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The concept of contractor directions appears to be a natural
development of the concept of directional contractors. By using
both concepts, sufficient conditions are presented for a nonlinear
operator to be a mapping onto a Banach space.

Several authors have recently studied the solvability of nonlinear
operator equations. Their main objective was to investigate a class of
nonlinear operators having closed ranges. In the first part of this paper,
a generalization of some of the known results is presented and, in
addition, new proofs are given.

In the second part, a class of operators is discussed without
assumption that the operators in question have closed ranges. In both
parts, the technique of proofs is based on the concept of contractor
directions. This concept is a generalization of a concept of asymptotic
directions introduced by Browder. However, this generalization is
rather closely related to the concept of directional contractors. By using
the method of directional contractors, in the third part of this paper, a
class of nonlinear operators with Holder continuous Fréchet derivatives
is investigated. Sufficient conditions are given which guarantee that the
operators in question are mappings onto. Finally, as a generalization of
contraction mappings, directional contractions are discussed with appli-
cation to evolution equations.

DeriniTION 1.1. Let X be an abstract set and P: X — Y a map-
ping of X into a (real or complex) Banach space Y, x a pointin X. Then
we define sets I', (P) of contractor directions for P at x, and I', (P) is such
a set if there exists a positive g < 1 with the following property: for each
y €T (P), there exist a positive number € = €(x, y) =1 and an element
x € X such that

1.1 IPx — Px — ey || = qe| .

Thus, I'.(P)=T,(P) depends on q and obviously I',(P)CI,(P) if
0<g<qg<l.

Lemma 1.1.  The set T, (P) contains T, (P), where 0<q<g<1.
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If T,(P) is dense in some sphere S(0,r)=[y:y€Y,|yl|=r], then
r.(P)=Y.

Proof. Let0<g<qg<1. If v€S(,r)and y €l (P) are such
that |jv — y|=», then

IP£ ~ Px —ev| = |[PX - Px —ey[|+ ey o~y =qe|yl+en
= ge(flof+n)+en
= geflol if n=(G-qlold+q)"

in virtue of (1.1).

LemMmA 1.2. For all x € X, let yo— Px be in the closure of T',(P),
where y,€ Y is not in P(X), P(X) being closed. Then there exists a
sphere S(yo,7) C Y such that y — Px €T, (P) for all y € S(yo, 1), x € X.

Proof. By Lemma 1.1, y,— Px €I, (P) for all x € X. Thus, it
follows that

| Px — Px — e(yo— Px)|| = qe |y, — Px||
is satisfied for all x € X and some positive g <1. Hence, we obtain

|Px — Px —e(y — Px)|| = ||PX — Px — €(yo— Px)|| + €|lyo—y|
=qelyo— Px| + er = qe(|ly — Px||+r)+er = gelly — Px||

for all y € S(y,, r), x € X, where § is arbitrary with g <4 <1 and r is
chosen so as to satisfy

(@+Dr=@G-q)d=@G-q)ly—Px|,

where 2d is the distance from y, to the closed set P(X).
The following two lemmas of Gavurin (see [3] for references) will be
used in our considerations.

LEMMA 1.3. Let a be an ordinal number of first or second class and

let {t,}o=,=. be a naturally well-ordered sequence of real numbers provided
that for numbers B of second kind we have

Iy = lyl;r; L.

Then the following equality holds.
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.=t+ 2 (tau—t).

0=y<a

LEMMA 1.4. Let a be an ordinal number of first or second class and
let {x,}o=y=a be a well-ordered sequence of elements of a metric space X
provided that for numbers B of second kind we have

xz; = lim x,.
B Y8 Y

Then, denoting by d(-,-) the distance,

d(x, x) = D d(x,.,x,).

U=sy<a

THEOREM 1.1. Let X be an abstract set, Y a real or complex Banach
space, P: X — Y a mapping of X into Y such that the range P(X) is closed
in' Y. Suppose that y,€ Y, which is not on the boundary of P(X), is such
that for each x in X, the element y,— Px belongs to the closure of a set
', (P) of contractor directions for P at x. Then there exists a solid sphere
S(ys, 1) C Y with center y, and radius r such that the equation

(1.2) Px =y, y € S(yo,r), xEX

has a solution for every y € S(yo, r).\

Proof. One can assume that y, is not in P(X). Then, by Lemma
1.2, there exists a sphere S(yq r) such that y — Px €, (P) for all
y € S(ys, 1), x € X, i.e., there exist positive numbers ¢ <1, e = e(x,y)=
1 and elements ¥ € X such that

(1.3) |Px — Px — e(y — Px)|| = qe |y — Px||

for all y € S(y,,r), x € X. For the sake of simplicity, we replace
equation (1.2) by Px = 0 in which the same symbol P stands for the new
mapping with values Px —y, and fixed y € S(y,, r). Then inequality
(1.3) yields

(1.4) | Px — Px — €Px || = qe || Px]||.

Now, we construct well-ordered sequences of numbers #, and elements
P(t,) € P(X) as follows.

Put #,=0 and and let x, be an arbitrary element of X and put
P(t,)= Px,€ P(X). Suppose that t, and P(t,) have been constructed
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for all y < a, provided that: for arbitrary number y < a inequality (1.5,)
is satisfied.

as)  [Pe)|= et

P(1)], P(t,) € P(X);

for first kind numbers B =1y +1<a the following inequalities are
satisfied:

(1.6,.1) [P(t,) = P(t,)] = 1+ @) P(t)lle (8,01 — 1,);

(1.7,.) 0<t,,—t

Y

=1

and for second kind numbers y < a the following relations hold:

(1.8,) t, = lﬁlm ts, P(t) = Ll;l} P(t).

2y

Then it follows from (1.6)-(1.8), Lemmas 1.3 and 1.4 that for arbitrary
A <y <a we have

IP(t,)=P@n)| = AZ 1P (t5.1) = P(1)]

=B<y

=(1+q)|P(t)| \ 2 e-“ﬂ%(tﬂﬂ — 1)

=B<y

SAEQIP@] 2, et e el =t)
=B<y

=(1+q)e™ X e (il — 1)

A=B<y

<(1+q)e™ 2 fﬂﬂ e 1" dt

A=EB<y
Yy

= (1 +q)el“'f e 0y,

n

Hence,

L.

(1.9) [P(t,)=P(t)|=(1+qg)e" f et gy

12

Suppose that « is a first kind number. If P(z,_,) = 0, then the proof
of the theorem is completed, since P(t,-,) € P(X). Suppose now that
P(t,-;) #0, and let x € X be such that Px = P(t,.,). Then there exist a
positive € =1 and an element X € X satisfying (1.4). Put 7, =e=1
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(1.10) L, =ty + 7o P(t,)= Px.
Then we obtain by using (1.4) and the induction assumption (1.5,-;)
1Pl = 1=~ Pt < e[| P(t.-)
= et et | P(R)] = e (),
by (1.10). In virtue of (1.4), (1.10) we obtain

1P@) = Pt = A+ q)r [ P(t.)] = A+ @) P(t) et — tu)-

Thus, conditions (1.5,)-(1.7,) are satisfied for ¢,.

Now, suppose that « is a number of second kind and put t, =
lim, ». t,. Let {y,} be an increasing sequence convergent to . It follows
from (1.9) that {P(t,, )} is a Cauchy sequence and so is {P(t,)}. Denote
by P(t,) its limit. Since P(t,) satisfy (1.5,), it follows that P(z,) satisfies
(1.5,). The process will terminate if ¢, = +o, where a is of second
kind. In this case (1.5,) yields P(t,) =0 and the proof is completed.

As a consequence of the above theorem we obtain

THEOREM 1.2. Let X be an abstract set, Y a real or complex Banach
space, P: X — Y a mapping of X into Y such that the range P(X) is closed
inY.

Suppose that for each x in X, a set I'.(P) of contractor directions is
dense in S, =S(0,r)CY. Then P(X)=Y.

Proof. By Lemma 1.1, the set [.(P) contains the sphere
S,. Hence, it follows that I',(P)=Y. Let y,€Y be not in
P(X). Since y,— Px is in I, (P) for every x € X, it follows from
Theorem 1.1 that the equation Px = y, has a solution. This contradic-
tion shows that P(X) =Y.

REMARK 1.1. Both theorems with some changes are proved in [4],
for both real, vector space X and Banach space Y. However, the proof
given here 1s different and eliminates in [4] the use of a theorem by
Zabreiko and Krasnosel’skii [9]. The above result presents a consider-
able generalization of a theorem by Browder [6] and of a theorem by
Zabreiko and Krasnosel’skii [9], and yields, in addition, new proofs.

2. The restriction that the range of the operator in question is
closed seems to play an essential role in the previous- discussion.
However, by introducing the concept.of special contractor directions the
mentioned restriction can be removed.
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DEerINITION 2.1.  Let X be a complete metric space, Y be a real or
complex Banach space, P a mapping of X into Y, x a pointin X. Then
the element y is said to belong to a set I',(P) of special contractor
directions for P at x if there exist positive constants B, ¢ <1, € =
€(x,y)=1 and an element X € X such that

2.1) |P% — Px — eyl = qelly ||,

where d(X,x)= Be|ly|. Itis obvious that a special contractor direction
is a contractor direction, and that Lemmas 1.1 and 1.2 are also valid here.

A mapping P: D(P)C X— Y is said to be closed if x, > x and
Px, —y imply x € D(P) and y = Px.

THEOREM 2.1. Let P: D(P) C X — Y be a closed operator, Y being
a real or complex Banach space. Suppose that y, € Y is such that for each

x in D(P) the element y,— Px belongs to the closure of the set
I'.(P). Then the equation

2.2) Px—y,=0, x€&D(P)

has a solution. If, in addition, y, is not a limit point of P(D(P)), then
there exists a solid sphere S(y,,r) such that the equation Px =y has a
solution for each y € S(y,, r).

Proof. Without loss of generality, assume that y, = 0. We construct
well-ordered sequences of numbers ¢, and elements x, € D(P) as
follows. Put £, =0 and let x, be an arbitrary element of D(P). Suppose
that ¢, and x, have been constructed for all y < a, provided that: for
arbitrary number y < a inequality (2.3,) is satisfied.

2.3,) I1Px, || = e Pxol|;

for first kind numbers y + 1 < & the following inequalities are satisfied:

(2.4,.,) 0<t,—t =1
(2.5,.1) d(x,01,%,) = B[ Pxofle (1,0, 1,),
(2'67“) “ Px7+l - va “ = (1 + CI)“ Px()“e—(l‘q)ly(tvﬂ - tv);

and for second kind numbers y < a the following relations hold:

2.7 = li =i =li .
( v) L %l}l"l} lg, Xy LIEQ Xgs va 19193 Pxﬂ
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Then it follows from (2.5), (2.7), Lemmas 1.3 and 1.4 that for
arbitrary y <« and A <y we have

d(xw xk) = Z d(xtHl, xp) =B ”PxOH E e_(l_“)'ﬂ(tﬁﬂ — tB)
A=<y A=<y

= B|| Px,| z U perte) @ ~U=Dpr (g — 1)

ASB<y

<B|Pxofle’™ X e 0ty — 1)
A=B<y

< Be"|Px,| S f " e-0-0rdt = Be'"1|| Px,|| f T ey,

ASB<y

Hence,
2.8) d(x, %) = Be' || Pxo| f " e-tangy,

In the same way we obtain from (2.4), (2.6), (2.7), Lemmas 1.3 and 1.4
that

(2'9) ”ny - Px,\ ” __S_- (l 'f" q)el'q “Pxou ft7 e_(l_q)‘dt.

Suppose that « is a first kind number. If Px,_, = 0, then the proof
of the first statement of the theorem is completed.
If Px,.,#0, then we put

(2.10) ta = ta~1 + Ta) xtx = x_9

where ¥ € D(P) and 7, = € =1 are chosen so as to satisfy (2.1) with
X = Xe-1, ¥ = Yo— Px,y = — Px,_y, since y,— Px,_; is a contractor direc-
tion for P, in virtue of Lemma 1.1. Thus, we have

(2.11) | Pxo = Pxoyoy + ToPXooi|| = q7a || PXoer]]-

Hence, we obtain, by (2.9) and (2.3,-,),

IPx. [l = (1= 7)1 Pracs | + q7a [| PXacalf = (1 = (1 = @) 7)) || P |
Px, || = e 9% Px,l|, i,

(2.12,) | Px, || = e %] Px,||.

< e'(l“ﬂI)"a

It follows from (2.10), (2.1) and (2.3,-,) that
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(2.13,)  d(Xe» Xo-1) = B1, || Pxoor|| = B(t, — t,-1)e 40| Px,|.
It follows from (2.1), (2.11) and (2.3,-,) that

(2.14,) | Px, — Px, || = 1+ q)7. || Pxos||
é (1 + q)”PX()” e_(l-")"’“ (ta - ta—l)'

Thus, conditions (2.3,), (2.4,), (2.5.), and (2.6,) are satisfied for ¢, and
X,. Now suppose that « is a number of second kind and put ¢, =
lim, ..t Let {y,} be an increasing sequence convergent to a. It
follows from (2.8) and (2.9) that {x,,} and {Px,,} are Cauchy sequences
and so are {x,} and {Px,}. Denote by x, and y, their limits, respectively.
Since P is closed we infer that x, € D(P) and y, = Px,. If t, <+,
then the limit passage in (2.3,,) yields (2.3,). The relationships (2.7,)
are satisfied by the definition of ¢, and x,, since y, = Px,. This process
will terminate if ¢, = + o, where a is of second kind. In this case,
Px, =0 in virtue of (2.3,). Thus, the proof of the first assertion of the
theorem is completed. To prove the remaining assertion we apply
Lemma 1.2 which also holds true for special contractor directions. The
proof then follows from the first assertion.
As a consequence of the above theorem we obtain

THEOREM 2.2. Let P: D(P) C X — Y be a closed operator, where X
is a complete metric space and Y is a real or complex Banach
space. Suppose that for each x € D(P) C X, the set I'.(P) of special
contractor directions for P is dense in some sphere with center 0 in
Y. Then P(X)=Y.

Proof. By Lemma 1.1 applied to special contractor directions, we
have that I',(P)=Y for all x € X. The proof follows from the first
assertion of Theorem 2.1, since y,— Px €I',(P) forall y,€ Y and x € X.

Using the method of contractor directions, a local existence theorem
for nonlinear operator equations can also be proved.

Let X, be a subset of the complete metric space X. Put §=
S(xo,r)=[x: d(x,x,)<r,x €X] for a given x,€ X,, and U = X,N S,
where S is the closure of S in X. Let P: U — Y be a nonlinear operator
closed on U, ie., x, €U, x,—>x and Px,—y imply that x € U and
y = Px, where y is an element of the Banach space Y.

THEOREM 2.3. Suppose that the following hypotheses are satisfied :

(1) P: U— Y is closed on U,

(2) for each x € Uy=X,N S, the set T',(P) of special contractor
directions is dense in some sphere with center 0 in Y.

3) rzB(1-g)"|Pxl,
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where § is arbitrary with ¢ < § <1, and g, B are defined by (2.1). Then
equation Px =0 has a solution in U.

Proof. By Lemma 1.1, I',(P)=Y for all x € U,. Now, as in the
proof of Theorem 2.1, we construct the sequences {t,} and {x,} satisfying
the required induction assumptions and, in addition, instead of (2.4,.),

0< Tyr1 = b — 1, < (1 - CI)"‘ lﬂ(l - q)(l - q-)_"

for first kind numbers 8 =y +1<a. Hence, we obtain the following
estimate instead of (2.8)

d(x” xa) =B ”PX()” - e(l“(?(faﬂ*m)e’(l—q)faﬂ(tpH —_ tB)
=B<y

<U=q)U=qy'BPx 3 e ety p)
<=9 -2 BIPx| [ et
and in the same way we obtain instead of (2.9)
IPx, = Px. ]| = (1= q) (1= @) | Pl [ " e 0-ora
It follows, in particular, from the first estimate that

d(x,, x0) < (1= q)(1=q) "B Px,|| f: e " dt = (1-q)"'B| Px[=r.

Hence, it follows that all elements x, belong to U, The further
reasoning is exactly the same as in the proof of Theorem 2.1.

REMARK 2.1. Condition (3) in Theorem 2.3 can be replaced by
(3) rzB(l—q)"e" || Px.

In this case the induction assumption (2.4,,,) remains without change,
leading through (2.8) to the estimate

d(x,, xo) < Be'™ || Px,| fw e dt=B(—q) e | Px|=r
0

The estimate (2.9) remains the same.
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The fact that the indicated replacement of (2.4,.,) is feasible is based
on the following remark.

RemMARk 2.2. If the set I',(P) of special contractor directions is
dense in someé sphere with center 0 in Y, then for arbitrary 7 >0,y € Y,
there is a positive € = 7 satisfying condition (2.1).

In fact, since I',(P)=Y, by Lemma 1.1, for 7y, there is an ¢, =
€x, 7y) =1 satisfying (2.1) with € = ¢, and y replaced by ry. Hence,
(2.1) is satisfied with € = ;7 = 7.

LemMA 2.1. Let A: X — Y be a bounded linear operator, X and Y
being Banach spaces. The following conditions are equivalent:

(i) there exist positive constants B, q with q <1 such that for every
y € Y there is an element h € X satisfying the inequalities

(2.15) IAR =yl =aqlyl and |h]=Blyl;
(i) A maps X onto Y.
Proof. Put x,=h with h satisfying (2.15) for y =y,, and x,., =

X, — h..1, where h,., satisfies (2.15) for y = Ax, —y,. Then we obtain,
by (2.15),

Xos1 = X || = 1hoii|| = B Ax, — v,
=B ”Ahn —(Axp — YO)” = Bq||Ax,.i - Yol
= Bq" |yl

Hence, it follows that {x,} converges to some x and Ax,—y,= Ax,
where y, is an arbitrary but fixed element of Y.

LEmMA 2.2. Let A: X—Y be a bounded linear operator which
maps the Banach space X onto the Banach space Y, and let B > ||(A *){,
where A * is the adjoint operator. Then foreach y € Y, there exists h € X
such that Ah =y and |h|| = B]|y]|.

Proof. Denote by # the set of all solutions of the equation
Ax =0. The transformation A defines on the quotient space X/6 a
bounded linear operator &/: X/0 — Y by the formula y = #¢, where
xEEEX/Oandy = Ax. ByLemma [1),]| &' = ||[(A*)| (the domain
of (A*)" is not, in general, the whole space). Since [[£]|= ||y,
where |[&]|=inf[]lx|: x € £], there exists an element x € ¢ such
that ||x|| = ||€]|(1+ n), where nm is determined by the relationship
|/ '|(1+7n)=B. Then we obtain
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el =10 +m) =@+ mlyl = Byl

and Ax =y.
As an application of Theorem 2.2 we obtain

THEOREM 2.4. Let P: X — Y be a closed mapping of the Banach
space X into the Banach space Y. Suppose that P is differentiable in the
Gateaux sense and its dertvative P'(x) maps X onto Y foreach x € X. If
there exists a constant B such that [[(P'(x)*)7[ = B for all x € X, then
P(X)=Y.

Proof. Let y EY and q be arbitrary with 0 <q <1. By Lemma
2.2, there exists an element h € X such that

P'(x)h—y=0 and |h]=Bly].
where B > B is arbitrary. Choose a positive € =1 such that
fP(x+eh)— Px —eP'(x)h|| = gelly]l.
Then we obtain

|P(x +€h)—Px —ey| = | P(x +€h)— Px —eP'(x)h]||
e P -yl = eqliyl

and ¥ — x| = Belly| is true for ¥ = x + eh, that is, condition (2.1} i§
satisfied. Hence, it follows that the set of special contractor directions
I',(P) is the whole of Y for all x € X and Theorem 2.2 is applicable.
A local existence theorem can be obtained on the basis of Theorem
2.3.
Let X, be a linear subset of the Banach space X, S = S(x, r) for a
given x,€ X, and U = X, N S.

THEOREM 2.5. Let P: U— Y be closed on U. Foreach x € U, =
X, N S, the Gateaux derivative P'(x) exists and maps X onto the Banach
space Y. There exist positive constants B, g <1 such that r>
B(1-q)'|Px| and |(P'(x)*)'|=B for all x € U,. Then equation
Px =0 has a solution in U.

Proof. There exists B > B such that r = B(1 - )| Pxo}l. By using
the same argument as in the proof of Theorem 2.4, one can see that
condition (2.1) is satisfied for arbitrary positive ¢ < 4. Hence, it follows
that the set I', (P) of special contractor directions is the whole of Y for all
x € U,. Thus, the hypotheses of Theorem 2.4 are satisfied.
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3. Definition [3]. Let X be a vector space, Y a Banach space
and P a mapping of D(P)CX into Y. Then a linear mapping
['(x): Y — X is said to be a directional contractor for P at x € X if there
exists a positive g <1 such that for every y € Y, there is a positive
number € = e(x, y) =1 satisfying the following inequality

(3.1) [ P(x +€T(x)y)— Px —ey| = qe|yll.

It is assumed that D(P) is linear and I'(x)(Y)CD(P) for all
x € D(P). Denote by L(Y— X) be the set of all linear continuous
mappings of Y into X, where X, Y are Banach spaces. Then
I D(P)— L(Y— X) is called a contractor for P. In particular, if
there exists a constant B such that |[['(x)||= B for all x € D(P), then
I' is called a bounded irectional contractor for P.

THEOREM [3]. A closed nonlinear operator P: D(P)C X — Y which
has a bounded directional contractor T' is a mapping onto Y.

Proof. This theorem is a particular case of Theorem 2.2. Let us
notice that the condition imposed on € in the contractor inequality (3.1) is
less restrictive than that in [3].

The following lemma is obvious.

LEmma 3.1. Let P: X — Y be a nonlinear mapping of the Banach
space X into the Banach space Y. Suppose that I'(x): Y — X is a
bounded linear operator and that there exist positive numbers r and q < 1
such that

(3.2) [P(x+T(x)y)—Px—y[=qlyll

forally € Y with ||y||=r. Then I'(x) is a directional contractor for P at
xEX.

LEmMMA 3.2. Let P: X — Y be a nonlinear operator differentiable in

the Fréchet sense with Holder continuous derivative P'(x), i.e., there exist
positive nhumbers K, a =1 such that

(3-3) IP'(x)= P'(x)] = Kllx — x|

for all x, x € X. Moreover, for every x € X, let A(x): X—Y be a
bounded linear nonsingular operator such that

(3.4) JA(x)Y'|=B and |P'(x)-A(x)|=C BC<I1
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for all x € X and some constants B, C. Then T defined by T'(x) = A(x )!
is a bounded directional contractor for P.

Proof. We have, by (3.3) and (3.4),

|P(x 4+ T(x)y) = Px =y || = | P(x +T(x)y)— Px = P'(x)T(x)y ||
+HIP'(OT(x)y = ATy || = (L+ a) KTy |
+CT(x)y]| = (1+a) KB |ly|I** + CBly[ = qly]

for y € S,, where ¢ is arbitrary with BC <gq <1 and
(1+a)'KB"|yl" + BC=¢q

iflyl=rie., re=(q~BC)(1+a)/KB"* Hence, by Lemma 3.1,T"isa
bounded directional contractor for P.

THEOREM 3.1.  Under the hypotheses of Lemma 3.2, P is a mapping
onto Y.

Proof. The proof follows immediately from Theorem [3] and
Lemma 3.2.

LemMa 33. Let P: X—Y be a nonlinear operator and let
T: X — Y be differentiable in the Fréchet sense at each x € X. Moreover,
suppose that

(T'(x)- T =K[|x—%xf, 0<a=1,
IT'(x)"| =B and
[(Px = Tx)— (Pf = TX)|| = Cfjx — x|
for all x, ¥ € X, where C is a constant such that BC <1.
Then [ defined by U(x)= T'(x)"' is a bounded directional contractor
for P.
Proof. We have

[P(x +T(x)y)=Px =y = | T(x +T(x)y) = Tx = T'(x)I(x)y ||
H[[P(x + T(x)y)— T(x + T(x)y)] = [Px — Tx]|
= (1+a) ' KTy [
+CIT)y | = (1+a) KB |y " + CBlly||
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IA

[(1+a)"KB"*|y|"+ CB]ly|
=[(1+a)'KB"r+CBllyl=qly],

if [yll=r, where gq is arbitrary with BC<q<1 and r=
(g — BC)(1+ a)/KB'*. Hence, by Lemma 3.1, I" is a bounded direc-
tional contractor for P.

THEOREM 3.2.  Under the hypotheses of Lemma 3.3, P is a mapping
onto Y.

Proof. The proof follows immediately from Theorem [3] and
Lemma 3.3.

LEMMA 3.4. Let P: X — Y be a nonlinear operator differentiable in
the Fréchet sense with Holder continuous derivative P'(x) satisfying
(3.3). Let I'(x): Y— X be a bounded linear operator and let C be a
positive constant such that

IP'()(x) - 1= C<1
for all x € X, where I is the identity mapping of Y. If, in addition,
IT(x)ll= B

for all x € X, then T is a bounded directional contractor for P.

Proof. We have
IP(x +T(x)y) = Px —y || = |[P(x + T(x)y) = Px = P'(x)I(x)y|
+ [P (x)y —y |
= (1+a)' KTy [+ Cllyl = (1 + ) KBy [* + Cly||
=[(1+a)'KB" |y [+ Clly[ = [A+a)'KB"r" + Cl|ly|
=qlyl

it |ly||=r, where g¢q is arbitrary with C<g<1 and r=
(g - C)(1+ a)/KB'". Hence, by Lemma 3.1, I' is a bounded directional
contractor for P.

THEOREM 3.3.  Under the hypotheses of Lemma 3.4, P is a mapping
onto Y.

Proof. The proof follows immediately from Theorem [3] and
Lemma 3.4.
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4. Directional contractions. A generalization of the no-
tion of the contraction mapping in a Banach space can be given which is
based on the concept of contractor direction.

DeriNiTION 4.1, Let X be a Banach space. A mapping F: X — X
is called a directional contraction if there exists a positive number g <1
which has the following property.

For arbitrary x, y € X, there exists a positive number e = e(x,y) =1
such that

(4.1) [F(x +ey)—Fx|| = qelyll.

THEOREM 4.1.  Suppose that F: X — X is a directional contraction
and P is a closed operator, where Px = x — Fx. Then P maps the Banach
space X onto itself.

Proof. The proof follows from Theorem 2.2. Infact,ifye Y =X
is arbitrary and e is such that satisfies condition (4.1), then (2.1) is
satisfied with ¥ = x + ey. Hence, if follows that I',(P)= X. The addi-
tional requirement that || — x||= Be |y || is also satisfied with B =1.

REMARK 4.1. It is easy to show that Theorem 4.1 follows im-
mediately from the basic directional contractor theorem (Theorem
[4]). In fact, condition (4.1) coincides with the contractor inequality
(3.1), where Px = x — Fx and I'(x) = I for all x € X. This implies that
the identity operator [ is a bounded contractor for P =] — F.

The following fixed point theorem can be proved as a particular case
of Theorem 2.3.

THEOREM 4.2. Let S be an open sphere with radius r and center 6
(zero) in Banach space X and let F: § — X be a directional contraction on
S, ie., for each x €S and y € X with |y||=r, there exists a positive
e =€(x,y)=1 satisfying (4.1) and x +ey €S. If P is closed, where
Px=x—Fx and r >||F||/(1—q), then there exists an element x* € §
such that x* = Fx*.

Proof. It is easy to see that the hypotheses of Theorem 2.3 are
satisfied with x, = 6. Oviously, I'.(P) = X and condition (3) of Theorem
2.3 that r = B(1—q)"|| Px,|| is satisfied with B = 1 and g being chosen so
as to satisfy

g<g<1 and r>|Fo|/(1-q).
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5. Evolution equations. The directional contraction
method can be applied to prove an existence theorem for nonlinear
evolution equations.

Consider the initial value problem

(5.1) — = F(t,x), 0=t=T, x(0)=¢,

where x = x(t)is a function defined on the real interval [0, T] with values
in the Banach space X, and F: [0, T] X X — X. Denote by X; the space
of all continuous functions x = x(t) defined on [0, T} with values in X
and with the norm | x|lc = max[||x(¢)|: 0=t = T].

Instead of (5.1), we consider the integral equation

(5.2) x(t) - fo " F(s x(s))ds = £

as an operator equation in X; and we assume that the integral operator is
closed in Xn .

Suppose that there exists an integrable function K(¢), 0=t =T,
which has the following property. For arbitrary x, y € X; there exists a
positive number € = €(x,y) =1 such that, for all 0 =s =T, we have

(5.3) IF(s, x(s)+ ey(s)) = F(s, x(s)ll = K(s)ellyle-

THEOREM 5.1.  Suppose that the integral operator in (5.2) is closed in
Xy and that there exists an integrable function K(t) which satisfies (5.3)
and such that

(5.4) LT K(t)dt = q <1.

Then for arbitrary ¢ € X equation (5.2) has a continuous solution x(t).

Proof. It is easily seen that condition (5.3) implies condition (4.1) so
that the integral operator in (5.2) yields a directional contraction in
Xr. Thus, the proof follows immediately from Theorem 4.1.

DEerINITION S5.1. Let F(t,x) be continuous in (t,x)€[0, T] X X,
and suppose that there exists an integrable function K(t), 0=¢t=T,
which has the following property.

For each t €[0, T} and x, y € X there exists a positive € = €(x, y) =
1 such that
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(5.5) IF(t x +7y) = F(t, x)|| < K(t)r ||y

forall0=r=e=¢€(x,y)=1.

Then F is said to be Lipschitz demi continuous.

Let us suppose that F satisfies the following hypothesis.

Given two arbitrary continuous functions x =x(t) and y =
y(t) € X, there exists a sequence {e€,} convergent to zero such that for
any n > 0, there is a positive 8 which satisfies the following condition for
almost all n.

(5.6) e f IF(s, x(s)+ ey (s))— F(s, x(s))]|ds <,

where o C [0, T1]is an arbitrary subset of [0, T'] with measure u (w) < é.

THEOREM 5.2.  Suppose that F: [0, T]| X X — X is Lipschitz demi
continuous and satisfies conditions (5.4) and (5.6). Then the initial value
problem (5.1) has a solution.

Proof. Let us consider the equivalent problem of solving the
integral equation (5.2) for arbitrary £ € X. The proof will follow from
Theorem 4.1 if we can show that the integral operator is a directional
contraction. In other words, we have to show that € = €(x,y)=1 in
(5.3) depends on the continuous functions x, y € Xr. Let g be arbitrary
with ¢ < g <1, where q is defined by (5.4). Given arbitrary continuous
functions x = x(t), y = y(t) € Xy, putin (5.6) n = (G — q)||y ||c and let &
correspond to n. By a theorem of Lusin there exists an open subset
o C[0, T] with measure u (w) < 8 such that the function K is continuous
on [0, T)\w. It follows from (5.5) that for each interior point s €
[0, T]\w, there exists an open subset A(s) C [0, T]\w such that

IF@x () + 7y (@) = Ft, x (DI < KOy lle

for all t€A(s) and 0=7r=€=¢€(x(s),y(s))=1. Let {A(s)}, i=
1,2, -, n, be a finite subcovering of [0, T]\w, and put

€ =€(x,y)=min[e(x(s,),y(s)): 1=i=n],
where x, y € Xr. Then we have
(5.7) IF@x(0)+7y(1) = F(t, x(tD]| < K@)y llc
forall t€[0, T]\w and 0=7=¢,=1. Now, denote by € the number

& =¢€,. Such ¢ exists, since €,—~>0 as n—>o. Then it follows from
(5.6) and (5.7) that



18 MIECZYSLAW ALTMAN
[ 1 x(6)+ ey (50~ Fs 26l

= ["1FG () + ey ()= FGs x(s)lds

f[o, The IF (s, x(s)+ ey (s)) = F(s, x(x))] ds

+ J; | F(s,x(s)+ ey(s))— F(s,x(s))| ds

IA

=c [ K@slyle+@=aelyle

qe |y fe-

Hence, it follows that the integral operator in (5.2) is a directional
contraction.

REMARK 5.1. If the function K(t) is continuous on [0, T], then
condition (5.6) is superfluous.
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