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Let G(t) be a kernel in Class II. Necessary conditions in
order that a function f(x) be the convolution transform of
¢ (1) € L7 (— »,») were obtained by the second author. Also it
was conjectured that the conditions are in fact sufficient. The
conjecture is indeed true and we prove it here.

Following the notation of [3] (see [3] §2) we have

THEOREM. Necessary and sufficient conditions in order that f(x)
possess the representation

Flx) = f Glx—0)b(t)d, y<x<o

where ¢(t)E L?(— 0, ») (1 <p <) are that f(x)E€ C*(y,*) and that

() sp 3 o Ifx - AP =H <
Furthermore,
@ [REGIRE

Necessity follows from [3], Theorem 2 for M(u) = |u |”. The equality
(2) is established in the proofs of Theorems 2, 3 in [3]. For the
sufficiency we shall need the following lemmas,

LemMmA 1. For every T >0,

> L H . (mr+Aa)=1.

n=0 An+y

Proof. By [3] (3.10),
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Thus, G(x) satisfies [3], (3.3) that is for —o<x <u <o,

G(x = z Gk(u - Ak )Hk+1(x —-u+ /\k+l)-

Ay +1

Put u =x + 7 (7 >0) we have,
1= S L G +7= A ) Hen(— 7+ Aen)dx
% k=0 Ak+1

2 Hk+1(~ T+ Ak+1)

ll

‘a Hk+1(—7'+/\kﬂ) J' Gk (x+T—Ak)dx
k+1 —x

II

Lemma 2. If f(x) € C*(y,®) and satisfies (1), then for every y <
x<u <o,

f(x)= k}:(. a_kl_, fo (1= M) Hen(x = 1+ Aes).

Proof. We first show that the series converges.
By Holder’s inequality we have

Qo lfk (u — A )[Hk+l(x —u-+ /\k+x)

A

Ail=aP) (3 2 HE - u A

k=N Uk+1

(2

Ay +1

For N sufficiently large, the H,’s are uniformly bounded (say by M) (see
[3] p. 444) and since g > 1,

ES 1/q
I= H“"M“”( S L Hox-ut AH,))

N Qi+
= (HM)'" by Lemma 1.

Now, by the Lemma in [3] p. 442 for every y<x <u <o,

N1
f(x)= ;) ar fo(u = M )H(x —u + M)+ R, (x,u)
where

Rn (xa u) = fu fn+l(t - ArH—l)Hn-*-l(x —t+ Anﬂ)dt'
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Since the series converges, so does R, (x,u). In order to show that
R, (x,u)—0 (n — ), it suffices to find some subsequence {n;} such that
R,—0 (j—>x). To this end notice that (1) implies

f fo(E= A )|Pdt < oo,

n= 0 An+1

and since 25_(1/a,.,) ==, there exists a subsequence {n;} such that

j;u 'f"i(t_)‘":)'pdt—_)o’ j—)oo'

By Holder’s inequality,

[ Ia=apla—o, o=
and since H, (¢t) are uniformly bounded, R, (x,u)—0, j— .
LeEmMMA 3. The series

S

n=0 An+1

G(O + A"+])

is uniformly bounded in —o0 <6 <.

Proof. 1Itis known that G(x)is bell shaped and non negative. (See
(1], p. 126). Let G(xy) = max G(x). Then G increases to the left of x,
and decreases beyond x,. Hence

G(9+/\M)<f G(t)dt+— (x0)<l+—-G(x0)

0+ An+1>X0 Ay 41

and

G0+ 1) —f G(t)dt

0+inni=xo An+1

IIA

[G(O+ L)~ G(6+1,)]

O+An+1=x0 Ay 1

S A= A)G O+ 1) (A <t < Aos)
n+1

A

sup |G'(1)] >

—w< < n=0 an+1
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REMARKs. (a) The same proof applied to G, (t) (k =1,2,- -+ ) gives
the same for the series 25, (1/a,+1)Gi (6 + A,.y). (b) Some slight modifica-
tions in this analysis yield that:

G(~ T + /\n+l) = 1

LEmMMA 4. Iff(x) € C*(y,) and satisfies (1), then fory < x <,
ﬂﬂzng—LﬁarﬂUGu—u+MJ
u=® - Ar+1

Proof. By Lemma 2 and Hélder’s inequality,

'f(x)_g—a_}; fi(u = A)G(x —u+ Aeyr)

=31 L fo(u = A Her(x — u + M) = G(x — u + Asr)|

= < > 1 lfk(u—/\k)[x’|Hk+,(x—u+/\k+,)—G(x—u+/\k+1)1>1/p

R 1/q
X <z L !Hkﬂ(x “U+tA)—G(x—u +)\k+1)(> .

k=0 Ak+1

H, (t)— G(t) uniformly in (—,») as n— and for each fixed n,
H,(t)—0, G(t)—0 as t— —». Hence, it follows by (1) that for
vy < x <o, the first series converges to zero as u — «, while the second
series is bounded uniformly in x, u by Lemmas 1 and 3.

We now proceed with the proof of the theorem.

Proof of sufficiency. Define the functions «,(t), u >y by

([ 0, t=0.
Lrw-a), >0
a“(t) = < U>An+1Zu—t an+1 " " '
1

fulu—A,), t <0.

L uSAnc1<u—t YUn+l

For fixed t, 0 <t < oo,

\{(/;le]r {a. ()} = D ;}: |fo(u = A)]

U>An+1Zu—t
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= (St lhw-ar) (3 L)

Anit U>An+1ZU=t Ap 11

é Hl/p (/\kH - A, )I/q

where Ao > u > Ay, and A, =u—t>A,. Hence

l/q
Var {au(t)}éH”"(H— L ) .
[0,1] Ay

Similar analysis is done for —» <t <0. Hence a,(t) are of variations
uniformly bounded in every finite interval in (=, ©). By Helly (see [4]
p. 29) it can be shown that there is a sequence u; { « and a function a(t)
of bounded variation in every finite interval such that a, (t)— a(t) for
—o<t<w, Lemma 4 implies

f(x) = lim f G(x - )dan(t), y<x<w.

For every t, | o, (t)| = Var{a, (1)} = H"(|t|+ 1/a,)"* and since tG(t)— 0
as |t|— o, integration by parts yields

fx)= l"ll r G'(x — a, (t)dt, y <x <o,

Now G'(t) (|t|+1/a,)" is integrable so that by Lebesgue’s dominated
convergence theorem

fx) = f G'(x - Da(t)dr = f Glx - t)da(t).

We conclude the proof as in [3] p. 448 and obtain that a(t) is the
indefinite integral of a function ¢(v) €& LP(— o, x).

REMARKS. (c) An analogous representation theorem involving
integral conditions can be found in [1] p. 153. Notice that we allow here
representation in a half line, however, by Holder’s inequality, the integral

J' G(x — t)¢(t)dt converges for every —o < x <. Therefore condi-

tion (1) (which is required on a half line) defines a convolution transform
on (—®, ).
(d) H is independent of y and is given by

- 1

n=0 QAn+i

H = lim

[ fualx = A"
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(e) For a, = n, the convolution transform reduces to the Laplace
transform and our therorem yields [2], Theorem 1 for ¢(t) € L?(0, ).

(f) f(x)=1 cannot be the convolution transform of a function
¢ (1) € L?(— o, ») since

Lifa-a)pr =3t =w

[/ ) Q41

b

(g) Denote by X the set of real valued functions which belong to
C~(— o, ») and satisfy (1). ||f||= H" isanormon X. Our representa-
tion theorem- says that f€X if and only if f=G=*¢ where
¢ € L°(—»,©). Furthermore, ||f||=|¢||. Equivalently, X and
L?(—,) are isomorphic isometric.
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