CORRECTIONS TO: “MULTIPLIERS OF TYPE \((p, p)\)”;
“MULTIPLIERS OF TYPE \((p, p)\) AND MULTIPLIERS OF THE GROUP \(L_p\)-ALGEBRAS”; “MULTIPLIERS AND THE GROUP \(L_p\)-ALGEBRAS”

KELLY DENIS MCKENNON
ERRATA

Corrections to

Multipliers of Type \((p, p)\)
Kelly McKennon
Volume 43 (1972), 429-436

Multipliers of Type \((p, p)\) and Multipliers of the Group \(L_p\)-Algebras
Kelly McKennon
Volume 45 (1973), 297-302

Multipliers and the Group \(L_p\)-Algebras
John Griffin and Kelly McKennon
Volume 49 (1973), 365-370

The series of papers [2], [3], and [4] contains a number of errors, most of which deriving from a mis-statement in [5]. The subalgebra \(A\) of \(B\) in [5] 1.4.ii must be in addition a left ideal. Thus, assertion (4) and Theorem 6 of [2] are only valid in the case that \(A\) is a left ideal as well.

A second major problem is Theorem 1 of [1]. The proof to this theorem is false and the author has not been able to rectify it. For compact groups, Theorem 1 is trivial and, for unimodular groups \(G\) with \(p \leq 2\), easy to prove. For this reason, and because we shall need the following theorems and corollary, we shall make the additional assumption that \(G\) has equivalent left and right uniform structures and \(p \leq 2\).

THEOREM 1. The closed right ideal in \(L_1(G)\) generated by the center \(L^G)^*\) of \(L^G)^*\) is just \(L^G)^*\).

Proof. Note that \(G\), being a SIN group, is unimodular. Let \(Q\) be the family of compact neighborhoods of the identity invariant under inner automorphisms. Then, for \(V \in Q\) and \(t, x \in G\),

\[
t^{-1}x \in V \text{ if and only if } xt^{-1} = x(t^{-1}x)x^{-1} \in xVx^{-1} = V
\]

so that \(\xi_v(t^{-1}x) = \xi_v(xt^{-1})\), \(\xi_v\) being the set-theoretic characteristic function of \(V\). Thus, for all \(V \in Q\), \(x \in G\), and \(f \in L_1(G)\),

\[
f \ast \xi_v(x) = \int f(t)\xi_v(t^{-1}x)dt = \int f(t)\xi_v(xt^{-1})dt = \xi_v \ast f(x).
\]

Thus, \(\{\xi_v : V \in Q\} \subset L_1(G)^*\).

Assume that \(A\) is not dense in \(L_1(G)\). Then there exists some nonzero function \(h \in L_\infty(G)\) such that

\[
(1) \quad \int hgd\lambda = 0 \text{ for all } g \in A.
\]

Choose a compact subset \(E\) of \(G\) and a nonzero complex number \(\alpha\) such that \(\lambda(E) > 0\) and
| h(x) - α | < \frac{|α|}{3} \text{ for all } x \in E .

The net \{ζ_{V}/λ(V)\}_{V \in Q}, Q directed by inclusion, is an approximate identity for \(L_4(G)\). Hence, there exists a sequence \{V(n)\}_{n=1}^{\infty} in Q such that

\[
\lim_n \| ζ_{(E^{-1})} * ζ_{V(n)}/λ(V(n)) - ζ_{(E^{-1})} \|_1 = 0 .
\]

By choosing a subsequence is necessary, it may also be assumed that \(ζ_{(E^{-1})} * ζ_{V(n)}(x)/λ(V(n))\) converges to \(ζ_{(E^{-1})}(x)\) for \(λ\)-almost all \(x\). If \(x^{-1} \in E^{-1}\) is a point of convergence, then

\[
1 = ζ_{(E^{-1})}(x^{-1}) = \lim_n ζ_{(E^{-1})} * ζ_{V(n)}(x)/λ(V(n)) = \lim_n \frac{1}{λ(V(n))} \int ζ_{(E^{-1})}(t)ζ_{V(n)}(t^{-1}x^{-1})dt = \lim_n \frac{1}{λ(V(n))} \lambda(E^{-1} \cap x^{-1}V(n)^{-1}) = \lim_n \frac{\lambda(E \cap V(n)x)}{λ(V(n))}.
\]

Thus, there exists \(V \in Q\) such that

\[
λ(V) < \left(1 + \frac{|α|}{3 \| h \|_∞} \right)λ(E \cap Vx).
\]

We have \(ζ_{Vx} \in A\) and

\[
\left| \int hζ_{Vx}dλ \right| \geq \left| \int_{Vx \cap E} hdλ \right| - \left| \int_{Vx \cap E'} hdλ \right| \geq \left| \int_{Vx \cap E} αdλ \right| - \left| \int_{Vx \cap E} \frac{|α|}{3} dλ \right| - λ(Vx \cap E') \| h \|_∞ \geq |α| λ(Vx \cap E) - λ(Vx \cap E') \frac{|α|}{3} - λ(Vx \cap E) \frac{|α|}{3 \| h \|_∞} \| h \|_∞ = λ(Vx \cap E) \frac{|α|}{3} > 0 .
\]

This contradicts (1). Hence \(A\) is dense in \(L_4(G)\).

Theorem 1'. Let \(G\) be a locally compact SIN group. Then the closed left ideal in \(L_4(G)\) generated by \(L_4(G)^∗\) is \(L_4(G)\).

Proof. The proof is analogous to that of Theorem 1.

Theorem 2. Let \(G\) be a SIN group and \(p \in [1, ∞] \). Let \(W_p\) be the unit ball of the Banach algebra of right multipliers of type \((p, p)\), and \(B_p\) be the unit ball of \(L_p(G)\). Then, if \(\{h_p\}\) is a bounded right approximate identity for \(L_4(G)\) and \(h \in L_4(G),\)
\[
\limsup_{\beta} \{ \| T((g \ast h) \ast h_\beta - T(g \ast h)) \|_p : g \in B_p, T \in W_p \} = 0 .
\]

Proof. Let \(b \) be a bound for the numbers \(\| h_\beta \| \), and \(d \) a positive number. Choose \(f, q \in C_c(G) \) such that
\[
\| f \ast q - h \|_1 < \frac{d}{3(1 + b)} .
\]
Theorem 1' implies that there exist \(\{ f_j \}_{j=1}^n \subset L_1(G) \) and \(\{ x_j \}_{j=1}^n \subset G \) such that
\[
\| f - \sum_{j=1}^n x_j f_j \|_1 < \frac{d}{3(1 + b)} \| q \|_1 .
\]
Choose an index \(B_0 \) such that, for all \(\beta > \beta_0 \) and \(j = 1, 2, \ldots, n \),
\[
\| f_j - f_j \ast h_\beta \|_1 < \frac{d}{3n} \| q \|_1 .
\]
For all \(\beta > \beta_0 \), \(g \in B_p \), and \(T \in W_p \), we have
\[
\| T((g \ast h) \ast h_\beta - T(g \ast h)) \|_p \\
\leq \| g \ast f \ast T(q) \ast h_\beta - g \ast f \ast T(q) \|_p + (1 + b) \frac{d}{3(1 + b)} \\
\leq \| \sum_{j=1}^n g \ast x_j f_j \ast T(q) \ast h_\beta - g \ast x_j f_j \ast T(q) \|_p \\
+ (1 + b) \| q \|_1 d/[3(1 + b) \| q \|_1] + \frac{d}{3} \\
\leq \sum_{j=1}^n \| g \ast x_j T(q) \ast f_j \ast h_\beta - g \ast x_j T(q) \ast f_j \|_p + \frac{d}{3} + \frac{d}{3} \\
\leq \sum_{j=1}^n \| g \|_p \| q \|_1 \| f_j \ast h_\beta - f_j \|_1 + \frac{d}{3} + \frac{d}{3} \leq \frac{d}{3} + \frac{d}{3} + \frac{d}{3} = d .
\]

Corollary. Let \(T \) be a right multiplier of type \((p, p)\) and let \(\{ h_\beta \} \) be as in Theorem 2. Then the nets \(\{ W_{h_\beta} \circ T \circ W_{h_\beta} \} \), \(\{ W_{h_\beta} \circ T \} \), and \(\{ T \circ W_{h_\beta} \} \) all converge to \(T \) in the topology \(\mathcal{R}(W_p, \| \cdot \|_p) \).

Proof. That \(\{ T \circ W_{h_\beta} \} \) converges to \(T \) follows from Theorem 3 of [1]. That \(\{ W_{h_\beta} \circ T \} \) converges to \(T \) follows from Theorem 2. Thus, for all \(V \in \mathcal{M}_p \),
\[
\lim_{\beta} \| (W_{h_\beta} \circ T \circ W_{h_\beta} - T) \circ V \| \\
\leq \lim \| (W_{h_\beta} \| \| T \circ W_{h_\beta} - T \| \circ V \| + \| (W_{h_\beta} \circ T - T) \circ V \|) = 0 .
\]

We now return to the papers [1], [2], and [3]. Evidently, under our new assumptions, Theorems 1, 2, 3, 4, 5, the corollary to Theorem

ERRATA

\[
\limsup_{\beta} \{ \| T(g \ast h) \ast h_\beta - T(g \ast h) \|_p : g \in B_p, T \in W_p \} = 0 .
\]

\[
\text{Proof.} \quad \text{Let } b \text{ be a bound for the numbers } \| h_\beta \|, \text{ and } d \text{ a positive number. Choose } f, q \in C_c(G) \text{ such that}
\]
\[
\| f \ast q - h \|_1 < \frac{d}{3(1 + b)} .
\]
Theorem 1' implies that there exist \(\{ f_j \}_{j=1}^n \subset L_1(G) \) and \(\{ x_j \}_{j=1}^n \subset G \) such that
\[
\| f - \sum_{j=1}^n x_j f_j \|_1 < \frac{d}{3(1 + b)} \| q \|_1 .
\]
Choose an index \(B_0 \) such that, for all \(\beta > \beta_0 \) and \(j = 1, 2, \ldots, n \),
\[
\| f_j - f_j \ast h_\beta \|_1 < \frac{d}{3n} \| q \|_1 .
\]
For all \(\beta > \beta_0 \), \(g \in B_p \), and \(T \in W_p \), we have
\[
\| T(g \ast h) \ast h_\beta - T(g \ast h) \|_p \\
\leq \| g \ast f \ast T(q) \ast h_\beta - g \ast f \ast T(q) \|_p + (1 + b) \frac{d}{3(1 + b)} \\
\leq \| \sum_{j=1}^n g \ast x_j f_j \ast T(q) \ast h_\beta - g \ast x_j f_j \ast T(q) \|_p \\
+ (1 + b) \| q \|_1 d/[3(1 + b) \| q \|_1] + \frac{d}{3} \\
\leq \sum_{j=1}^n \| g \ast x_j T(q) \ast f_j \ast h_\beta - g \ast x_j T(q) \ast f_j \|_p + \frac{d}{3} + \frac{d}{3} \\
\leq \sum_{j=1}^n \| g \|_p \| q \|_1 \| f_j \ast h_\beta - f_j \|_1 + \frac{d}{3} + \frac{d}{3} \leq \frac{d}{3} + \frac{d}{3} + \frac{d}{3} = d .
\]

Corollary. Let \(T \) be a right multiplier of type \((p, p)\) and let \(\{ h_\beta \} \) be as in Theorem 2. Then the nets \(\{ W_{h_\beta} \circ T \circ W_{h_\beta} \} \), \(\{ W_{h_\beta} \circ T \} \), and \(\{ T \circ W_{h_\beta} \} \) all converge to \(T \) in the topology \(\mathcal{R}(W_p, \| \cdot \|_p) \).

Proof. That \(\{ T \circ W_{h_\beta} \} \) converges to \(T \) follows from Theorem 3 of [1]. That \(\{ W_{h_\beta} \circ T \} \) converges to \(T \) follows from Theorem 2. Thus, for all \(V \in \mathcal{M}_p \),
\[
\lim_{\beta} \| (W_{h_\beta} \circ T \circ W_{h_\beta} - T) \circ V \| \\
\leq \lim \| (W_{h_\beta} \| \| T \circ W_{h_\beta} - T \| \circ V \| + \| (W_{h_\beta} \circ T - T) \circ V \|) = 0 .
\]
4, and Lemma 2 of [1] are still true as stated. The same holds true for all the lemmas, propositions, and theorems of [2], and for Lemma 2 of [3].

Lemma 1 of [1], which depends on (4) can be repaired by applying to the corollary to Theorem 2 above instead. The assertion (6) of [3] is now a special case of the corollary of Theorem 2 above. Lemmas 1 and 2, Theorems 1 and 2, and Corollaries 1 and 2 of [3] all depend, either directly or derivatively on (6). Theorem 7 of [1] depends on the corollary to Theorem 2 above and Theorem 6 of [1]; but Corollary 1 of [3] implies that \(\mathcal{M}_p \) is a left ideal in \(\mathcal{L}_p \) and so Theorem 6 of [1] may be validly applied. Proposition 1 of [3] depends on Theorem 7 of [1] and Theorem 3 of [3] on Proposition 1.

The one last correction we note here is that \(f \) and \(h \) should be interchanged in the right side of the equation defining convolution at the beginning of [2].

References

Correction to

"\(a^*\)-CLOSURES TO COMPLETELY DISTRIBUTIVE LATTICE-ORDERED GROUPS"

A. M. W. Glass, W. Charles Holland and Stephen H. McCleary

Volume 59 (1975), 43-67

The converse direction of Theorem 5.1 (see Pacific Journal of Mathematics, 59 (No. 1), 1975) is easily seen to be false. The proof is complete nonsense as Proposition 5.2 does not apply. However, the converse direction of Theorem 5.1 is true under the added assumption that \((H, T)\) also has closed stabilizers. Moreover, wherever this direction of Theorem 5.1 has been used in the rest of the paper, the extra hypothesis is available (often courtesy of Proposition 5.2), so the remainder of the paper requires no change.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor) J. DUGUNDJI
University of California Department of Mathematics
Los Angeles, California 90024

R. A. BEAUMONT D. GILBARG AND J. MILGRAM
University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO
MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH
UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY
NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY *

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Graham Donald Allen, Francis Joseph Narcowich and James Patrick Williams, *An operator version of a theorem of Kolmogorov* ... 305
Joel Hilary Anderson and Ciprian Foias, *Properties which normal operators share with normal derivations and related operators* ... 313
Constantin Gelu Apostol and Norberto Salinas, *Nilpotent approximations and quasinilpotent operators* .. 327
James M. Briggs, Jr., *Finitely generated ideals in regular F-algebras* 339
Frank Benjamin Cannonito and Ronald Wallace Gatterdam, *The word problem and power problem in 1-relator groups are primitive recursive* 351
Clifton Earle Corzatt, *Permutation polynomials over the rational numbers* 361
L. S. Dube, *An inversion of the S_2 transform for generalized functions* 383
William Richard Emerson, *Averaging strongly subadditive set functions in unimodular amenable groups. I* ... 391
Barry J. Gardner, *Semi-simple radical classes of algebras and attainability of identities* .. 401
Irving Leonard Glicksberg, *Removable discontinuities of A-holomorphic functions* ... 417
Fred Halpern, *Transfer theorems for topological structures* 427
H. B. Hamilton, T. E. Nordahl and Takayuki Tamura, *Commutative cancellative semigroups without idempotents* .. 441
Melvin Hochster, *An obstruction to lifting cyclic modules* 457
Alistair H. Lachlan, *Theories with a finite number of models in an uncountable power are categorical* ... 465
Kjeld Laursen, *Continuity of linear maps from C*-algebras* 483
Tsai Sheng Liu, *Oscillation of even order differential equations with deviating arguments* ... 493
Jorge Martinez, *Doubling chains, singular elements and hyper-Zl-groups* 503
Mehdi Radjabalipour and Heydar Radjavi, *On the geometry of numerical ranges* ... 507
Thomas I. Seidman, *The solution of singular equations, I. Linear equations in Hilbert space* ... 513
R. James Tomkins, *Properties of martingale-like sequences* 521
Alfons Van Daele, *A Radon Nikodým theorem for weights on von Neumann algebras* .. 527
Kenneth S. Williams, *On Euler’s criterion for quintic nonresidues* 543
Manfred Wischnewsky, *On linear representations of affine groups. I* 551
Scott Andrew Wolpert, *Noncompleteness of the Weil-Petersson metric for Teichmüller space* ... 573
Volker Wrobel, *Some generalizations of Schauder’s theorem in locally convex spaces* ... 579
Kelly Denis McKennon, * Corrections to: ”Multipliers of type (p, p); ”Multipliers of type (p, p) and multipliers of the group L_p-algebras”; ”Multipliers and the group L_p-algebras”* .. 603
Andrew M. W. Glass, W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary, *Correction to: “a*-closures to completely distributive lattice-ordered groups”* .. 606
Zvi Arad and George Isaac Glauberman, *Correction to: “A characteristic subgroup of a group of odd order”* .. 607
Roger W. Barnard and John Lawson Lewis, *Correction to: “Subordination theorems for some classes of starlike functions”* 607
David Westreich, *Corrections to: “Bifurcation of operator equations with unbounded linearized part”* ... 608