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Let A be a ring (all ring are commutative, with identity),
let tc A be a nonzerodivisor and not a unit, and let B = A/At.
Let M be a B-module of finite type. We call an A-module
E of finite type a lifting of M (or we say that “KE lifts M’
or “M lifts to E”’) if (1) ¢ is not a zerodivisor on £ and (2)
EftE = M. Grothendieck’s lifting problem (GLP) is this:
Suppose that (4, m) is a complete regular local ring and
that tc m — m?, so that B=A/tA is again regular. If M is
a B-module of finite type, does M lift to A? A simple and
completely elementary counterexample is given below for the
case where M is cyclic.

One of the motivations for studying GLP is the possibility of
settling Serre’s conjecture [9] p. V-14 on multiplicities using lifting:
this idea is discussed in [1], [2], and [3], where affirmative answers
to the question are obtained in some cases. The terminology “Grothen-
dieck’s lifting problem” is taken from these papers. The first published
discussion of the relevance of the lifting problem to multiplicities of
which I am aware is in Nastold’s paper [6], which was brought to
my attention by the referee. (Of course, if A is equicharacteristic
complete regular and ¢< m — m? one can always lift, for then A =
BI[¢1].)

In the general case, it seems that one can construct counter-
examples by completing the example [8] of Serre of an unliftable
variety along lines suggested by Laudal and Kleppe, but the ex-
ample in [8] is complicated, hard to write down, and, so far as I
know,; the details of the proof that one can complete have not
appeared.

In this note we give a different counterexample to lifting even
cyclic modules in the context of GLP. (Later, we also propose a
weaker lifting conjecture which would suffice for the multiplicities
problem and to which I know no counterexamples.) The method for
constructing counterexamples is totally elementary, and provides
examples when B is a complete regular local ring of mixed charac-
teristic as well as when B has positive characteristic. The obstruction
to lifting we use is quite coarse: it comes out of the all but trivial
(and, I assume, well known) lemma below. Much of the credit for
focusing attention on this obstruction belongs to D. Ferrand.

Before stating the lemma we make some special conventions for
the cyclic case. Suppose that (A4, m) is a local ring and we wish to
lift M = A/J, where teJ S A, a typical cyclic B-module, to A. By
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Nakayama’s lemma the lifting E must be a cyclic A-module A4/I,
and it is evident that the problem of lifting J is equivalent to the
problem of finding an ideal I < J such that J =TI+ At and ¢ is not
a zerodivisor mod. I. Thus, if A is any ring, ¢ a nonzerodivisor,
teJE A, we call I a t-lifting (or, simply, a lifting) of J, ete. if J=I-+ At
and ¢ is not a zerodivisor mod. I.

Let C = A/J and let # be an indeterminate. We shall denote by
¢ the map of graded C-algebras C[x] — gr;A which maps = to the
class ¢t + J? of ¢t in J/J

LEMMA. Let A be a ring, t a nonzerodivisor, and suppose te
JS A. Let C= AlJ and ¢ be as above. If J has a t-lifting then there
s @ map ¥: gr;A — Clx] of graded C-algebras such that ¢ = idgg,.
In particular:

(1) ¢ is imjective.

(2) For each m the map of C-modules C— J"[J"™ which takes
the class of 1 to the class of t* embeds C in J*[J*™ as a direct
summand.

(3) For every positive integer n, J**: At = J.

COROLLARY. With the hypothesis of the Lemma, if J has a
t-lifting then the map h: C = A/J — J[J* which takes 1 + J to t + J*
embeds AlJ as a direct summand of J/J:. In particular, it is in-
jective, and, hence, J*: At = J.

Proof. To construct v we give explicitly its »™ graded piece
s It — AlJ (we identity A/J with (A4/J)x", by sending 1 z").
We want ,(t" + J*") =1+ J. Now J" = (I + At)*c I+ At*. We
have a composite map: J* =1 + At* - (I + At")/I = (A/I)t* = A/T-»
A/J = (A/J)x" where the maps are the obvious inclusions, quotient
maps, and identifications, except for «: « is the inverse of the map
A/I — (A/I)t" which sends 1 ¢", which is an isomorphism precisely
because ¢t is not a zerodivisor modulo I. This a(t*) =1, and the
composite map J* — A/J sends ¢* to 1 + J. We let 4, be the induced
map J"/J*— AlJ = (A/J)x". It is clear that v, is a C-module retrac-
tion. The +, fit together to give a homomorphism of graded algebras,
for if ueJ™, veJ*, u + J™* maps to a + J in A/J, and v € J** maps
to b+ J in A/J, then uve J"*" represents an element of J™*"/J™*"*;
moreover, if v =1, + (& + )t and v = 1, + (b + 7,)t*, Where 1, 7,€
L j, j.€J then wv = i; + (ab + 7;)t™*", clearly, where ;€ 1, j;€J,
whenece V(w0 + J™T) = Y (w + T )Y (v + I

Now, (1) and (2) are clear, while (3) is readily seen to be a re-
statement of the fact that ¢, is injective. The Corollary is just the
special case n = 1.
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ExaMPLE 1. We now observe that even the condition J* At = J
obstructs lifting in the context of GLP. Let V be a complete discrete
valuation ring with maximal ideal generated by 2, let K =V/2V, let
2, 1=1=<3,1<75=<2 be six analytic indeterminates over V, let
A=V[[X.;ll.; let t=2, let ¢ = >}, x,x;, and let J = (2, q, {22 ,}):,;A.
Then J has no t-lifting I: in fact J%: 24 ¢ J. To see this let D=
X1 s112 (Where the first subscript is taken mod. 8). Then
2D = ¢ — DV (x3)(x%)e J? and De J%:2A, but Deg¢J. To prove that
D¢ J we work mod. H = (2, {x,};,;)A. Let ’ denote residues mod. H.
A/H is a graded finite dimensional K-algebra and any degree four
element of J(A/H) = q'(A/H) is in the K-span of the products
¢ (E'"UF')ywhere B = {5,201 £ 1< 8}and F = {z,;x,: L S 1< ¥ <
3,172,155 <2). (E'UPF gives all square-free terms.) Each
element of ¢'-E’ is the sum of two of the three monomials in D’
while if u = x,;2,.€ F, then, mod. H, = ;;®;;s2; &, Where ¢ is
the unique ‘element of {1, 2, 8} — {¢, +*}, and these twelve distinct
monomials do not oceur in D’ at all. Thus, D’ is not in the K-span
of ¢-«(E' UE') and Dg¢J.

ExavpPLE 2. Let V, K, A, q,J and D be precisely the same as
in Example 1, and let ueJ® Let ¢, =2+ u. Then Dt, = 2D +
uDeJ? and D¢J. Thus, we have J* At, ¢ J again, but now B =
A/At, is a regular local ring of mixed characteristic (rather than
characteristic 2) if we choose u properly, e.g. v = x!, + 2% + x, and
the ramification of 2 cannot be absorbed into the coefficient ring of
B, i.e. B is precisely the kind of regular local ring for which Serre’s
conjecture is not known.

REMARK 1. Similar examples undoubtedly exist for every positive
prime characteristic p.

REMARK 2. One can consider more general lifting problems,
which were open for a while. Let A — B be a homomorphism, and
let M be a B-module of finite type. Call an A-module E of finite
type a lifting of M if (1) Tor{ (B, E)=0if 1 =1 and (2) BQ.E = M.
Suppose that B = A/At, where ¢ is a nonzerodivisor. Then condition
1) is equivalent to the assertion that ¢ is not a zerodivisor on B.
One can ask, if pdzM < -, does M lift to A? The technique of
Peskine-Szpiro [7], Ch. I, §2 gives counterexamples even if (4, m) is
a complete regular local ring of equicharacteristic 0, B = A/A¢, and
pdzM = 2. However, in their examples t€ m* and B is not regular:
in fact, their obstruction is that a certain B-module has infinite
projective dimension when it should have finite projective dimension,
and so cannot provide examples with B regular.
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REMARK 3. The obstruction indicated in the Corollary, i.e. that
the map h: A/J— J/J* which takes 1 + J to ¢+ J* split, is pre-
cisely the obstruction to lifting A/J “as far as” A/t*A. For if
s: J/J* — A/J is a splitting (left inverse for #) then if I, = Ker (J/JZ—‘:
AlJ), A/I, “lifts” A/J “as far as” A/t*A. If one has a good criterion
for lifting from “mod. ¢” to “mod. t*’, then one can iterate it to lift,
successively, mod. ¢!, mod. ¢4 ete., and, utlimately, given t-adic com-
pleteness, back to the original ring. This idea motivated some of
the more general lifting conjectures.

REMARK 4. It is clear that in some sense the problem with
lifting from B to A in the context of GLP is p-torsion: in the examples
here, even when p # 0 in the regular ring B = A/At, there is p-torsion
on A/J. I believe it would be too naive to conjecture that simply
because there is no p-torsion on A/J that one can lift; on the other
hand, I feel there is almost certainly a good result along the following
lines: “If there is no p-torsion on the following modules - - - (canoni-
cally associated with J, t), then J lifts”.

For example, we have the following:

PROPOSITION. Let (A, m) be a regular local ring of mixed charac-
teristic, let te m — m?, suppose teJ = A, and let C= AlJ. Let p=
char (4/m). If p is not a zerodivisor on C and also not @ zerodivisor
on Exty (J/(At + J?), C) = E, then the map h: C— J|J* which takes
1+ J tot+ J* splits.

Proof. If h does not split them either (i) % is not injective or
(ii) & is injective and the exact sequence

0 — C—s JJT* —— J/(AL + J?) — 0

is not split, i.e. represents a nonzero element of F=Ext;(J/(At+J?), C).
Since p is not a zerodivisor on C, E, both situations (i) and (ii) are
preserved upon localizing at p: hence there is a prime @ DJ such
that p¢ @ and the splitting fails after localizing at @ (or, equi-
valently, at @Q/J). But then if we localize at Q and complete, the
splitting will still fail. This is impossible: A, is complete and
equicharacteristic 0, so that JA, does have a t-lifting.

For the rest of this note we restrict our attention to the following
situation:

(*) Let V be a complete discrete valuation ring with residue
class field K of characteristic » > 0, and suppose 0 = p in V generates
the maximal ideal. Let A be V[[x,, ---, 2,]] and let ¢ be a regular
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parameter in A4 such that » = 0 in the regular local ring B = A/At.
Let teJ &< A4; and suppose that J is prime.
We want to make some observations about this situation.

Observation 1. In order to prove Serre’s conjecture on multi-
plicities it would suffice to prove that J has a ¢-lifting in this situation.
To emphasize that J is prime, we write “P” instead of “J” i.e. P = J.

Observation 2. Under the hypothesis (*) h: 4/J — J/J* (or A/P—
P/P?% is automatically injective, i.e. p*: At = P. For ¢ is a regular
parameter — A/tA is regular = (A/tA)p,,s = Ap/tA, is regular = ¢ is
a regular parameter in the regular local ring A, = P?A,:tA, = PA,
and P At C (P*Ap:tA) N A= PA, N A= P. However it is completely
unclear why there should be any reason for % to split.

Observation 3. Under the hypothesis (*), if h: A/P— P/P* splits,
then the map ¢: (4/P)[x]— gr,A of graded C-algebras (where C = A/P)
splits. For if s splits (is a left inverse for) &, s induces a graded
C-algebra map e: symm, P/P*— symm, C = C[x]. If we localize at
P, since A, is regular we have an isomorphism: symm, (P/Pz),,——ﬁ»
9rpo,Ap (both are polynomial rings in height P variables over the
field C, = (A/P)p and the map is induced by an isomorphism of their
first graded pieces). Now, £8 is induced by localization from the
natural map J: symm, (P/P? — gr,A (which in turn is induced from
the inclusion of P/P* as the one-forms of gr,A). Hence, we have a
commutative diagram:

Clx] «——— symm, (P/P? -—f;—» grrA

[} Lk

Cplx] “’_‘r—‘ symm, (P/P?), —;-_’ 97 popAp

Since @ is an isomorphism, we have a homomorphism +=78"'a: gr,A —
Cp[x]. Since 0 is surjective, Im 4 =Im 46 =Im ¢ = C[x] < Cp[z]. Thus,
4, with its range restricted, is the (unique) graded C-algebra homo-
morphism which makes the diagram

symm, (P/P?) 2, grpA
AN /
N Sy
v
Clx]

commute, and it follows from the definition of ¢ that + is a left
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inverse for 4.

This shows that under the hypothesis (*), the “main case”, the
entire obstruction to lifting presented by the Lemma is no worse than
the obstruction presented by the Corollary. The graded algebra map
splits if and only if A splits.

However, it appears that even if the graded algebra map splits,
we have merely taken a feeble first step towards lifting J.

Observation 4. It is useful to put the obstruction to splitting
given by the Corollary in a more concrete form. We therefore
note:

PROPOSITION. Under the hypothesis (*) (so that J = P is prime),
the map h: C = AlJ— J/J* splits if and only if for every (irre-
ducible) A-ideal L DJ (primary to the maximal ideal m of A),

LJ: At = L .

Either or both of the parenthetical phrases may be omitted without
affecting the validity of this statement.

In fact, A/J — J/J® makes A/J a direct summand if and only if
A/J is a pure submodule, and since A/J is a complete local domain,
this holds if and only if for every ideal L/J of A/J, h™'(L(J/J?) =
(A/J) (.e. AlJ — J/J* is cyclically pure: see [4]), and it suffices to
know this for (m/J)-primary irreducible ideals L/J (again, see [4]).
But »'(L(J/J?) = L(A/J) if and only if LJ: At = L.

We conclude with the following point: Serre’s conjecture on
multiplicities over a regular local ring B = A/At is known except
in the situation of (*), and we may further suppose that ¢ is an
Eisenstein polynomial. To deduce the result for B from the result
for A, it would suffice to know the following:

Weak lifting conjecture. Under the hypothesis (*), let @ be a
prime of B such that p¢ Q. Then some B-module M whose support
is defined by Q lifts to A.

Proof that the weak lifting conjecture implies Serre’s con-
jecture. It suffices to show (cf. [8] Ch. V, §4) that for each pair
(Q, Q) of primes of B with Q + @, of coheight 0, ex(B/Q, B/Q,) = 0,
with inequality = dim (B/Q) + dim (B/Q,) = dim B. (Here e,(M, N) =
S dmB(_1)¢)(Tor? (M, N).) Choose a counterexample with dim (B/Q) +
dim (B/Q,) as small as possible. If pe @ and pe Q,, then the result
is known ([5], Prop. 4). Now suppose, say, » ¢ Q. Choose M such
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that Supp M = {PcSpec(B): P2 Q} and M has a lifting F to A.
Then dim A — dim £ — dim (B/Q,) = dim B — dim M — dim (B/Q,) and
dim M = dim (B/Q). Thus e (FE, B/Q,) = 0 with inequality if and only
if dim (B/Q) + dim (B/Q,) = dim B. Each Tor{ (E, B/Q,) is isomorphic
with Tor? (M, B/Q,), and M has a prime filtration involving a positive
number A\ of copies of B/Q and certain other primes Q} such that
QF 2 Q. Hence ¢,(E, B/Q,) = ex(M, B/Q,) = (for suitable z;)\ex(B/Q,
B/Q,)) + >.; tties(B/QF, B/Q,) = Nez(B/Q, B/Q,) because dim (B/Q]) +
dim (B/Q,) < dim (B/Q) + dim (B/Q,) (so that the result holds for
(QF, Q), and dim (B/Q}) + dim (B/Q,) < dim B = ex(B/Q}, B/Q;) = 0
for each j). Thus ex(B/Q, B/Q,) = (1/\)e(FE, B/Q,) = 0, with inequality
if and only if dim (B/Q) + dim (B/Q,) = dim B.

I know no counterexamples to this weak lifting conjecture.
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