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Let T, be the Teichmiiller space of a compact Riemann
surface R of genus g with ¢ = 2. In the present paper it is
shown thatthe Weil-Petersson length of a large class of rays is
finite, deduced that the metric is not complete and indicated
how the proof can be extended to the Teichmiiller space of an
arbitrary finitely generated Fuchsian group of the first kind.
The proof is carried out by estimating the Weil-Petersson
length of Teichmiiller geodesic rays in directions correspond-
ing to a certain class of quadratic differentials.

Metrics dealing with various properties of T, have been defined.
Among them are the Teichmiiller, Kobayashi, Carathéodory, Bergman,
and Weil-Petersson metrics. Royden has shown that the Teichmiiller
and Kobayashi metrics coincide, [8]. The Teichmiiller-Kobayashi and
Carathéodory metrics are known to be complete. Furthermore the
Weil-Petersson metric is Hermitian, Kahler and has negative holo-
morphic sectional curvature, [3].

A trajectory of a quadratic differential @dz? of R is a curve
along which @dz* > 0. Zeros (or poles) of @dz® are referred to as
critical points and a trajectory meeting such points as a critical
trajectory. By a Jenkins-Strebel differential we mean a quadratic
differential @dz* such that the complement on R of the critical traj-
ectories of @dz* is a finite union of conformal annuli 4;, 1 <|z;]| <
exp(le;| " log r;) with @dz? = ¢;(dz;\z;)* on 4; where ¢; <0,7=1,---, xn.
The existence of such differentials on finite Riemann surfaces is a con-
sequence of the solution by J. Jenkins of a class of free homotopy
a conmodule problems, [7]. A. Douady and J. Hubbard recently
confirmed jecture of K. Strebel that such differentials represent a
dense subset of the space of all analytic quadratic differentials, [6].

It has been communicated to the author that Mr. T.C. Chu of
Columbia University has found a similar result. The author would
like to take this opportunity to thank professors Clifford Earle and
Halsey Royden for their patience and assistance with this investiga-
tion,

1. Description of the curve and its tangent vectors. A path
leading to the boundary of the Teichmiiller space is given by surfaces
R, that are determined by the Beltrami differential ((¢ — 1)/(¢ + 1))
(pdz*/| pdz*|), where ¢ = 1 and —@dz* is a Jenkins-Strebel differential.
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In a neighborhood of a point z, which is not a zero of @d2® the
local coordinates on R, are given by

(Ve = =1 t— 1\
w= (v + i Vem) - 1 9)
If S; is a vertical strip in the ; plane s.t. z; = exp(|¢;|7V%¢;) is a
covering of the annulus A; then the formula becomes
-1

(1) Ge=(G+i0)1-47) . 0<Ref <logr,
or equivalently {;, = t&; + 9; where {; = & + i9; and (d{;,)* is the
quadratic differential on S;, associated with this mapping in the sense
of Teichmiiller’s theorem. By (1) we view the strip S;.,, 0 < Re;, <
tlog r; in the {;, plane as the quasiconformal image of the strip
0 < Rel; <logr;in the {; plane. The S;, cover annuli 4;, by the
maps z;, = exp(|e;|™¢;,) and due to the nature of the definition
of the new coordinates it is clear that the annuli A4;, are identified
to form R, in the same manner in which the A; are identified to
form R.

It will be necessary to know the tangents to the curve expressed
as tangent vectors based at the points R, of Teichmiiller space, [2],
let f, be the map from the { plane to the {, plane defined by ¢, =
t& + in. We are interested in the map f* from the {, plane to the
{. plane satisfying f. = ffof,. Clearly f°((,) is defined by f°((,) =
(z/t)é, + in, where {, = &, + 17, or equivalently

@)= (5 + TN - )

It is clear that this is the Teichmiiller map associated with Beltrami
differential ((z — t)/(zr + £))(dC.)*/| (dC.)*|. Taking the r derivative of
(z — t)\(z + t) and setting 7 = ¢ yields the quantity 1/2¢. Hence the
Beltrami differential (1/2t) (dZ,)/| (dZ,)*| is the tangent to the curve
based at the point R,.

2. The finite length estimate. For a compact Riemann surface
S of genus g, g = 2, one can identify the cotangent space at the
point S of Teichmiiller space with the regular quadratic differentials
of S, and the tangent space at S with the Beltrami differentials
modulo those which are infinitesimally trivial, [2]. The Weil-Peters-

1/2
son cometric is induced by the norm | @]l = <S [@!%:2) on the

space of regular quadratic differentials @ of ,S',s where A, is the
Poincaré metric for S. The Weil-Petersson metric is induced by the
norm || ¢ || = sup, | [#, @]/l @], where g is a Beltrami differential, @
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ranges over the regular quadratic differentials of S and [g, P]=
S ¢®, [10]. For all ¢, £ = 1, it is clear that the union of the regions

0 <Rel, <tlogr;, 0 <Im, < |c;|"?2x can be considered as a domain
in B, and that its complement on the surface is a set of smooth
curves. Hence area integrals for R, can be computed on this union
of regions. Since the annulus obtained by taking the quotient of
the strip 0 < Re {, < tlog r; by the group {{, — &, + n|c;|V? 271, n € Z}
is contained in R,, the Poincaré metric for the annulus bounds the
Poincaré metric of R, restricted to the annulus. If ||@||, is the Weil-
Petersson norm of a quadratic differential of R,, we have

Iz s
i Jo<Imy; ¢ <lejit/Zax
0<Reng<tlog"r

PPN,

where \; is the Poincaré metric for the S;,, and consequently

‘[2115 ;238; ’QDM ’[Elt— @Zg[ ’ﬂl_
¢ 2]l ¢ (;Slm%f)m

= sup < sup

et

Noting that

T s
= cse Re ;. |de;
tlog r; tlogr; Cinl s

and that the metric does not depend on Im{;, we see that the
extremal value of the last quotient is estimated by @ = (d{,)®. Since
the ); are known, the quantity

s {1a@re

can be computed directly, or the dependence on ¢ can be determined
by considering the invariance properties of the )\; in either case

(2) s{i@rme=ce,  c>o.

Furthermore we have

L @F ] (L @EF e
@) |5 @y @ =, g

23 [ LandTn = 2n S log s

I

It follows from (2) and (3) that the length of the tangent vector
(1/2¢)(dC.)Y/| (dC.)?| is bounded above by



576 SCOTT WOLPERT

Cofor t21, ¢ >0.

tS/Z

Since Sl dt/t¥* converges, we see that this curve has finite length in
the Weil-Petersson metrie.

The Teichmiiller distance between R and R, is log¢ and since
this metric is complete we see that for any sequence of ¢’s tending
to infinity the surfaces R, cannot converge. The Weil-Petersson and
Teichmiiller metrics induce the same topology and thus such a se-
quence cannot converge in the Weil-Petersson metric even though it

is Cauchy. We conclude that the Weil-Petersson metric is not com-
plete.

3. Further remarks. If R is obtained from R by the removal
of finitely many points and the upper half plane U is taken as a
finitely ramified cover of R then we again choose @dz* as a Jenkins-
Strebel differential where in this case the possible poles of ®dz? the
punctures of R as well as those points above which the cover is
ramified are all considered as critical points. With this convention
the branch points lie on the boundaries of the resulting annuli and
the Poincaré metrics of the annuli again provide a bound for the
restriction to the annuli of the Poincaré metric of the surface. In
this way the proof is extended to the general case of the Teichmiiller
space of a finitely generated Fuchsian group of the first kind.

The curve under consideration is a geodesic in the Teichmiiller
metric and is readily seen to be a “pinching” of a given Riemann
surface as in the work of L. Bers, [5]. An immediate consequence of
the present investigation is that the Weil-Petersson metric is not
uniformly equivalent to the Teichmiiller-Kobayashi or Carathéodory
metrics. We also observe that the Teichmiiller space of a 4 times
punctured sphere is conformally equivalent to the unit dise. In this
case the Weil-Petersson metric is not uniformly equivalent to the
Bergman metric since the latter is the Poincaré metric which is
complete.
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