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A local evolution system {U(t, s)} is defined and constructed
from a family of nonlinear, multi-valued operators {Λ(t)} with
common domain D, in a real Banach space X. In particular, it
is shown that there is a family of operators {U(t, s)} with
domains {D(t,s)} satisfying:

U(t9s):D(t9s)^>D,

DC U D(ί, s) for each s,
s<t

D(t,r)CD(s,r) for r ̂  s ^ ί,

U(U t)x = x for xGD(M)DD, and

U(s,r)D(t,r)CD(t,s) and t/(ί, s)t/(s, r) D ί/(ί, r).

The existence of {U(t,s)} is established by showing that
HmϊlKI- ΔttA(ti)yιx exists for x G D, where "lim" de-
notes the refinement limit. When this limit exists it is
called the product integral, and U(t,s)x is defined to be
this product integral.

The time dependent evolution equation

u'(t)EA(t)u(t), u(s) = x,

is also studied, and it is shown that when X* is uniformly
convex, a strong solution exists on [s, T]. Finally, the
notion of a solution of

u'(t)£A(t)u(tl ιι(0) = *,

with respect to {Dn} is defined, where {Dn} is a non-de-
creasing sequence of sets whose union is D. Such solu-
tions are shown to be unique, and an existence theorem is
proved in the case when X* is uniformly convex.

1. Local evo lut ion sys tems. If A assigns to each JC E X, a
subset Ax of X then A will be called a multi-valued operator in
X. The domain of A, D (A), is the set {x E X: Ax φ 0} . The range of
A, JR(A), is the set U{Ax: x E D(A)}.
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The usual operations on operators are defined for multi-valued
operators in a straightforward manner, see, e.g., [4].

A multi-valued operator A in X is said to be ω-dissipative if ω is a
non-negative real number and

Uxι-λyι)-(x2-λy2)\\*(l-λω)\\xι-x2\\

whenever xu x2G D(A), yx E Axu y 2E Ax2 and A >0.
Multi-valued, ω-dissipative operators are studied by numerous

authors. See, for example, [5], [7], [19], [16], [14], [18], and [20].

PROPOSITION 1.1. Suppose A is a multi-valued, ω-dissipative
operator and 0 < λω < 1, then

(1) (J-λAΓ

is a function, and

for x, y E R (I - λA).

(2) I K Z -

for x (ΞR(I-λA)ΠD(A), where | Ax | = infyeAx | |y ||.

(3) (I

for x G R(I - λA).
(4) // A > 0 and μ is a real number, then

— ( T — ) 4 i ι
 Y f^ T? I T — it A i.- . 11 Λ./-\ I A d. XV 11 Uj/Λ. I,

A A

and

\A A

for xER(I- λA).

Proof. See Crandall and Liggett [4].

Whenever working with a composition of functions the following
conventions are used.
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t\Tix=Tix,

UTix=Tk+1(t\Tlx),
i=l \ i=l I

k

Π TiX = x if k < j .

Let F be a mapping from [α, b] x [0, λ0] into the set of mappings on
X and let J C E X . For each partition l?={rI}Γ=o of [a, b] with
max1s/£Π Δr, < λ0, let the product Π"=1F(rι? Δr,)* be denoted by
Π*F(i?)jc. If there is a partition Po of [α, b] so that ||Π*F(P)x - w \\ < e
whenever P is a refinement of Fo, then one writes Π£ F(/, d/)x = w, and w
is called the product integral of F from a to b with respect to x. Some
theorems about product integrals are found in [9], [23], [24], and
[22]. Throughout the paper {A(t): 0 ^ t ^ T} will denote a family of
multi-valued operators with common domain D.

{A(t)} is said to satisfy Condition % if there is a non-decreasing
function if: [0, oo)^ [0, oo) such that

e

for x E D and 0 ^ s, t ^ T. Families of multi-valued operators which
satisfy Condition % are studied in [4], [5], [13], and [10].

{A(ί)} is said to satisfy Condition % if there is a non-decreasing
function iE\ [0, o°)-»[0, °°) a n d λo>O such that

whenever 0^5, t ^ T, 0 ^ λ < λ0, and x E D. Families of operators
which satisfy Condition ^ are studied in [4], [5], and [10].

Let Ax(A(t)) = Ax be defined by

Ax ={(τ,r): r>0 and B(x, r) Π D C R(I - λA(t))

for each t E [0, T] and 0 < A < r}.

{A (01 is said to satisfy Condition 3) if Λ x ^ 0 for each x E
D. Condition 3) on the family A(ί) = A implies Condition I of
[1]. See also [16].

Let 5 CX, 0< T, and let D(t,s)CS ίorO^s^t^T. A family of
operators {U(t, s)} is called a /oca/ evolution system on S if
U(t9s): D(t,s)-*S, and

(i) S C U4 < /D(ί, 5) for each s E [0, T)
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(ii) D(ί, r)CD(s, r) for 0 ^ r ^ s ^ t ^ T
(iii) U{t,t)x = x for x GD(t,t)DS
(iv) U(s, r)D{U r) C D(ί, 5) and C/(f, s)C/(s, r) D l/(ί, r) for 0 ^ r ^

5 ^ t ^ T.
In [7] Dorroh gives the definition of a local transformation semi-

group. The above definition may be viewed as a generalization of that
definition. Also, in a manner analogous to that in [7], one can show that
a natural way for local evolution systems to arise is from solutions of time
dependent nonlinear evolution equations.

THEOREM 1.2. Let {A{t): 0 ^ t ^ T} be a family of ω-dissipative,
multi-valued operators with common domain D, which satisfies Conditions
% 5T, and <#. Let x<ΞD, (λ(), r)<ΞAx, and O^s^t^ T. Then there
exists a positive real number b = b(s, x, r) such that if 0 < t - s < b, then
Π's /(/, dl)x exists, where J(ί, λ) = (/ - AΛ (t))~\

The proof of this theorem will be given after the proof of Theorem
1.3.

THEOREM 1.3. Let {A(t): 0 ^ t ^ T} be a family of ω-dissipative,
multi-valued operators with common domain D, which satisfies Conditions
3), %, and (€. Let E(t,s) denote the set of all vectors x belonging to D for
which Π; /(/, dl)x exists for s^t'^t. Then

| |Π; J(J, dl)x - Π;/(J, dl)y II ^ exp(ω(r - s))\\x - y \\

for JC, y E E(t, 5), and if we define U(t, s): E(t,s)->D by

c, xEE(t,s)
U(t,s)x = <

[lim Π; J(I, dl)xm xn G E (t, s), xn -* x

then {U(t,s)} is a local evolution system on D with D(t,s) = E(t,s).

Proof First note that for x, y G E(tys) there exists a partition P of
[s, t] such that if 0 < | | F | | ω < 1, and P' = {r,, r2, , rπ} is a refinement of
P, then

where μt = rt — Γ/_i. Therefore, for x, y G £(ί , 5)

IIΠ; /(/, dl)x - ΠI /(/, d/)y II g exp (ω (t - s)) || x - y \\,

and the first statement of the theorem is proved.
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Now let D(t,s) = E(t,s) and check the four properties of a local
evolution system.

Proof of (i). Let 5 G [0, T) and x G D. Choose t - s < b(s, x, r)
(see Theorem 1.2) for some r > 0 . By Theorem 1.2 it follows that
x G E(t, 5), and hence D C U s < f D(ί, 5).

Proof of (iv). One proves that U(s,r)E(t,r)CE(t, s). Then by
definition of £/(s, r) the result will follow for E(t, r). Let x G £(ί, r) and
ί'G[s, t]. Choose a sequence {i?n} of partitions of [r, ί'] such that
5 G i?n, and so that if Pn = Rn\[r,S), then any refinement R'n of Rn and any
refinement P'n of Pn have the property that

and

Let F^ be a refinement of Pn and yπ = Π;/(P^)JC. One shows that
yn G E(t, s) for large n, and noting that yn —> U(s9 r)x, it will follow that
U(s,r)x EE(t,s). Let e > 0 be given, and choose n large enough so
that 21 n < e. Let Qn = JRni[5,rΊ. Suppose that O^ is a refinement of Qn,
then IΊ:'J(OήUP:)jc is defined since Q'nUPr

n is a refinement of
jRn. However,

w; j(Q'nu P'n)χ =m j(Q'MJ(P'n)χ

= Πi'/(0:)y,

Thus Πi'/(Oή)yB is defined for each refinement Q'n of Qn. Next, let Q'n
and O'ή be refinements of Qn, then

because On U P'n and Q"n U P'n are refinements of Rn. Hence, by defini-
tion of E(t, 5), yn G £(?, s), and thus it follows that l/(s, r)x G E(ί, 5).

Now one proves that L/(ί, 5)17(5, r)x = U(t, r)x for x G JB(ί, r). Let
yn, i?n, Pn, and On be as above. Then by definition of ί/(ί, 5),
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U(t, s)yn -> U{U s)U(s, r)x. One proves that U(t, s)yn -» U(t, r)x. Let
β > 0 be given. Choose n large enough so that 1/n < e/2. Choose On,
a partition of [s, ί], so that ||Πί/(Oi)yn - J7(ί,s)yn|| < e/2. Now for
each such rc,

, 5)yπ - [/(r, r)x || < || [/(*, s)yn - Y[[J{Q"n)yn \\

+ \\nt

rJ(Q:UP'n)χ-U(t,r)x\\

<e

where Qή= Q'nU Qn. This is the desired result.
In order to prove Theorem 1.2, the following four lemmas are

needed. In these lemmas the notation given below is used.
(a) M(x) = supo^gr IA (t)x \ for x G D,
(b) J(ί,λ) = (J-λA(0)- 1 ,
(c) cr(μ, w) = ΣΓ=i μ« for any sequence {μ,} of real numbers,
(d) w(a,A?fc) = nf=1/(a + σ(λ )/),λ i) if σ(λ, fc)<Γ.

LEMMA 1.4. Let {A(t):0^t^T} be a family of ω-dissipative,
multi-valued operators with common domain D, satisfying Conditions 2
and X. Let x G D, s G [0, T), (Ao, r)GAx, b = b (s, x, r) =
min{T-5, r[exp(2ω(T-5))M(x)]"1}, {rJΓ=o te a partition of [s,s + b]y

and let μx = r, - rf_i /or i = 1,2, , n. Suppose that 0 < μ, < λ0 and
0<μ ί ω < i /or i = 1,2, ,n. // σ(μyk)<b for k = 1,2, •• , n
w (5, μ, A: )x is defined, u (5, μ, /c )x G B (JC, r) Π D, and || w (5, μ, k )x - x \\ <
σ(μ,/c)M(x).

LEMMA 1.5. Let the hypotheses of Lemma 1.4 be satisfied. If
σ(μ, k)< b for k = 1,2, , n, ί/ien

)w(s, μ, k)x I ̂  exp(2ωσ(μ, -

k k k

Mk — M{x) j | (1 + μ,L)4- ^ /̂ X ΓI (1 + î /̂ )?

and L = i?(r -f ||x ||). Furthermore, there is a constant R = R(s, JC, r) so
that if σ(μ, /c) < ft,

|A(rfc)M(s, μ, fc)x| ^ i? /or /c = 1,2, , n.

The proofs of Lemma 1.4 and Lemma 1.5 follow by induction on k,
using the Proposition 1.1. See also [1].
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As an aid in stating the following lemmas, the following notation is
introduced.

Let {αfe}, {bk} be sequences of nonnegative integers. For r ^ s and
0 ^ t ^ s - r + 1 let

A(r, s, t) = {(xn xr+u - , xs) E Rs~r+ι: exactly t of

the components are 1 and the remaining

components are 0}.

Let /: A (r, s,t)-*R be given by

cηt = at if Xi = 1

f(xnxr+u'",Xs):=Ylvi where I
U = 6. if *ι = 0 .

Finally, define

U H = Σ /(y)
r yeA(r,s,t)

For notational convenience iί s < r and ί ^ 0 define

LEMMA 1.6. Lβί ίfie hypotheses of Lemma 1.4 6e satisfied. Let
μu μ2, , μn ^ λ and 0 < λ < λ0. In addition, let ak = μfc/λ, 6k = 1 - afe,
sk = fcλ, mλ = b, for k — 1,2, , n,

Then

(i)

and

(») { m n

2, [a, b]jdm-ito
/=0 1

[
n-j+2

m —1 n — k n

Σ Σ [
fc=0 1 = 1 i + l
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for 1 ^ m ^ n7 where

j - \ 7-1 y-i

»μ/) Π ^ ( r " μ;) Π ^ ( Λ μ<)χ ~ ̂ (r/> μ/) Π J(r» μJ
i = l i = l ι = l

Proof of (i). See Crandall and Pazy [1].

The proof of (ii) involves a rather lengthy induction argument and
can be found in the appendix to the author's dissertation.

LEMMA 1.7. Let the hypotheses of Lemma 1.6 and Condition <€ be
satisfied. If σ(a,n)= m, then

(i) Σ [a,b]j(m - / ) = 2 , Σ akan-J+ι [ a,b]m-x,
;=0 1 j = m k = \ n-j+2

c

(ii) Σ ( m ~i)\ai H =Vm,

b]k \(m -k)-σ(aj)\ ^ myjm

(iv) dmn ^ exp(2ωmλ){2λy/m + λ2my/m}C for some constant

y=0

1-1 n-k

fc=() J = 0 i +

Proof The proof of the (i) involves another lengthy induction
argument and is given in the author's dissertation. The proof of (ii) is
similar to the proof of (iii) and is easier, so only the proof of (iii) is given

Proof of (iii).

m-l n-k n

Σ Σ f l < [a,b]k\(m-k)-σ(a,i)\
k=() /-() i + l

= Σ Σ at [a7b]k\(m-k)-σ(a,i)\

n - 1 n-t n

+ Σ Σ a. [a,b]k\{m-k)-σ{a,i)\
ι = n-m + \ k=() ι + \

^ Σ a, Σ [a,b]k\k- (α,+1 + + an)\.
i =l k=() i + l
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However,

Σi
fc=0

[a,b]k\k-(ai+ί+-' + an)\
I

{
n-ι n ϊ 1/2 f n-i n ϊ

Σ [a,b]k\ Σ [α,fe]fc(fc-(αi+1 + + αn))2

k=0 i + l J lfc=0 i + 1 J

= Σ fc2 [ a , b ] k - 2 ( a ι + 1 + -- + a n ) Σ k [ a , b ] k
1

1/2

Σ [
k=0 i +

Σ
k=0

1/2

Σ
k = j + l

n / n \ 2 Ί

- 2 ( α , + 1 + ••• + an) Σ ak + (Σ «*
k = i + l \ k = i + l / J

{ n n

Σ *- Σ
k = ι + l k = i + l

1/2

n l̂ 1/2

Σ ύ

Therefore,
m —1 n — k n

Σ Σa, [a,b]k\(m-k)-σ(a,i)
k0 0 i + 1

= m\/m.

This completes the proof of (iii).

Proof o/ (iv). Using Lemma 1.4, Lemma 1.5, Lemma 1.6 and
Condition Φ one can show that there are constants cλ = cλ(x) and
c2 = c2(s, x, r) so that

{ m „
λ Σ [a,b]j(m -j)cx

j=0 1

" nzj n

+ A ZJ Σ ^k^n-7+i [ α, fe]m_1c1
y = m fc = l n - +2

+ λ 2 Σ Σ a, [ a, b]k | ( ro - fc)- σ ( α , i)\c2]
fc=0 ι = l i + l J

for 1 ̂  m ^ n.
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Letting C = max(c,, c2) it follows from (i), (ii) and (iii) that

{ m n

2λ 2
n Λ

« [ a,b)k\(m-k)-σ{a,i)\ \C

;=0

m-\ n-k

Σ

This completes the proof of Lemma 1.7.
Now for the proof of Theorem 1.2.

Proof o/ Theorem 1.2. Let 6 < 0 be given. Let

Choose m() large enough so that

where C is chosen as in Lemma 1.7. Let P' = {r'}"^0 and P" = {r"}f=0 be
refinements of Pm,, satisfying Lemma 1.4. Then,

\\U[(P')x-n (P")x\\

2ωm01 ) \2 Vwo+ 2 moV^o[ C

< 6.

Thus Π'/(J, d/)x exists, and Theorem 1.2 is proved.

REMARK. Notice that if D CR(I- λA (r)), for r E [0, T] and 0 <
A < λ0, then choosing r = °o and b(s, x, r) = T— 5, the condition 0 ^
ί — 5 < b(s, x, r) becomes s ^ t ^ T. Hence Theorem 1.2 implies
Theorem 2.1 of Crandall and Pazy [6].

After obtaining these results, it was discovered that A. T. Plant [22]
had proven the existence of a slightly more general type of product
integral. He uses a stronger substitute for Condition 2) and his results
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only apply when there is a global evolution system. This proof is very
similar to Plant's except that he uses probabilistic methods instead of
mathematical induction.

2. Time dependent evolution equations. The results
found in this section are similar to those of Crandall and Pazy [6] and
Brezis and Pazy [1].

Let { A ( ί ) : 0 ^ r ^ T } be a family of multi-valued operators with
common domain D. Let x E D and s E [0, T).

A function u: [s, T]—>X is said to be a strong solution of

u'(t)E A(t)u(t), u(s) = x

if u satisfies the following conditions:
(i) u is Lipschitz continuous;
(ii) u'(t) exists a.e. on (s, T); and
(iii) u(t)GD a.e. on (s, T), u(s) = JC, and w'(ί)E A(t)u(t) a.e. on

(s, Γ).

THEOREM 2.1. Let {A(t): 0 ^ t ̂  T} be a family of ω-dissipative,
multi-valued operators with common domain D, satisfying Conditions 3),
J{, and <β. Let x ED, s E [0, Γ), and (λ0, r) E Λx. // ί/ze problem

u'(r)G A(ί)u(ί), u(s) = jc

/ιαs α sίrong solution u on [5, T], ί/ien

ί7(ί, s)x = u(t) on [s,s+-b),

where b is chosen as in Theorem 1.2.

Proof. The proof of this theorem follows from Theorem 1.2 using
arguments like those found in [6].

Let X* denote the dual space of X. Let (JC, /) denote the value of /
at JC, for x E X and / E X * . The duality mapping F is the mapping of X
into X* defined by

The following three facts are well-known, see [13].
(1) If X* is uniformly convex then F is single-valued and uniformly

continuous on bounded sets.
(2) Let JC, y E X. Then || x || ^ || x + ay || for every a > O.if and only

if there is an / E F ( J C ) so that <y,/>^0.
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(3) Let u be an X-valued function on an interval of real
numbers. Suppose u has a weak derivative « ' ( s)6Xats . If || u{ )|| is
also differentiate at s, then

ιι«ωιι^ιι«ωιι = <«'(*),/>

for every / E F(u(s)).
Let { A ( ί ) : 0 g ί i Γ } be a family of multi-valued operators with

common domain D. {A (t)} is said to satisfy Condition M if whenever
ί n £(0, T) and (xn,yn)EA(ίn), n = l,2,3, •••, and tn-*t, xn-*x, and
yn--y, then (x,y)EA(ί).

Multi-valued operators satisfying this type of condition are studied
in [17].

The existence theorem which follows and its proof are generaliza-
tions of the work of Brezis and Pazy [1] to the time dependent case.

THEOREM 2.2. LetX* be uniformly convex. Let {A(t): O ^ ί g T }
be a family ofω-dissipative, multi-valued operators with common domain
D, satisfying Conditions 3), 3ίf, % and M. Let x E D and s E [0, T), then
there exists a unique strong solution to the initial value problem

u'(t)GA(t)u(t), u(s) = x

on the interval [5, T].

The three lemmas below and the following definition are needed in
the proof of this theorem.

Let {A (t): 0 ̂  t ^ T} be a family of multi-valued operators. {A (t)} is
said to satisfy Condition 91 if whenever tn E [0, T] and (xn,yn)E A(tn)
n = 1,2, and xn -» x, yn -> y, tn -» ί, then (x, y ) E A (f).

LEMMA 2.3. Lei X* ί>e uniformly convex. Let {A(t): O ^ ί g T }
be a family ofω-dissipative, multi-valued operators with common domain
D, satsfying Conditions 3), %, and Jί. Let x E D, (λ0, r) E Λx, s E [0, T)
and b = b(s, x, r). // ί/ie sequence of functions {un} defined below
converges pointwise to a function u on [s,s + b), then u(t)ED for

Proof Define the sequences un:[s, s + b)

vn:

as follows:



LOCAL EVOLUTION SYSTEMS IN GENERAL BANACH SPACES 209

Let {λn} = {bin} and {/-,„} = {s + /λn} for i = 0,1,2, , n. Then

un(t)= u(s,λ,k -l)x for rk-hn S ί < rfc>π, fc = 1,2, •••, n

and

U B ( 0 = κ(s,λ, fc - l)x + — [ i φ , λ , fc)x - i φ , λ , fc - l ) x ] ( ί - r M )
An

for rk_1>π ^ ί < r M , fc = 1,2, •• , n.
Let ί E [5,5 + ft) and choose a sequence of nonnegative integers {fcn}

so that tn = 5 + fcnλn, ίw < ί, and t- tn< λn. Letting jtΛ = /(*„, λn)ϋΛ(ίn),
and yn = A ^ / ^ , λ n ) υ n ( ί n ) - ϋΛ(ίπ)], we obtain that yn EA(tn)xn and that
\\yn\\^(\- λnω)~ι\A(tn)vn(tn)\. Thus, it follows from Lemma 1.5 that
{yn} is bounded. Because X* is uniformly convex, yn k-^y for some
subsequence {yΠk} of {yn} and some y EX. Using Lemma 1.5 and the
fact that vn(t)-> u(t) if aαd only if un(ί)-> u(t), it is not hard to show that
Xn-*u(t). Thus by Condition M (u(t),y)E A(t), i.e., u{t)ED.

LEMMA 2.4. Let X* be uniformly convex. Let {A{t)\ 0 ^ t ̂  Γ}
be a family of ω-dissipative, multi-valued operators with common domain
D satisfying Condition (3i. Let A(t)xdB{t)x for x E D, where
{B(t): O^t^T} is also ω-dissipative. Suppose that D(B(t)) = DB for
each t E [0, T], Suppose that for each x E DB, there is a ball B(x, r) and
a number A0>0 such that

B(x,r)ΠDBCR(I-λA(t))

for 0< A < λo, and O^t^T. Suppose that 0 ^ s < b'< Γ, and that
there is a function u: [s, &']—» X satisfying: u(t)E DB for t E [s, b% u is
differentiable a.e. on (s, ft'), and u'(t)EB{t)u{t) a.e. on (5, ft'). Then
u{t)ED a.e. on (5, ft'), and u\t)E A(t)u(t) a.e. on (s, ft').

Proof. Choose / E (s, ft') so that x = u(t) E DB, w is differentiable
at ί, and uf(t)E B(t)u(t). Let λ0 and r be chosen such that

B(x,r)ΠDBCR(I-λA(t))

for 0 < A < λ0 and 0 ̂  t ^ Γ. Note that for ί' close to ί, w(ί') G J3(JC, r),
since w is continuous at t. Choose an increasing sequence {tn} so that
tn —»ί and let λn = t - tn. Then

u (ίn) G B (x, r) Π D β C JR (/ - AnΛ (ίn))

for large n. So (/ - λnA (tn ))~ι u (tn) = xn G D, and u (ίn) = xn - λnyn for
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some yn G A(tn)xn CB(tn)xn. Since u!(t)E:B(t)u{t) and B(t) is ω-
dissipative,

Now let

Then

Thus,

*n ~ n^" ~

and

\φ(tn)-\ :—" , F(x — xn)) ^ ω | |x — xn ||
2.

\ λn I
So

\<p{tn), Γ {X — Xn)) ^ - I) X — Xn (I ,

or

or

Therefore, xn —» JC. Now

for large rc, so that yn —> w'(ί). Hence Condition 5$ shows that
A(ί)w(r) and the proof is complete.
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LEMMA 2.5. Let X be a reflexive Banach space and let {vn(t)} be a
sequence in Lp(a, b X), p > 1, such that {vn(t)} is bounded for almost all
t E(a,b). Let V(t) denote the set of weak cluster points of {υn(t)}. // υn

converges weakly to u in Lp(a, b X) then u(t) belongs to the closed convex
hull of V(t) a.e. on (a, b).

Proof See Kato [14].

Proof of Theorem 2.2. The proof of the uniqueness of solution is
standard and will not be given here.

Define B(t), an extension of A(t) for t G [0, Γ], as follows:

D(B(t)) = D for 0 g t ^ T7 and

B(t)x = closed convex hull of A(t)x.

B(t) is ω-dissipative for each t G [0, T]. Let 0 < bf < b, and
x E:D. Then by Theorem 1.2, the sequence {un} of functions defined in
Lemma 2.1 converges uniformly to U(t, s)x on [s, b'].

Let u(t)= U{t,s)x. Then by Lemma 2.3, u(t)GD for ίG
[s, b']. Also, note that since u is Lipschitz continuous and X* is
uniformly convex, u\t) exists almost everywhere on (5, s + bf).

Let {vn} be the sequence of functions defined in Lemma 2.3. We
show that v'n-^ uf in Lp(s, 5 + b'\ X) for 1 < p < 00. Since wn converges
uniformly to w, it follows that vn also converges uniformly to u on
[5, s + />']. Thus

v'n(t)f(t)dt-+- j u(t)f(t)dt,

for / G Cί(s, 5 + b'\ R) where C'0(a,b;R) denotes the continuously dif-
ferentiable real-valued functions which vanish outside of (a, b). Note
also that

j u\t)f(t)dt

for feCΌ(s,s + b';R), so that

) ( J ^ * u\t)f{t)dt

for / G Co(s, 5 + 6'; 1?) and g G X * . Since the Lipschitz norm of v'n is
bounded, it follows that some subsequence {v'nk} of {v'n} converges to
some element w belonging to Lp, for 1< p < 00. Thus,
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for /G Cό(s, s + &';#) and g G X*, so it follows that w = w'and ϋ;,--«'
in Lp.

Next observe that from Condition M it follows that the set of weak
cluster points of {υ'n(t)}9 denoted by V(t), is contained in A{t)u(t). Thus,
from Lemma 2.5,

u\t)G V(t)Cclosed convex hull of A(t)u(t)

= B(t)u(t).

Now since {A (t): 0 ̂  t ^ T} and {B(ί): 0 ̂  ί ^ T} satisfy the hypothesis
of Lemma 2.4,

w'(ί)G A(ί)w(ί) a.e. on (5, s + bf).

Next, show that u is a solution on [5, T]. Let w be a solution on
[5, Tl], where Tx is maximal. If T^T, choose tn->T. Then
w(ίn)—> Wo G X, because w is Lipschitz continuous. Since {A (t): 0 ̂  t ^
T} satisfies Condition Jί, w0 G D. Hence consider the problem

(ί), M(T1)=IIO.

It will have a solution i)(ί) on [Ti, T^). Letting

ru(0 on [syTλ]

U(0 on [Γ^ΓJ

extend the original solution, contradicting the maximality of Tx.
This concludes the proof of Theorem 2.2.

3. A local abstract Cauchy problem. In [1], Brezis and
Pazy show that if X* is uniformly convex, and A is a dissipative,
demi-closed operator which satisfies Condition I, then the initial value
problem

u'{t)E.Au(t\ M(O) = JC

has a unique global solution. The techniques of Brezis and Pazy may
also be used in solving a local abstract Cauchy problem of a similar
nature. Attention is confined to multi-valued operators which satisfy
the Condition tf below.
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Let {A(t): O^t^T} be a family of multi-valued operators with
common domain D. {A (ί)} is said to satisfy Condition $f if there is a
non-decreasing sequence of sets {Dn} so that D = U*=i £>„, and sAn(t) =
A(t)(Dn is ωn -dissipative with 0 ̂  ωλ ̂  ω2 ̂  * .

Multi-valued operators satisfying similar conditions are studied in
[3].

In the pages which follow, the problem

u'(t)eAn(t)u(t), u(0) = x£Dι

will be denoted by ACPn, and the problem

u'(t)e A(t)u(t)9- u(0) = x

will be denoted by ACP.
Now consider the problem of finding a solution of ACP with

u(0) = x G Du where {A(t)} satisfies Condition Sf. It is easy to show
that if x E Du and ACPn has a solution on [0, bn) and bn —» ft, then ACP
has a solution on [0, b). This is proved in Theorem 3.3. With only the
Condition 5̂ , this solution does not have to be unique, as the following
example illustrates.

Define A:Rx[0, l ]\(0, 1) x (0, l)-» R x R, by

A(x,y)

(0, 0), - oo < x g 0, 0 =i y

(x, 0), O ^ x ^ l , y = 1

(1,0), l ^ x <oo, 0 ^ y g

(V^0), O ^ x ^ l , y = 0 .

Let Dn = D(A )\(0, n"2) x {0}. Then A (ί) = A satisfies Condition
ίf. In particular, each An is n -dissipative, closed, and satisfies Condition
3). Thus it follows from Theorem 2.2 that ACPn with x = (0, 0) has a
unique solution. This solution is, of course, un(t) = (0, 0). However, ACP
with x = (0, 0) has u(t) = (ί2/4, 0) for 0 ̂  t ̂  2 as a solution, together
with w(ί) = (0, 0). We therefore make the following definition.

Let {A(t): 0^t ^ Γ} be a family of multi-valued operators with
common domain D, which satisfies Condition Sf, with D = U " = 1 D n M is
said to be a solution of ACP with respect to {Dn} on [0, ft), if for each
t0E [0, 6), w is a solution of ACPn on [0, t0) for some n = n(t0).

In the above example, u(t) = (ί2/4, 0) is not a solution of ACP with
respect to {Dn}, while u{t) = (0, 0) is such a solution.

THEOREM 3.1. Let {A(t): O^t^T} be a family of multi-valued
operators with common domain D. If {A(t)} satisfies Condition iP with
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D = U^=i Dn, then ACP with x ELDX has at most one solution with respect
to {Dn} on the interval [0, b).

Proof. Suppose that u and υ are solutions of ACP with respect to
{Dn} on [0, fc). Choose ί 0 e[0, b). Then u(t)EDn and u'(t)E
An(t)u(t) for some n and almost all t G [0, b). Also, v(t)GDm and
D'(ί)EAB(ί)ι;(ί) for some m and almost all f E[0, fe). Suppose that
m < n. Then

= <«'(*)-«'(0,/(0>

because

v'(t)GAm(t)v(t)CAn(t)υ(t),

and

Hence, if t E [0, t0) then

\\u(t)-v(t)\\^ωn ί' \\u(s)-v(s)\\ds,
JO

and it follows that u(t) = u(ί). Since t0 was arbitrary, w(ί) = v(t) for all

REMARK. An interesting question whose answer is unknown to the
author is: If u is a solution of ACP with respect to {Dn} and v is a solution
of ACP with respect to {£„}, where D = U:= 1 Dn = U:= 1 En, does w = v?

THEOREM 3.2. Lβί {A(ί): O^t^T} be a family of multi-valued
operators with common domain D, which also satisfies Condition &. If un

is a solution of ACPn on [0, £>„), and if 0 < f t 1 g έ 2 = " S then un =

Proof The proof is straightforward and will not be given.

THEOREM 3.3. Let {A(t): O^t^T} be a family of multi-valued
operators with common domain D, which satisfies Condition ίf. If un is a
solution of ACPn on [0, bn), with {bn} increasing and bn-*b, then
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(ux(t) on [0, bι)

11(0=]

U π + 1 ( 0 on [ftn, bn+1) n = 1,2, •

is α solution of ACP wiί/i respect to {Dn} on [0, fc).

The proof is omitted.

THEOREM 3.4. LetX* be uniformly convex. Let {A(t): O^t^T}
be a family of multi-valued operators with common domain D. Suppose
that {A(t)} is ω-dissipative and satisfies Conditions 2), JK, and %. Let
A(t) denote the smallest extension of A(t) for which {A(t): 0 ^ / S T }
satisfies Condition M. Let A (t)x denote the closed convex hull of A(t)x
for x E D(A{t)). Then there is a number b >0 and a unique function
u: [0, b)-+ Xsuch that u\t)E. A(t)u(t) a.e. on [0, b), andu(0) = x E D.

Proof Let b be as in Lemma 1.4. Let un: [0, b)-*X, and
vn: [0, b)—>X, be as in Lemma 2.3. Then by Condition M, as in the
proof of Lemma 2.3, if ίG[0, b) and un{t)-> u(t), then

i ι ( 0 e D ( A ( Γ ) ) C D ( A ( 0 ) .

Now as in the proof of Theorem 2.2 it follows that u\t) exists a.e. on
(0, ί>), and !*„—* u' in Lp(0, b X) for 1 < p < oo. Again, as in the proof
of Theorem 2.2 it follows that the set of weak cluster points of {v'n(t)},
denoted by V(ί), is contained in A (t)u (t). Finally, using Lemma 2.5,

u'(t)E. closed convex hull of V(t)

Cclosed convex hull of A ( 0 M ( 0

= A(0M(0

for almost all t E (0, b). This concludes the proof of Theorem 3.4.

THEOREM 3.5. LetX* be uniformly convex. Let {A{t): O^t^T}
be a family of multi-valued operators with common domain D. Suppose
that {A(t)} satisfies Condition £f with D = U"=ιDn, and each
{An(t): 0 ^ t ^ T} satisfies Conditions 3), % and % and that

An(t)CAn+ί(t)

(see Theorem 3.4) for each positive integer n and each t E [0, T]. Then
there is a number b > 0 and a unique function u: [0, &)—» X so that u is a
solution of ACP with respect to {Dn} on [0, b).
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Proof. The family {An(t): O^t^T} satisfies Conditions % % and
% so by Theorem 3.4 there exists^ a number bn>0 and a function
w«:[0, bn)-^>X such that u'n(t)G An(t)un(t) a.e. on [0, bn) for n =
1,2,3, . Thus, wi(ί)G An+I(ί)wn(r) a.e. on [0, bn). If the sequence
{&„} is bounded, let b = supn{bn}; otherwise, let b- + °°. In either
instance, iί bk = b for some fc, define u: [0, &)—>X by u(t)= uk{t). If
bnτ^ b for all n, then select an increasing subsequence {bnk} of {2>n} so that
bnk-^b and define u: [0, b)-^>X as in Theorem 3.3, and the result
follows from that theorem.

The uniqueness follows from Theorem 3.1.

Now consider alternative approaches to solving the problem

u'(t)eA(t)u(t), u(0) = x,

where {A (t)} satisfies Condition $f. In order to facilitate the discussion,
consider the specific case in which X = R, A(t)x = Ax = x2 for
x G {X G R : x ^ 0} = D(A), and Dn = [0, n). Letting bn = (n - x)/nx
for x G Dn, one gets un(t) = x/(l- tx) as solutions of ACPn on [0, bn).

Theorem 3.1 of [1] does not apply to ACPn because An is not closed,
and it does not apply directly to u' G Anw, or uΈAnu because the
operators An and An do not satisfy Condition I of [1].

In Theorem 3.5, this problem is solved by using the methods (but not
the results) of [1] because An CAn+1.

It should be noted that Theorem 3.1 of [1] can be applied in a
different way, at least in this example. Let

if 0 g x < n

x = n

Then A * is closed and satisfies Condition I. Furthermore, the solution
υn of vΈA*v agrees with un on [0, bn) and is constant thereafter.

It is not clear that this method of finding closed extensions of An

which satisfy Condition I can be generalized. This process may some-
times be possible, at least in Hubert spaces, by using methods like those
in [2]. However, even if such extensions can be found, it is not clear
how a solution of ACP can be constructed from the solutions υn of
v'G A*nv. This is because one would not know in general that v'n{t)G
Avn(t), or even that vn(t)G D, for small positive t. It can happen, for
example, that Anυ is properly contained in A *υ for υ G Dπ, and Dn is not
open in D(A*n). See Example 2 in [7].
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