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Let G(t) be a kernel in Class II. Necessary conditions in
order that a function f(x) be the convolution transform of
φ (t) E Lp ( - o°, oo) were obtained by the second author. Also it
was conjectured that the conditions are in fact sufficient. The
conjecture is indeed true and we prove it here.

Following the notation of [3] (see [3] §2) we have

THEOREM. Necessary and sufficient conditions in order that f(x)
possess the representation

f(x) = I G(x - t)φ(t)dt, y < x < oo

where φ(t)& Lp(-°o?oc) ( K p <oo) are that f(x)E C°°(γ,oo) and that

(1) sup Σ~ !/»(*-λ»)|'-H<co.

Furthermore,

(2) J_* \φ(t)\>dt = K

Necessity follows from [3], Theorem 2 for M(u)= \u\p. The equality
(2) is established in the proofs of Theorems 2, 3 in [3]. For the
sufficiency we shall need the following lemmas,

LEMMA 1. For every r > 0 ,

Σ — //„.,(-τ + λn + 1)= 1.

Proo/. By [3] (3.10),

sup
~x<θ<χ n=Q
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Thus, G(x) satisfies [3], (3.3) that is for ~OO<JC < u <*>,

G(x)= Σ~r~ Gk(u-λk)Hk+ί(x-u+λM).
k=Q Wfc + 1

Put u = x + T (T > 0) we have,

1 = ί Σ — Gk (x + r - λ, )H k + 1 (- T + A*+1)dx
j-oc k=o ak+\

o o - | /* x

= Σ H*+1(-τ + λt+I) Gk(x + τ-λk)dx
k=o ak+\ j-oc

LEMMA 2. If f(x)E C°°(γ, °°) and satisfies (1), ί/ien /or ei ery γ <
< w <oo?

Proof. We first show that the series converges.
By Holder's inequality we have

/ = Σ — \fk(u-λk)\Hk+ι(χ-u+λk+ι)
k=s ak+\

For N sufficiently large, the Hk 's are uniformly bounded (say by M) (see
[3] p. 444) and since q > 1,

^ (HM)1" by Lemma 1.

Now, by the Lemma in [3] p. 442 for every γ < x < u < °°,

fix) = Σ 7Γ~ /* (" ~ λ " )H^(χ ~u + λ*+.)+Λ» (x, u)
k 0 QkW

where

Rn(x,u)= fn+](t - λn+i)Hn+](x - t + λn+l)dt.
J x
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Since the series converges, so does Rn(x,u). In order to show that
jRn (JC, u)->0 (n —>°°), it suffices to find some subsequence {n}} such that
Rnj-->0 O"^ 0 0 )- To this end notice that (1) implies

Σ~ Γ\fn(t-κ)\"dt<^
n=0 Un + l Jx

and since Σ^oίl/tfn+i)^0 0, there exists a subsequence {nj such that

By Holder's inequality,

fu

\fnj(t — λnj

and since Hn (t) are uniformly bounded, Rnj (x, i

LEMMA 3. The series

is uniformly bounded in — oo < ^ < oo.

Proof. It is known that G(x) is bell shaped and non negative. (See
[1], p. 126). Let G(x0) = max G(x). Then G increases to the left of x0

and decreases beyond JC0. Hence

2 ~-G(θ + λn+ι)^ Γ

and

(λB+1 - λn )G'(Θ + μn) (λn <μn< λn+1)

^ sup G' (01 Σ
1

ιU
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REMARKS, (a) The same proof applied to Gk (t) (k = 1,2, ) gives
the same for the series Σ"= o(l/0n +i)G k (0 + λn+i). (b) Some slight modifica-
tions in this analysis yield that:

lim λ n + 1 ) = l .

LEMMA 4. Iff (x) e C°°(γ, α>) and satisfies (1), tfien /or γ < x < «,

/(x) = lim - u

:. By Lemma 2 and Holder's inequality,

Σ-r~fk(u-λk)G(x-u + λk+ι)

^ ( Σ ^ \fk(u - λk)\p \Hk+ί(x - u + λk+ι)-G(x - u

x ( Σ - 1 - \Hk+ί(x ~ w + λ k + 1 ) - G(x - u + λfc+1

1/p

Hn(t)-+ G(t) uniformly in (-oo5oo) as n->oo and for each fixed n,
JF/n(f)-*O, G(ί )->0 as ί-»-oo. Hence, it follows by (1) that for
γ < x < oo? the first series converges to zero as u —> oo, while the second
series is bounded uniformly in x, u by Lemmas 1 and 3.

We now proceed with the proof of the theorem.

Proof of sufficiency. Define the functions au(t), u > y by

0, t = 0.

Σ -r-Λ("-λn), ί>0.

Σ -^-/n(w-λn), ί<0.

For fixed ί, 0 < t < oo,

S Σ
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where Ak+2 > u > λ i+i and Ar+i ^u — t> λr. Hence

Ϊ<UJ

Similar analysis is done for - oo < t < 0. Hence au(t) are of variations
uniformly bounded in every finite interval in ( - °o? oo). By Helly (see [4]
p. 29) it can be shown that there is a sequence u} f oo and a function a(t)
of bounded variation in every finite interval such that aUj (t)-*a(t) for
- oo < t < oo. Lemma 4 implies

Γ G(χ-t)daUj(tl γ<x<oo.

For every r, | αM(ί) | - Var{αu(ί)} ̂  H 1 / p(i /1 4- l/a{)
Vq and since ίG(ί)->0

as oo? integration by parts yields

f(x) = lim G'(x - ί)αW/(ί)dί, γ < x < c o .

Now Gf(t) (\tI -f l/αi)1/q is integrable so that by Lebesgue's dominated
convergence theorem

G(x-t)da(t).

We conclude the proof as in [3] p. 448 and obtain that a(t) is the
indefinite integral of a function φ(υ)E L p (-oo, oo).

REMARKS, (C) An analogous representation theorem involving
integral conditions can be found in [1] p. 153. Notice that we allow here
representation in a half line, however, by Holder's inequality, the integral

G(x - t)φ{t)dt converges for every - oo < % < oo. Therefore condi-

tion (1) (which is required on a half line) defines a convolution transform

on ( - 0 0 , 0 0 ) .
(d) H is independent of γ and is given by

H=lim Σ ~ \fΛ(x-λH)\>.
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(e) For an = n, the convolution transform reduces to the Laplace
transform and our therorem yields [2], Theorem 1 for φ(t)ELp(0,°°).

(f) /(JC)Ξ=1 cannot be the convolution transform of a function
φ(r)GLp(-oo?oo) since

(g) Denote by X the set of real valued functions which belong to
C°°( - oo? oo) and satisfy (1). ||/|| = H1/p is a norm on X. Our representa-
tion theorem says that / E X if and only if f=G*φ where
φ E Lp(-oo>oo). Furthermore, ||/|| = | | φ | | . Equivalently, X and
JLP(-OO?OO) are isomorphic isometric.
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