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A local evolution system {U (¢, s)} is defined and constructed
from a family of nonlinear, multi-valued operators {A (¢)} with
common domain D, in a real Banach space X. In particular, it
is shown that there is a family of operators {U(t, s)} with
domains {D (1, s)} satisfying:

U(t, s): D(t,s)— D,

D c U D(ts) for each s,

s<t

D(t,r)yCD(s,r) for r=ss=t

b4

U(ttyx=x for x€D(,t)D D, and
U(s,r)D(t,r)CD(t,s) and U(t,s)U(s,r) D U(t,r).

The existence of {U(t, s)} is established by showing that
IimIL(I — AtA(t)) 'x exists for x € D, where “lim”’ de-
notes the refinement limit. When this limit exists it is
called the product integral, and U(¢, s)x is defined to be
this product integral.

The time dependent evolution equation

u'(t)ye A(t)u(e), u(s)=x,

is also studied, and it is shown that when X * is uniformly
convex, a strong solution exists on [s, T]. Finally, the
notion of a solution of

u'(t)ye A(u(e), u(0)=x,

with respect to {D,} is defined, where {D,} is a non-de-
creasing sequence of sets whose union is D. Such solu-
tions are shown to be unique, and an existence theorem is
proved in the case when X * is uniformly convex.

1. Local evolution systems. If A assignsto each x € X| a
subset Ax of X then A will be called a multi-valued operator in
X. The domain of A, D(A), is the set {x € X: Ax# J}. The range of
A, R(A), is the set U{Ax: x € D(A)}.
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The usual operations on operators are defined for multi-valued
operators in a straightforward manner, see, e.g., [4].

A multi-valued operator A in X is said to be w-dissipative if w is a
non-negative real number and

e = Ay) = (= Ayl = (1 - Aw)]x — x|
whenever x,, x, € D(A), y, € Ax,, y, € Ax, and A >0.
Multi-valued, w-dissipative operators are studied by numerous

authors. See, for example, [5], [7], [19], [16], [14], [18], and [20].

ProposITION 1.1. Suppose A is a multi-valued, w-dissipative
operator and 0 < Aw <1, then

(1) (I-2rA)"
is a function, and
[(I-2A)Y 'x —(I-2A) "y [ = (1 - Ae)x -y
for x, y € R(I— AA).
2) I =2A)"x — x| =A(1~ Aw) [ Ax|
for x ER(I-AA)N D(A), where |Ax|=inf,eallyl.
3) (I-AAY'x —x EAA(I - AA) 'x

for x € R(I1 - AA).
4) If A >0 and pn is a real number, then

&y X+ AT K —H (1-2A)'x €R(I - pA),
and

(I-AA)'x = (I - pA)" ( x4+ At (- aay )
for x € R(I1 - AA).
Proof. See Crandall and Liggett [4].

Whenever working with a composition of functions the following
conventions are used.
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Let F be a mapping from [a, b] X [0, A,] into the set of mappings on
X and let x € X. For each partition R ={r};, of [a,b] with
max,<;=, Ar, < Ay, let the product II', F(r,Ar)x be denoted by
L F(R)x. If there is a partition P, of [a, b] so that |[IILF(P)x —w|<e
whenever P is a refinement of P,, then one writes II; F(I, dI)x = w, and w
is called the product integral of F from a to b with respect to x. Some
theorems about product integrals are found in [9], [23], [24], and
[22]. Throughout the paper {A(t): 0=t = T} will denote a family of
multi-valued operators with common domain D.

{A ()} is said to satisfy Condition ¥ if there is a non-decreasing
function £: [0, ©)— [0, ®) such that

|A@Wx] =A@+t =s|L(x[DA+[A(s)x])

for x€ED and 0=s, t =T. Families of multi-valued operators which
satisfy Condition ¥ are studied in {4], {5], [13], and [10].

{A(¢)} is said to satisfy Condition € if there is a non-decreasing
function £: [0, ©)— [0, ®) and A,>0 such that

II=2AA @) x =T =2A ) 'x | = ALt = s| L x AL +]A(s)x])

whenever 0=s, t=T, 0=A <A, and x € D. Families of operators
which satisfy Condition € are studied in [4], {5], and [10].
Let A.(A(t))= A, be defined by

A, ={(r,r): r>0 and B(x,r)N D CR(I—-AA(t))
for each r€[0,T] and 0<A <7}

{A(t)} is said to satisfy Condition & if A,# & for each x €
D. Condition @ on the family A(t)= A implies Condition I of
[1]. See also [16].

Let SCX,0<T, andlet D(t,s)CS for0=s=t=T. A family of
operators {U(t, s)} is called a local evolution system on S if
U(t,s): D(t,s)— S, and

(i) ScU.., D(,s) for each s €[0, T)
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(i) D(r)CD(sr)for0=sr=s=t=T

(i) Ut)x=x forxeD(,t)DS

(iv) U(s,r)D(t,r)CD(t,s) and U(t,s)U(s,r) D U(t,r)for0=r=
s=t=T.

In [7] Dorroh gives the definition of a local transformation semi-
group. The above definition may be viewed as a generalization of that
definition. Also, in a manner analogous to that in [7], one can show that
a natural way for local evolution systems to arise is from solutions of time
dependent nonlinear evolution equations.

THEOREM 1.2. Let {A(t): 0=t =T} be a family of w-dissipative,
multi-valued operators with common domain D, which satisfies Conditions
D, K, and €. Let x €D, (A, r)EA,, and 0=s=t=T. Then there
exists a positive real number b = b(s, x, r) such that if 0<t— s <b, then
[LJ(1 dl)x exists, where J(t, A\)= (I — LA (¢))".

The proot of this theorem will be given after the proof of Theorem
1.3.

THEOREM 1.3. Let {A(t): 0=t =T} be a family of w-dissipative,
multi-valued operators with common domain D, which satisfies Conditions
9, ¥, and €. Let E(t, s) denote the set of all vectors x belonging to D for
which 11V J(I, dI)x exists for s =t'=t. Then

I, dD)x = IEJ(L dDy || = exp(o(t = s))|lx = y|
for x, y E E(t,s), and if we define U(t,s): E(t,s)—> D by

INJ(, dl)x, x € E(t,s)

U(t,s)x =1
1132 IJ(L dl)x,, x, € E(t,s), x, > x € E(t,s),

then {U(t,s)} is a local evolution system on D with D(t,s)= E(t,s).

Proof. First note that for x, y € E(t, s) there exists a partition P of
[s,t] such that if 0<||P|lw <1, and P'={r, r,,- -, r,} is a refinement of
P, then

1 ! . ! : ]
I Pyx -1 a Pyl = 17—

bx =y,
where w, =1, —r_;. Therefore, for x, y € E(t, 5)

I J(L, dl)x = TEJ (L dD)y || = exp(w(t = s))[x = yll,

and the first statement of the theorem is proved.
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Now let D(t,s)= E(t,s) and check the four properties of a local
evolution system.

Proof of (i). Let s€[0,T) and x € D. Choose t—~s <b(s,x,r)
(see Theorem 1.2) for some r>0. By Theorem 1.2 it follows that
x € E(t,s), and hence D C U,_, D(t, s).

Proof of (iv). One proves that U(s,r)E(t,r)CE(t,s). Then by
definition of U(s, r) the result will follow for E(t,r). Let x € E(t,r) and
t'€[s,t]. Choose a sequence {R,} of partitions of [r,t'] such that
s € R,, and so that if P, = R,,;, then any refinement R, of R, and any
refinement P, of P, have the property that

IMET(R)x - U r)x]|| < '3;,

and

M J(P!)x — U(s, r)x || < % _

Let P, be a refinement of P, and y, =II;J(P,)x. One shows that
y. € E(t,5) for large n, and noting that y, — U(s, r)x, it will follow that
U(s,r)x € E(t,s). Let € >0 be given, and choose n large enough so
that 2/n <e. Let Q, = R,.;. Suppose that Q; is a refinement of Q,,
then II; J(Q,U P))x is defined since Q,UP, is a refinement of
R,. However,

I J(Q,UPYx =T TJ(Q)ILJ(P)x
=11 J(Q})y.

Thus IT{ J(Q})y. is defined for each refinement Q, of Q,. Next, let Q,
and Q! be refinements of Q,, then

[T J(QL)y. — T T(Q Wy, |

M J(QLUPYx — Ut r)x || + | Ut r)x =TIV J(Q4 U P)x||
1.1
n n

=|

A

<e,

because Q,U P, and Q,U P, are refinements of R,. Hence, by defini-
tion of E(t,s), y. € E(t,5), and thus it follows that U(s,r)x € E(1, s).

Now one proves that U(t, s)U(s,r)x = U(t, r)x for x € E(t,r). Let
y» R. P, and Q, be as above. Then by definition of U(ts),
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U(t,s)y.— U(t,s)U(s,r)x. One proves that U(t,s)y, — U(t, r)x. Let
€ >0 be given. Choose n large enough so that 1/n <e/2. Choose Q,,
a partition of [s,t], so that [[IILJ(Q})y, — U(t,s)y.|| < €/2. Now for
each such n,

UG s)yn = UG r)x | < UG s)yn = TET(Q )y |
+|TLJ(QLU PYx — Ut r)x |

<€

where Q7= Q,U Q,. This is the desired result.

In order to prove Theorem 1.2, the following four lemmas are
needed. In these lemmas the notation given below is used.

(@) M(x)=supy==r | A(t)x| for x € D,

(b) J(tA)=(I-AA())",

(c) o(u,n)=2Z",u for any sequence {u;} of real numbers,

d) u(a, k)= J@+ari)A)if oA, k)<T.

LEmMMmA 1.4. Let {A(t):0=t=T} be a family of w-dissipative,
multi-valued operators with common domain D, satisfying Conditions &
and X. Let x€D, s€[0,T), (A,r)EA, b=b(sxr)=
min{T — s, rlexpRa (T — s))M(x)]'}, {r.}i-o be a partition of [s,s + b],
and let w; =r,—r_, fori =1,2,---,n.  Suppose that 0 < u; < A, and that
O0<pw <3} for i=1,2,---,n If o(n,k)<b for k =1,2,--+,n then
u(s, w, k)x is defined, u(s, u, k)x € B(x,r)N D, and |u(s, u, k)x — x| <
o(u, k)M(x).

LEMMA 1.5. Let the hypotheses of Lemma 1.4 be satisfied. If
o(u, k)<b fork =1,2,---, n, then

[A(ru(s, u, k)x| = exp Qoo (u, k)M,

where
k k k
M = M) [T+ pL)+ 2wl [ (14 L),
and L =% (r+|x|). Furthermore, there is a constant R = R(s, x,r) so
that if o(u,k)<b, then
[A(ru(s,u,k)x| =R for k=1,2,---,n

The proofs of Lemma 1.4 and Lemma 1.5 follow by induction on k,
using the Proposition 1.1. See also [1].
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As an aid in stating the following lemmas, the following notation is
introduced.

Let {a.}, {b.} be sequences of nonnegative integers. For r =s and
O0=st=s—r+1let

A(r, s, t)y={(x, X,s1, -+, X, ) € R*7"": exactly t of
the components are 1 and the remaining

components are 0}.
Let f: A(r,s,t)— R be given by

s n=a if ;=1
f(xn xH—la T x\‘) = H ni Where { .
= n =b, if x, =0.

Finally, define

[a.b]= 3 f).

yEA(nst)

For notational convenience if s <r and ¢t =0 define

LEmMA 1.6. Let the hypotheses of Lemma 1.4 be satisfied. Let
Wiy 2y % e = A and 0 <A < A,.  Inaddition, let a, = /A, by =1— ay,
s, = kA, mA =b, fork =1,2,---,n, and

[.Lk)x _II ](Sk,A)x .
=1

Then
(1) dk‘l é eXp (Zwu,){a,dk-,‘]_l + b]dk’iAl -+ ek,j},
and
(i) dpn = expRowo(u, n)) { > [a, b),dn-0
j=0

+ Z a,- —j+1 a, b]m—ldO,n~j

n ]+2
O
k=0 (=1 1+

a, b]kem‘k,.}
1 1+1
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for 1 =m =n, where

j—1 -1 -1
k,j = ”J(Sks ”’]) I;! J(rn IJ‘]) IJ J(rn I-Li)x "J(r,-, “’1) ];1 ](r‘, /‘Lz)x .

Proof of (1). See Crandall and Pazy [1].

The proof of (ii) involves a rather lengthy induction argument and
can be found in the appendix to the author’s dissertation.

LEMMA 1.7. Let the hypotheses of Lemma 1.6 and Condition € be
satisfied. If o(a,n) = m, then

(1) 20 Ea’ b (m _]) = =z & akan—]+1 nvE+zaa b]m—l,

) 3 m-plabl=vm,
m=1 n—k n

(iii) a [abli|(m—k)—o(a,i)| = m\m, and
k=0 1=0 1+

(iv) dpn S expRomA)2A\/m + A’m~N/m}C for some constant
C.

Proof. The proof of the (i) involves another lengthy induction

argument and is given in the author’s dissertation. The proof of (ii) is
similar to the proof of (iii) and is easier, so only the proof of (iii) is given

Proof of (iii).

I MS\

S a fabllm=Kk-o)

0 t+

—mom-

=S5 a Labllim =) - otai)

n—t

* rgwl k§=:(i @ zf1a’ b],\ '(m "k)“U‘(a,i)]

1=

-1

=30 S fabllk—@a+

=0 1]
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However,

2 [abllk=(am++a)

{:2;; 'E‘a’ b]k}llz{:‘?’l f a,blc(k — (@i + -+ a,.))z}u2

0 i+l

lIA

B
|

! n

*Ta b —2(a+- -+ a,) E k [a,b]k

i+1 i+1

n—i n 172
+(a,~+1+---+an)22 [a’b]"}

=0 i+1

{(i ak>2— }n: ai+ i ax

Il
Il M

k=i+1 k=i+1 k=i+1
n n 2y172
—2(a+---+a,) z a +< Z ak) }
k=i+1 k=i+1
1/2
ot
k=1+1 k=1+1
vm.

Therefore,

This completes the proof of (iii).

Proof of (iv). Using Lemma 1.4, Lemma 1.5, Lemma 1.6 and
Condition € one can show that there are constants ¢, = ¢,(x) and
¢, = ¢o(s, x, r) so that

dun = exp Qa0 (s ) {A 3 [, b),0m = e,
=

n

+A Z A Q-1 [ 2a, b]mAlcl

j=m k=1 n—j+

LA ZZa fablitmn-Kk)-o z)|c2}

fori=m=n.



206 ALBAN J. ROQUES

Letting C = max(c,, ¢,) it follows from (i), (ii) and (iii) that

dnn = exp(Zwm/\){Z/\ > fa, b],(m —)
1=0 1

YA S fa,b]k|(m—k)—0'(a,i)[}C

0 1=1 1+

|

3

Ed
]

I

=expLomA){2AVm + A’m~\/m}C.

This completes the proof of Lemma 1.7.
Now for the proof of Theorem 1.2.

Proof of Theorem 1.2. Let € <0 be given. Let

Pm:{s+i<’;5>}m L om=1,2
m

1=0

Choose m, large enough so that

expQa(t — s){2(t — )+ (t — s )3 ﬁ <

B m

where C is chosen as in Lemma 1.7. Let P'={r}.., and P" = {r’,-’}f;n be
refinements of P,, satisfying Lemma 1.4. Then,

[ITL(P7)x — T (P")x |
= ||H§(P’)x - Hi(Pmo)x ” + HHi(Pmu)x - Hi(PN)x ”

= dmu,n + dm()‘l\

2

= Zexp(Zme <tm;§> {2 Ln%f \/m()+£t—;l%il mo\/mo} C

0

< €.
Thus II{J (I, dI)x exists, and Theorem 1.2 is proved.

ReEMARK. Notice that if D CR(I —AA(t)), for t €[0,T] and 0<
A < Ay, then choosing r=0o and b(s,x,r)= T —s, the condition 0=
t—s<b(s,x,r) becomes s=t=T. Hence Theorem 1.2 implies
Theorem 2.1 of Crandall and Pazy [6].

After obtaining these results, it was discovered that A. T. Plant [22]
had proven the existence of a slightly more general type of product
integral. He uses a stronger substitute for Condition & and his results
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only apply when there is a global evolution system. This proof is very
similar to Plant’s except that he uses probabilistic methods instead of
mathematical induction.

2. Time dependent evolution equations. The results
found in this section are similar to those of Crandall and Pazy [6] and
Brezis and Pazy [1].

Let {A(t): 0=t =T} be a family of multi-valued operators with
common domain D. Let x €D and s €0, T).

A function u: [s, T]|— X is said to be a strong solution of

u'(t)ye A(u(t), u(s)=x

if u satisfies the following conditions:

(1)  u is Lipschitz continuous;

(i) u'(r) exists a.e. on (s, T); and

(i) u(@)ED ae.on (s, T), u(s)=x,and u'(t)€ A(t)u(t) a.e. on
(s, T).

THEOREM 2.1. Let {A(t): 0=t =T} be a family of w-dissipative,
multi-valued operators with common domain D, satisfying Conditions 9,
X, and €. Letx €D, s€|0,T), and (Ao,r)E A,. If the problem

u'(t)ye A(Wu(t), u(s)=x
has a strong solution u on [s, T], then
U(t,s)x =u(t) on [s,s+b),
where b is chosen as in Theorem 1.2.

Proof. The proof of this theorem follows from Theorem 1.2 using
arguments like those found in [6].

Let X* denote the dual space of X. Let (x, f) denote the value of f
at x, for x € X and f € X*. The duality mapping F is the mapping of X
into X* defined by

Fx)={feX*: (x,)=|x|"=fI}

The following three facts are well-known, see [13].

(1) If X*isuniformly convex then F is single-valued and uniformly
continuous on bounded sets.

(2) Letx,y €X. Then|x|| =[x+ ay|forevery @ > 0.if and only
if there is an f € F(x) so that (y, f) =0.
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(3) Let u be an X-valued function on an interval of real
numbers. Suppose u has a weak derivative u’(s)€ X ats. If |u(-)|is
also differentiable at s, then

Ju() 4 fu(s)] = ' (s). )

for every f € F(u(s)).

Let {A(t): 0=t =T} be a family of multi-valued operators with
common domain D. {A(t)} is said to satisfy Condition M if whenever
t.,€(0,T) and (x,y.)E A(t,), n=1,2,3,---, and t,—>1t x,—>x, and
y. —y, then (x,y) € A(t).

Multi-valued operators satisfying this type of condition are studied
in [17].

The existence theorem which follows and its proof are generaliza-
tions of the work of Brezis and Pazy [1] to the time dependent case.

THEOREM 2.2. Let X* be uniformly convex. Let{A(t):0=t=T}
be a family of w-dissipative, multi-valued operators with common domain
D, satisfying Conditions &, ¥, €, and M. Letx € D and s €0, T), then
there exists a unique strong solution to the initial value problem

u'(t)e A(u(t), u(s)=x
on the interval {s, T].

The three lemmas below and the following definition are needed in
the proof of this theorem.

Let {A(t): 0=t = T} be a family of multi-valued operators. {A (¢)} is
said to satisfy Condition ® if whenever ¢, €[0, T] and (x,, y.) € A ()
n=12,---and x, = x, y,—Yy, t, =t then (x,y) € A(?).

LemMMA 2.3. Let X* be uniformly convex. Let {A(t):0=t=T}
be a family of w-dissipative, multi-valued operators with common domain
D, satsfying Conditions 9, %, and M. Letx € D, (A,,r)EA, sE€[0,T)
and b =0b(s,x,r). If the sequence of functions {u,} defined below
converges pointwise to a function u on [s,s+b), then u(t)€ D for
tE[s,s+b).

Proof. Define the sequences u,:[s,s +b)— X,
v.:[s,s+b)—> X

as follows:
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Let {A,}={b/n} and {r,} ={s +iA,} for i =0,1,2,---,n. Then

u()=u(s,,k=x for rn_ . =t<n,k=12,--n

and

oa(£) = (s, A, k — 1)x +-A1— [u(s, A, k)x — u(s, A, k — 1)x]( = rex)

for ., =t<n. k=1,2,---,n

Let t € [s, s + b) and choose a sequence of nonnegative integers {k,}
so that t, =s + k,A,, t, <t and t —t, <A, Letting x, = J(t, A,)v.(t.),
and y, = A '[J(t. An)v.(2,) — v.(2,)], we obtain that y, € A (1,)x, and that
ly.l=(1=Aw)'|A(t)v.(t,)|. Thus, it follows from Lemma 1.5 that
{y.} is bounded. Because X* is uniformly convex, y, —y for some
subsequence {y,} of {y.} and some y € X. Using Lemma 1.5 and the
fact that v, (t)— u(¢) if and only if u,(¢)— u(?), it is not hard to show that
x, —> u(t). Thus by Condition M (u(t),y)€ A(t), i.e., u(t) € D.

LeEmMMA 2.4. Let X* be uniformly convex. Let {A(t):0=t=T}
be a family of w-dissipative, multi-valued operators with common domain
D satisfying Condition R. Let A(t)x CB(t)x for x €D, where
{B(t): 0=t =T} is also w-dissipative. Suppose that D(B(t))= Dy for
each t €[0, T]. Suppose that for each x € Dsg, there is a ball B(x,r) and
a number A,>0 such that

B(x,r)N Dy CR(I - AA(t))
for 0<A <A, and 0=t =T. Suppose that 0=s<b'<T, and that
there is a function u: [s, b']— X satisfying: u(t)€ Dy for t €[s,b'], u is
differentiable a.e. on (s, b'), and u'(t)€ B(t)u(t) a.e. on (s,b’). Then
u(t)€D a.e on (s,b'), and u'(t)€ A(t)u(t) a.e. on (s, b’).

Proof. Choose t € (s, b') so that x = u(t) € Dg, u is differentiable
at t, and u'(t)€ B(t)u(t). Let A, and r be chosen such that

B(x,r)N Dy CR(I — AA(1))
for0<A <A,and 0=t =T Note that for t' close to t, u(t')€ B(x,r),
since u is continuous at t. Choose an increasing sequence {t,} so that
t,—>t and let A, =t—1t,. Then

u(t,)EB(x,r)N Dy CR(I — AA(2,))

for large n. So (I —A,A (1)) 'u(t,) = x, €D, and u(t,) = x, — Ay, for
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some y, € A(t,)x, CB(t,)x,. Since u’(t)€ B(t)u(t) and B(t) is w-
dissipative,

W'(t) = Yu
Now let
b(s) = (-0
Then
B(1) = w(p - =
= u'(1) -2 Lede =X _f")\n" -
= U’(t)—xT_"x—" = Yo
Thus,
6 () + 2= w(r) -y,
and
() + 2 Fr—x)) = wlx - x. I
So
(6(1), Fx = x,)) = 28— x —x, .
or
1—-A

25 = P = b0, — Fx=x) = 6] =,

or

A
<l o n
- 1_A,,(t) H(b(tn)“
Therefore, x, — x. Now

lw' ()= y. Il = 3ll¢ ()]

for large n, so that y, - u'(t). Hence Condition ® shows that u'(t) €
A(t)u(t) and the proof is complete.
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LEMMA 2.5. Let X be a reflexive Banach space and let {v,(t)} be a
sequence in L,(a, b; X), p > 1, such that {v,(t)} is bounded for almost all
t €(a,b). Let V(t) denote the set of weak cluster points of {v,(t)}. Ifv,
converges weakly to u in L,(a, b; X) then u(t) belongs to the closed convex
hull of V(t) a.e. on (a,b).

Proof. See Kato [14].

Proof of Theorem 2.2. The proof of the uniqueness of solution is
standard and will not be given here.
Define B(t), an extension of A(t) for t €[0, T], as follows:

D(B(t))=D for0=t=T, and
B(t)x = closed convex hull of A (¢)x.

B(t) is wo-dissipative for each t€[0,T]. Let 0<b'<b, and
x € D. Then by Theorem 1.2, the sequence {u,} of functions defined in
Lemma 2.1 converges uniformly to U(t, s)x on [s, b’].

Let u(t)=U(t,s)x. Then by Lemma 2.3, u(t)€D for t€E
[s,b']. Also, note that since u is Lipschitz continuous and X* is
uniformly convex, u’(t) exists almost everywhere on (s, s + b').

Let {v,} be the sequence of functions defined in Lemma 2.3. We
show that v,— u’in L,(s,s +b'; X) for 1 <p <. Since u, converges
uniformly to u, it follows that v, also converges uniformly to u on
[s,s +b']. Thus

ﬁ ) f()dt— — f " u) f()d,

for f€ Ci(s,s + b'; R) where Ci(a, b; R) denotes the continuously dif-
ferentiable real-valued functions which vanish outside of (a,b). Note
also that

fs o) f(e)de — f ey f(yde

for f&€ Ci(s,s +b'; R), so that

e[ oo soa) ([ ww pwa)

for f€ Ci(s,s + b’; R) and g € X*. Since the Lipschitz norm of v, is
bounded, it follows that some subsequence {v,.} of {v,} converges to
some element w belonging to L,, for 1 <p <. Thus,
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g( f ) f(t)dt> N g< f " wf(t)dt)

for f€ Cy(s,s + b'; R) and g € X™*, so it follows that w = u' and v,— u'
in L,

Next observe that from Condition / it follows that the set of weak
cluster points of {v(¢)}, denoted by V(¢), is contained in A (t)u(t). Thus,
from Lemma 2.5,

u'(t)€ V(t)Cclosed convex hull of A (t)u(t)
= B(t)u(t).

Now since {A(¢): 0=t =T} and {B(t): 0 =t = T} satisfy the hypothesis
of Lemma 2.4,

u'(tye A(t)u(t) ae. on (s,s+b").

Next, show that u is a solution on [s, T]. Let u be a solution on
[s, ], where T, is maximal. If T,# T, choose t,— T. Then
u(t,)— u, € X, because u is Lipschitz continuous. Since {A(t): 0=t =
T} satisfies Condition M, u, € D. Hence consider the problem

u'(t)e A(u(t), u(T) = u,.
It will have a solution v(t) on [T}, T,,). Letting

u(t) on [s, T1]
f(t)={ ,
v(t) on [T\, T.)

extend the original solution, contradicting the maximality of T..
This concludes the proof of Theorem 2.2.

3. A local abstract Cauchy problem. In [1], Brezis and
Pazy show that if X™* is uniformly convex, and A is a dissipative,
demi-closed operator which satisfies Condition I, then the initial value
problem

u'(t)e Au(t), u(0)=x

has a unique global solution. The techniques of Brezis and Pazy may
also be used in solving a local abstract Cauchy problem of a similar
nature. Attention is confined to multi-valued operators which satisfy
the Condition ¥ below.
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Let {A(#):0=t=T} be a family of multi-valued operators with
common domain D. {A(t)} is said to satisfy Condition & if there is a
non-decreasing sequence of sets {D,} so that D = U5_, D,, and sA,(t) =
A(t)p, is w,-dissipative with 0= w; S w, =---.

Multi-valued operators satisfying similar conditions are studied in
[31.

In the pages which follow, the problem

u'(t)ye A,(Hu(t), u(0)=x € D,
will be denoted by ACP,, and the problem
u'(t)e A(u(t), u(0)=x

will be denoted by ACP.

Now consider the problem of finding a solution of ACP with
u(0)=x € D,, where {A(t)} satisfies Condition &. It is easy to show
that if x € D,, and ACP, has a solution on [0, b,) and b, — b, then ACP
has a solution on [0, b). This is proved in Theorem 3.3.  With only the
Condition ¥, this solution does not have to be unique, as the following
example illustrates.

Define A: R x[0, 1]\ (0, 1) X (0, 1)= R X R, by

((0,0), —0o<x=0,0=y=1
(x,0),0=x=1,y=1
(1,0), I1=sx<wo,0=sy=1
Vx,0),0=x=1,y=0.

A(x,y)=

Let D, =D(A)\(0,n?)x{0}. Then A(t)= A satisfies Condition
&. Inparticular, each A, is n-dissipative, closed, and satisfies Condition
9. Thus it follows from Theorem 2.2 that ACP, with x = (0, 0) has a
unique solution. This solution is, of course, u,(t) = (0, 0). However, ACP
with x = (0, 0) has u(t)=(¢’/4,0) for 0=t =2 as a solution, together
with u(t) = (0, 0). We therefore make the following definition.

Let {A(t):0=t =T} be a family of multi-valued operators with
common domain D, which satisfies Condition &, with D = U%_, D u is
said to be a solution of ACP with respect to {D,} on [0, b), if for each
t, €10, b), u is a solution of ACP, on [0, t,) for some n = n(t).

In the above example, u(t) = (¢*/4, 0) is not a solution of ACP with
respect to {D,}, while u(t)= (0, 0) is such a solution.

THEOREM 3.1. Let {A(t): 0=t =T} be a family of multi-valued
operators with common domain D. If {A(t)} satisfies Condition & with
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D = U, D,, then ACP with x € D, has at most one solution with respect
to {D,} on the interval [0, b).

Proof. Suppose that u and v are solutions of ACP with respect to
{D.} on [0,b). Choose t€][0,b). Then u(t)eD, and u'(z)E
A, (t)u(t) for some n and almost all t €[0, b). Also, v(t)E D,, and
v'(t)€ A.(t)v(t) for some m and almost all ¢t €[0, b). Suppose that
m <n. Then

lu() = s Ju()) = o ()]
= (w(0) = (), (1)

=w, u@)— o)
because
v'(H)E A (Hv(t)CA,(t)v(t),
and

f(t) € F(u(t) = v(2)).

Hence, if t €0, t,) then

lu=o@I = o [ Jue)-o6)lds

and it follows that u(t) = v(¢). Since t, was arbitrary, u(t) = v(t) for all
t €0, b).

REMARK. An interesting question whose answer is unknown to the
author is: If u is a solution of ACP with respect to {D,} and v is a solution
of ACP with respect to {E, }, where D = U5_, D, = U;_, E,, does u = v?

THEOREM 3.2. Let {A(t): 0=t =T} be a family of multi-valued
operators with common domain D, which also satisfies Condition &. If u,
is a solution of ACP, on [0, b,), and if 0<b,=b,=---, then u, =

Un+1)[0,b,)-
Proof. The proof is straightforward and will not be given.

THEOREM 3.3. Let {A(t): 0=t =T} be a family of multi-valued
operators with common domain D, which satisfies Condition ¥. If u,isa
solution of ACP, on [0, b,), with {b,} increasing and b, — b, then
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u(t) on [0, b))
u(t)= {
un+1(t) on [b,,, b,,+1) n= 1, 2,
is a solution of ACP with respect to {D,} on [0, b).
The proof is omitted.

THEOREM 3.4. Let X* be uniformly convex. Let {A(t):0=t=T}
be a family of multi-valued operators with common domain D. Suppose
that {A(t)} is w-dissipative and satisfies Conditions 9, ¥, and €,. Let
A(t) denote the smallest extension of A(t) for which {A(t):0=t=T}
satisfies Condition M. Let A (t)x denote the closed convex hull of A(t)x
for x ED(A(t)). Then there is a number b >0 and a unique function
u: [0, b)— X such that u'(t) € A (t)u(t) a.e. on [0, b), and u(0)= x € D.

Proof. Let b be as in Lemma 1.4. Let u,:[0, b)—> X, and
v.: [0, b)— X, be as in Lemma 2.3. Then by Condition ., as in the
proof of Lemma 2.3, if t €[0, b) and u,(¢)— u(t), then

u(t) € D(A(T))CD(A(1)).

Now as in the proof of Theorem 2.2 it follows that u'(t) exists a.e. on
0, b),and u,—u'in L,(0,b; X) for 1 <p <. Again, as in the proof
of Theorem 2.2 it follows that the set of weak cluster points of {v.(¢)},
denoted by V(t), is contained in A (t)u(t). Finally, using Lemma 2.5,

u'(t) € closed convex hull of V(1)

Cclosed convex hull of A (£)u(t)
= A (Hu(r)

for almost all £ €(0, b). This concludes the proof of Theorem 3.4.

THEOREM 3.5. Let X* be uniformly convex. Let {A(t):0=t=T}
be a family of multi-valued operators with common domain D. Suppose
that {A(t)} satisfies Condition ¥ with D =\U5_ D, and each
{A,(t): 0=t = T} satisfies Conditions 9, ¥, and €, and that

AL (1) CAui(t)
(see Theorem 3.4) for each positive integer n and each t €[0, T]. Then

there is a number b >0 and a unique function u: [0, b)— X so that u is a
solution of ACP with respect to {D,} on [0, b).
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Proof. The family {A,(t): 0=t = T} satisfies Conditions &, ¥, and
€, so by Theorem 3.4 there exists a number b, >0 and a function
u,: [0, b,)— X such that u(t)€ A,(t)u.(t) a.e. on [0, b,) for n=
1,2,3,---. Thus, u(t)€ A,.(t)u,(t) a.e. on [0, b,). If the sequence
{b.} is bounded, let b =sup,{b,}; otherwise, let b= +. In either
instance, if b, = b for some k, define u: [0, b)— X by u(t) = w.(¢). If
b, # b for all n, then select an increasing subsequence {b,,} of {b,} so that
b,— b and define u: [0, b)— X as in Theorem 3.3, and the result
follows from that theorem.

The uniqueness follows from Theorem 3.1.

Now consider alternative approaches to solving the problem
u'(t) € A(u(), u@)=1x,

where {A (1)} satisfies Condition ¥. In order to facilitate the discussion,
consider the specific case in which X =R, A(t)x = Ax =x? for
xE€{XER: x=0}=D(A), and D, =[0, n). Letting b, =(n —x)/nx
for x € D,, one gets u,(t) = x/(1 — tx) as solutions of ACP, on [0, b,).

Theorem 3.1 of [1] does not apply to ACP, because A, is not closed,
and it does not apply directly to u' € A,u, or u’' € A,u because the
operators A, and A, do not satisfy Condition I of [1].

In Theorem 3.5, this problem is solved by using the methods (but not
the results) of [1] because A,CA,.,.

It should be noted that Theorem 3.1 of [1] can be applied in a
different way, at least in this example. Let

A,x if 0=x<n
A*,,‘x={

[0, n?] if X=n

Then A% is closed and satisfies Condition I. Furthermore, the solution
v, of v'€ A%v agrees with u, on [0, b,) and is constant thereafter.

It is not clear that this method of finding closed extensions of A,
which satisfy Condition I can be generalized. This process may some-
times be possible, at least in Hilbert spaces, by using methods like those
in [2]. However, even if such extensions can be found, it is not clear
how a solution of ACP can be constructed from the solutions v, of
v'€ A%v. This is because one would not know in general that v,(t) €
Av,(t), or even that v,(¢t) € D, for small positive ¢. It can happen, for
example, that A,v is properly contained in A v for v € D,, and D, is not
open in D(A%). See Example 2 in [7].
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