957), 5-11.

7. , Basic study of M-semigroups and their homomorphisms, Semigroup Forum,
8 (1974), 21-50.

8. , Irreducible N semigroups, Math. Nachrt., 63 (1974), 71-88.

Received March 19, 1975.

CALIFORNIA STATE UNIVERSITY, SACRAMENTO
CALIFORNIA STATE COLLEGE, STANISLAUS

AND

UNIVERSITY OF CALIFORNIA, DAVIS, CALIFORNIA



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California
Los Angeles, California 90007
R. A. BEAUMONT D. GILBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305
ASSOCIATE EDITORS
E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YOSHIDA
SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY * * *
UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY

OSAKA UNIVERSITY

The Supporting Institutions l‘isted above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of your manuseript. You may however, use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Items of the bibliography should not be cited there unless absolutely necessary, in which case
they must be identified by author and Journal, rather than by item number. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor,
or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author’s institution to pay page charges,
and reserves the right to delay publication for nonpayment of charges in case of financial
emergency.

100 reprints are provided free for each article, only if page charges have been substantially
paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
seription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual
members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.),
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics

Vol. 61, No. 2 December, 1975

Graham Donald Allen, Francis Joseph Narcowich and James Patrick Williams, An

operator version of a theorem of Kolmogorov ..................c....ccocouinn.. 305
Joel Hilary Anderson and Ciprian Foias, Properties which normal operators share with

normal derivations and related operators .. ...............c.c.ceuiiiiiiiiiieannnn. 313
Constantin Gelu Apostol and Norberto Salinas, Nilpotent approximations and

GUASTNIIPOTENT OPETALOTS . . .ottt e et e et ettt 327
James M. Briggs, Jr., Finitely generated ideals in regular F-algebras ................ 339
Frank Benjamin Cannonito and Ronald Wallace Gatterdam, The word problem and

power problem in 1-relator groups are primitive recursive . ..................... 351
Clifton Earle Corzatt, Permutation polynomials over the rational numbers . ........... 361
L. S. Dube, An inversion of the S transform for generalized functions ............... 383
William Richard Emerson, Averaging strongly subadditive set functions in unimodular

amenable groups. I........ ... e 391
Barry J. Gardner, Semi-simple radical classes of algebras and attainability of

TAENIIIIES « . oo e e e e 401
Irving Leonard Glicksberg, Removable discontinuities of A-holomorphic functions . ... 417
Fred Halpern, Transfer theorems for topological structures.......................... 427
H. B. Hamilton, T. E. Nordahl and Takayuki Tamura, Commutative cancellative

semigroups Without idempotents .. ....... ... .o e 441
Melvin Hochster, An obstruction to lifting cyclicmodules . . ......................... 457
Alistair H. Lachlan, Theories with a finite number of models in an uncountable power

are CategoriCal. . ........o . 465
Kjeld Laursen, Continuity of linear maps from C*-algebras ......................... 483
Tsai Sheng Liu, Oscillation of even order differential equations with ati

AFGUIMERLS . . o oottt et
Jorge Martinez, Doubling chains, singular elements and hyper-Z |
Mehdi Radjabalipour and Heydar Radjavi, On the geometry of nu
Thomas 1. Seidman, The solution of singular equations, I. Linear ¢

SPACE < e vt et e
R. James Tomkins, Properties of martingale-like sequences . . . . ..
Alfons Van Daele, A Radon Nikodym theorem for weights on von |

AlGEDYAS . ...\ o
Kenneth S. Williams, On Euler’s criterion for quintic nonresidues
Manfred Wischnewsky, On linear representations of affine groups,
Scott Andrew Wolpert, Noncompleteness of the Weil-Petersson mé

SPACE « ettt e e
Volker Wrobel, Some generalizations of Schauder’s theorem in lod

SPACES .« o vttt e e
Birge Huisgen-Zimmermann, Endomorphism rings of self-generaf
Kelly Denis McKennon, Corrections to: “Multipliers of type (p,

type (p, p) and multipliers of the group L p-algebras”; “Mu

group Ly-algebras” .................... ... ... .. ...
Andrew M. W. Glass, W. Charles (Wilbur) Holland Jr. and Stephe

Correction to: “a*-closures to completely distributive lattice

GROUPS” © e
Zvi Arad and George Isaac Glauberman, Correction to: “A charad

agroup ofodd order” ........... ... .. . . ...
Roger W. Barnard and John Lawson Lewis, Correction to: “Subo

for some classes of starlike functions” .....................
David Westreich, Corrections to: “Bifurcation of operator equatid
linearized part” . ....... ... oo



	
	
	

