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A multiplication operator on an L,-space is factored as the
direct sum of cyclic parts and a singular part. The equivalence
of this decomposition with Rohlin’s Theorem on decomposition
of measure spaces is shown.

1. Introduction. Let (X X, u) be a separable measure space
and suppose f is in L.(X,2, ). The bounded operator M; on
Le(X, 2, u) defined by M;(g)=f-g, for gEL,(X, 2, n), is called a
multiplication operator.

If p=2, then a multiplication operator is normal on
LyX, 2, n). Thus it may be decomposed as the direct sum of cyclic
normal operators. These operators need not themselves be multiplica-
tion operators. If 1 =p < and p# 2, then in general, it is not possible
to decompose L,(X, Z, w) into the p-direct sum of subspaces such that
the restriction of a multiplication operator to each of these subspaces is
cyclic. (For the definition of a p-direct summand see [7], Definition 1.1.)

With the aid of Rohlin’s Theorem ([5]) in the form presented by
Akcoglu ([1]), we obtain a decomposition theorem for multiplication
operators on L,-spaces. A multiplication operator on L,(X,Z, n),
p#2, is shown to be the direct sum of a regular part and a singular
part. The regular part is decomposible as a direct sum of cyclic subparts
while the singular part does not possess a cyclic subpart.

We show, in turn, that this decomposition theorem implies Rohlin’s
theorem.

2. Preliminaries. Let (X, X, ) be a separable measure
space. If X is a topological space, then 2 will be the Borel o-algebra
denoted by ZB(X) (or simply B if no ambiguity arises). If X is the unit
interval, then we will denote X by J and the usual Borel measure space
will be represented as (J, B(J), A).

For ease of notation we will abbreviate L,(X, 2, u) by L,(n), for
1= p =, when no confusion will arise.
Suppose f € L.(X, 2, p).

DerINITION 2.1. The measure ¢; on {C, B(C)} defined by ¢(B) =
wif (B)}, for B € B(C), is called the measure associated with f.
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We shall consider the multiplication operator M; € B{L,(un)}, 1=
p <w~. We denote its spectrum by o(M;). Then the measure as-
sociated with f may be thought of as the measure associated with the
operator M. Since o(M;) is the essential range of f, we see that the
support of ¢; is just o(M;). Thus we interchangeably think of ¢; as a
measure on (C, B(C)) or on (o(M;), B(a(M;))).

Associated with a multiplication operator M; is a spectral measure
®;: B(C)—> B(L,(n)) defined by @i(B)= M@, and ¢ (B)=

f ®;(B)x(X)du, an extended real number, for B € B(C).
X
Let g€ L,(X, 2, u) where 1 =p <». The measure w, defined on
(C, B(C)) by w, (B)=f |®;(B)g [P[dw is clearly absolutely continuous
X

with respect to ¢y

If A€2, then M;, is a multiplication operator on the space
L,(A, 2|4, p|a) which is identified with the subspace M,y (L,(X, Z, n))
of L,(X,2, u). We see that ¢y, < ¢y

DerFiNiTION 2.2. Let ¢ be any o-finite measure on
(C,B(C)). Then %, ={g€L,(X Z, u)w, <¢} is the subspace of
L,(u) generated by ¢.

DEerFmniTION 2.3. Let g be a measurable function on
(X,=, u). Then the support of g (written supp(g)) is {x € X ||g(x)|>
0}.

Let fELX,S, p).

LEmMA 2.1. If ¢ is any o-finite measure on {C, B(C)} such that
¢ < ¢y, then there exists g € L,(u) such that o, = ¢. Moreover, there
exists Ay €2 such that L, = M, a,(L,(r)) and w, = ¢y,

Proof. Without loss of generality we may assume that ¢ is a finite
measure. The Radon-Nikodym derivative d¢/d¢;=h is in
LA{C, B(C), ¢;}. Clearly if B and D are in B(C), then f x(D)d¢; =

B

J x(D)ofdu. By the Monotone Convergence Theorem it follows
78

that ¢(B) = L hde; = L_I(B) hofdu. Let g be (hof)”. Then we see

that g € L,(n) and w,(B)= ¢(B), for B € B(C).

There is a Lebesgue decomposition of ¢, such that ¢; = p + n where
p~d¢ and n L¢. There exists B, € %B(C) such that n(B,) = p(C\B,) =
0. Let A, be f'(By). Then M, {L,(n)}C¥%, and ¢,, = p.
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Suppose there exists g, € £, such that F = supp(g,) N (X\A,) is not
equal to the empty set a.e. u. Then there exists G € $B(C) such that
GNB,=J ae. ¢ and f(G)DF. Hence w,(G)>0 while $(G)=0
which is a contradiction. Thus &£, C M, (a,(L,(n)).

DEFINITION 2.4. The set A, associated with the measure ¢ < ¢y
(as in Lemma 2.1) is called the pre-support of .

In the sequel ,we adopt the notation {a,}:Z; to mean the finite
sequence {a,};-,, if L <, or the countably infinite sequence {a,}.en if
L =o. We shall use similar notation in sums, unions, etc. In addition,

if L =, then the expression “1=n = L” will mean “all' n EN”.

3. A decomposition theorem. Let f be an element of
L(X 2, u).

DEerINITION 3.1, If A is in 2, then the multiplication operator My,
on L,(A,Z|s p|a) is called a part of M; (on L,(u|4)).

DEerINITION 3.2. The operator M; is cyclic if there exists a function
g € L,(n) such that the set {p(M;)(g)|p(z) is a polynomial in z} is a
norm-dense subset of L,(n). We say that M; is singular if it has no
cyclic parts and that M; is regular if it has no nonzero singular parts.

DEerFINITION 3.3. Let Y and Z be Banach spaces. A bounded
operator T on Y is isometrically equivalent to a bounded operator U on
Z if there exists a surjective isometry K: Y — Z such that KT = UK.

REMARK 3.1. Let (X, Z, u) be a separable measure space and let
{A,}-5" be a sequence of pairwise disjoint sets of = with U, A; = X a.e.
wand A;#J ae. u for 1=i=L. Then L, (X Z, n) is isometrically
isomorphic to @~ L, (A, = |4, 4 |4,) via the mapping g — =5, g |4, for g
in L,(X,X, u). Under this mapping, a multiplication operator M; on
L,(X, =, u) is isometrically equivalent to @)%, M;,. Thus we will say
that M, = DL, My,

DEFINITION 3.4. A multiplication operator M; on L,(X, 2, ), with
associated measure ¢, has a cyclic decomposition if

L=

L
Mf = @ Mf'Ai‘ on @ Lp(AbZ'A'_, /.L IA,-)7

where {A; }[, is a pairwise disjoint sequence of sets of £ with UL, A; = X
a.e. u, such that My, is cyclic on L, (u |4 ) and its associated measure ¢,
is equivalent to ¢; for 1=i=L.
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REMARK 3.2. Suppose M; on L,(n) has a cyclic decomposition;
then the cardinality of this decomposition is unique, i.e., any two cyclic
decompositions for M; have the same cardinality (see [4] Theorem 10.4.7,
[7] Theorem 2.5).

DEerFINITION 3.5. Let M; be a regular multiplication operator on
L,(X,Z, ). Suppose ¢ <¢; is a measure with pre-support A, €
2. Then ¢ is an invariant for M; if:

(i) M,,, on L,(Ay, =|a,, 1 |a.) has a cyclic decomposition;

(ii) if 7 < ¢ is a measure with pre-support A, € Z such that M;,,
on L,(A,, 2|4, i | ) has a cyclic decomposition of the same cardinality as
that for M;,,, then 7 is absolutely continuous with respect to ¢.

The cardinality of the cyclic decomposition of M;,,, for ¢ an
invariant, is called the multiplicity of ¢ (written M()).

THEOREM 3.1. If ¢, and ¢, are two invariants of the operator M; on
L,(X,Z, n), then either ¢, is equivalent to ¢, or else ¢, is singular with
respect to ¢,.

Proof. Let A, and A, be the pre-supports of ¢, and ¢,
respectively. Suppose @#¢? M, and D¢ M . are cyclic decomposi-
tions for My, and My, respectively. If ¢ L, then there is a
Lebesgue decomposmon for ¢, such that ¢, = ¢+ @3 where @3 < ¢, and
¢3L ¢, with ¢3# 0. Thus we have £,:C %, and Z,1# (0). Let A, be
the pre-support of ¢3. Then we have A, CAQ,,1 a.e. p and My, . has a
cyclic decomposition given by @5:4¢» M florngy BUt @21<, 1mp11es that
%y C%,, and thus M flag has a cycllc decomposmon given by
Dt My, nag;-  Thus we’ conclude that M(d;) = M(d,) and hence

1= ¢

Lemma 3.1. Let M; be a regular multiplication operator on
L, (X, 2, n) with associated measure ¢ Suppose there exists a se-
quence of measures {$,}'5" such that for 1=i=L:

(i) ¢ < &, with pre-support A, € Z;

(i) & =2 ¢;

(i) My, has a cyclic decomposition of cardinality C;;

(iv) GC# C if i#].

Then {¢;}, is a sequence of invariants for M,.

Proof. Consider ¢, where i, is a fixed index such that 1=i,=
L. Suppose 7 < ¢; is a measure with pre- support A, #J ae. p and
such that M, has a cyclic decomposition EB, 1My, of cardinality
C,. Suppose T ¢,. Then 7= 7,4+ 7, where 7, < ¢, and 7,1 ¢, with
7,7#0. There exists an index j, 1=j,=L, with j,#i, such that
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7.4 ¢,. Without loss of generality we may assume that 7,<
¢,. Suppose A . is the pre-support of 7,. Then P, M flana, 18 @ cyclic
decomposition for M .. Butif @), My, is a cyclic decomposition for
My, , where A, is the pre- support of &, then P, M fla,na, 18 @ CycClic
decorﬁposnlon for M fla, of cardinality C,. But then we ‘have G, =
C,. -Thisis a contradiction. Thus ¢, is an invariant.

DErFINITION 3.6. A sequence of measures {¢;}, satisfying the
conditions (i) to (iv) of Lemma 3.1 is called a complete set of invariants for
M,

REMARK 3.3. It follows directly from Theorem 3.1 that two com-
plete sets of invariants, for the same regular multiplication operator M,
are merely permutations of each other.

LEmMMA 32. Let (X, 2, n) and (Y, P, v) be measure spaces. If
M; € B(L,(n)) and M, € B(L,(v)) are isometrically equivalent multi-
plication operators, then ¢ is equivalent to &,.

Proof. If p =2, this result follows from the uniqueness of the
resolution of the identity for a normal operator (see, e.g., [2] Theorem 1,
p. 65).

Suppose we have p#2. There exists a surjective isometry
K:L,(w)—L,(v) such that KM;=M,K and K induces a set-
isomorphism I': (X, 2, u)— (Y, ®, v) as follows. Let A€Z2. Ifhisin
L,(n) and supp(h)= A a.e. u, then I'(A) = supp{K(h)} a.e. v indepen-
dent of the choice of the function h (see [7] Theorem 1.2 and [3]
Theorem 3.1).

For A €3, define K, equal to K|;,.... Then K, is a surjective
isometry from L,(u |4) to L,(¥|ra)) and K Mj, = M, Ka.

Now suppose that there exists G a Borel subset of C such that
¢;(G)>0. Then there exists As; €2, with w(As)>0, such that
o(M;, )CG. Thus we see that (M., ) C G since under K, the
spectrum is preserved. Clearly M, _, # 0. It follows that v{I'(A)} >0
and that ¢,(G)>0. Thus ¢, > ¢,. The converse is proved similarly
using I'".

REMARK 3.4. Let v be a measure on {J, B(J)}. Suppose M; is a
multiplication operator on L,(J, B(J), v). Let {8,};-, be the measures
on (J, B(J)) defined by

(1, 1-1/ieB
5"(3)_{0, 1-1/ig B
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for B€ B(J) and i EN. There exists a sequence of Borel measures
{w:}i%° on (o (M;), B(ad(M;))) such that w; > vy, for 1=Si=<L, and a
point isomorphism y from (J, 8(J), v) to the Borel measure space
(E, B(E), 7), where E is the set o(M;) X J and 7 is o X A + =, u; X 6,
such that f= oy a.e. v (the map m, is the projection of E onto
o(M;)). This is just the formulation of Rohlin’s Theorem ([5] § IV)
presented by Akcoglu ([1] Theorem 5.2).

THEOREM 3.2. Let (X,Z,u) be a separable o-finite measure
space. Suppose M; is a multiplication operatoron L,(n). Then it follows
that:

(i) there exists A, €EZ, depending only on f, such that M;=
M, DMy, where A; = X\A,, My, =M, is regular, and M;,, =M, is
singular;

(i) ifA#Da.e., then (A, Z|a, 1 |a ) is nonatomic, and if ¢, is the
measure associated with M;, there exists a surjective isometry
K: L,(¢|a)— L,(E, B(E), ¢, X 1), where E =o(M;)XJ, such that
M. K= KM, for m, the projection of E onto o(M,).

(i) if A, #J a.e. u then M;, has a complete set of invariants.

Proof. There exists a set isomorphism I' between (X, 2, u) and
(J, B(J), v) for some Borel measure v (see [6] Theorem 2, p. 264). Thus
there exists a surjective isometry I: L,(x)— L,(v) such that I is induced
by I' and M; = I"'M, I for some multiplication operator on M; on L,(v)
(see [7] Theorem 1.3). Since the singularity and regularity are preserved
and the associated measures of the operators M; and M; are equivalent
under I, we shall assume that (X,Z, u) is (J, B(J), v) and that M; is a
multiplication operator on L,(v).

Consider the measure space (E, B(E), 7) as in Remark 3.4. Let y
be the point isomorphism (J, B(J), v)—{E, B(E),r} such that f=
moy. We partition the set E into disjoint sets C and D such that
C=UL,C, where C ={(x,1-1/i)[x Ea(M;)} and D =E\C. We
have 7|, = uoX A and Tle =i X8, 1=i=L.

Clearly the measure space (D, B(E)|p, 7|p) is point isomorphic to
(E, B(E), o X A) under the identity mapping 7: D — E.

Let A, be y(C). Then A, is y (D). Since (E, B(E), woX A) is
nonatomic, it follows that (A, B(J)|a, ¥|4,) is nonatomic. If A is a
Borel subset of A, with A # J a.e. v, then we see that f|, = moy|, is
not univalent on the compliment of any subset of A of measure zero and
thus M;,, is not cyclicon L,(v|4). Suppose A,#Ja.e.vand B# D a.e.
v is a Borel subset of A,. If B is an atom, then the operator M;, on
L,(v]g) is cyclic since L,(v|z) is one dimensional. If B is nonatomic,
then y(B)= UL, y(B)NC. If for some index i, we have y(B)N
Co#J ae. 7, then B,=y{y(B)NC}#J ae. v and fl is
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univalent. Thus My, is cyclic on L,(v|s ) and My, is thus seen be be
the direct sum of cyclic parts. It follows immediately that M fia, =M, is
regular and that M, = M, is singular and that M; = M, @ M, (see [7]
Theorem 3.3).

Suppose A,#J a.e. v. Since ¢,(B)= v{f|z(B)} for B a Borel
subset of a(M;), we see that f|3!(B) =y {D N #7'(B)} implies ¢,(B) =
wo(B). It follows that |, is a point isomorphism between
(Ay BU)|as v]a) and (E, B(E), ¢, X A).

By 'standard methods it follows that there exists a surjective isometry
K:L,(v|a)— L,(E, B(E), ¢, X A) defined for g € L,(v]4) by K(g)=
h-(gey|s) for some h measurable on (E, B(E), ¢, X A) such that
KM;, = M, K (see, e.g., [7] Remark 1.1).

The sequence of measures {u,}i=; has one of the following two
properties:

(1) given i, with 1 =i, < L, there exists j, > i, with j, < L such that
o << o, DU, P i}

(2) there exists some index i,suchthat u, =y, for1=i,=i,j=L.

In order to establish (iii), we shall assume (1) is true since (2) is
handled in a similar manner.

First note that we must conclude that L =, Now let , be the
zero measure on the Borel sets of o(M;)=S. Define G,={ and
choose the nonnegative integer n,=0. Suppose that the measure ¢ on
{S, B(S)}, the set G, € B(S), and the nonnegative integer n; have been
chosen for 0=j=i<w. We define ¢, Giy, and n;,, as follows: let
S, = S\U!_, G, and compare the measure u,|S; with each of the meas-
ures w, |S. There exists a smallest integer k, > n, such that w, |S: is
equivalent to u,|S, for 1=k =k, while w.|S# u,|S, for k >k, Set
n.+1 = k;. Then there exists Borel measures w, and w, such that u,|S, =
w;+ 0, where @ = @5, and w, 1w, |S. There exists G..,, a Borel
subset of S, such that 0,(Gi;,) = 0,(S\Gi.y) = 0. Set ¢y, = Zf w, | Gy I
we define G.= S\U7, G, then one of the following possibilities can
occur:

(a) for all k EN, w, |G.= pu,|G. #0, or

(b) m:|G-=0.

If (a) is true, we define .. = 27, ;| G... If (b) is true .. is not defined.
Without loss of generality, we shall assume (a) holds. The collection of
measures {¢,}7-, U {¢.} has the following properties:

1) & Ly, for j#i

(2) ZLim =254+ . = ¢, the measure associated with M,

(3) for each i €N, where N =N U {=} we have ED,crMy,-'miconcy»
where F ={j EN|w,(7(G)NC)>0} is a cylic decomposition for
M~y Which has associated measure ..
~ Thus by Lemma 3.1, {{1};cx is a complete set of invariants for M, and
M) = n, for i EN, while M(P.) = N,.
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We have thus shown that Rohlin’s Theorem (Remark 3.4) implies
Theorem 3.2

THEOREM 3.3. Theorem 3.2 implies Remark 3.4.

Proof. Let f€ L.(J,B(J),v). Then M; on L,(v) has a regular
part M; and a singular part M, with M; =M, @G M,;. In order to
consider the most general situation, we assume that neither M;, nor M, is
zero. We let ¢, and ¢, be the measures associated with M, and M,
respectively.

There exists a complete set of invariants {¢,}/5” for M;, and we let
{A,}i5" be the corresponding sequence of pre-supports. Thus M, =
P M, and for 1 =i = L, we see that Mj,,, has a cyclic decomposition
of multiplicity 4(¢,) given by M, = D My, (where, if M(d.) =R,

for some iy, then My, =(pj- 1M,r,A ).
Without loss of ge’nerahty, assume that {¢,}-, is countably infinite
and that M(P) < M(P)<M(¢p;)<---. For jEN, we define B; =

U,en Ay, where N, ={i EN|j é/&l((bi)}, and let f, be f|s. Then M,, =
PD,cvM; and each M; is cyclic on L,(A, B(J)|4, v]s). Also for j EN,
we have o(M;)= o(M;.,) and w, > u,,,, where p, is the measure as-
sociated with f.

Consider the set E=o(M;)XJ and the measure space
(E, B(E), 7,) defined as follows: for G € B(E), we set 7,(G)=
S en{m(G N C)} where G, ={(x,t)EE I x € o(M;); t =1-1/j}. Then
74(G)=Z2Zenpt, X 6,(G N C). Define :B,—E by v(t) =
(f(t),1—1/j) for j EN. Then we define yd: A,——»E, where A, is as in
Theorem 3.2, by y,(t)=(f,(¢t),1—1/j) for t€ A, N B,=B,. From the
definition of 7,, it follows that vy, is a measure preserving point isomorph-
ism from (A, B(J)|a, v|a) to (E, B(E), 7,). Furthermore, we have
fla, = meys ae. v

Let A,=J\A,. If p=2 M, singular on Ly(A, B(J)|a, it |4.) im-
plies M, is singular on (L,(A,, B(J)|a, v]s) for p#2. We therefore
assume that p# 2. There exists a surjective isometry

K: L{A, BJ)|as v]a}— LAE, B(E), ¢, X A}
such that K°M; = M, K. In addition K induces a natural measure
preserving point isomorphism vy, from (A, B(J)|a, ¥]a) to
(E, B(E), ¢, X A) such that f|,, = mey. (see, e.g., [6] Corollary 12, p.
272). Define u, to be the measure ¢, on o (M;).
The map
Ve on E\
|

Ya on

Cs

1

C
C

Cs

]
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is the required point isomorphism such that f'= 7, oy and the result now
follows.

ExampLE 3.1. Let y: J—J X J be a point isomorphism from the
usual Borel measure space on [0, 1] the usual Borel measure space on the
unit square. Then f= oy isin L. (J, B(J), A). There does not exist
a set B € B(J) of measure zero, such that f|,5 is univalent. It follows
that M; is singular on L,(J, B(J), A) for 1 = p <= (see [7] Theorem 3.3).

4. A characterization theorem.

THEOREM 4.1. Suppose (X,Z,u) and (Y,®,v) are separable
measure spaces. Then M; € B(L,(w)) is isometrically equivalent to M, €
B(L,(v)), p#2, if and only if the regular parts of M; and M, have
equivalent complete sets of invariants with the same multiplicities and the
singular parts of M; and M, have equivalent associated measures.

Proof. (< ) There exists a measure @ on (J, B(J)) such that
(X, Z, u) is set isomorphic to (J, B(J), w). There exists a measure p on
(J; B(J)) such that (Y, P, v) is set isomorphic to (J, B(J), p). By an
argument similar to that of the beginning of the proof of Theorem 3.2, we
assume that M; is in B(L,(J,B(J),w)) and M, is in
B(L,(J, BUJ), p)). Let (E, B(E)), 7,)= & and (E,, B(E,), r,)= & be
the measure spaces generated by f and g respectively as in Remark
3.4. Then since the invariants of the regular parts of M; and M, are
equivalent and the singular parts have equivalent associated measures, it
follows that &; and &, are point isomorphic under the identity mapping
(although the isomorphism may not be measure preserving). Thus it
follows that M; on L,(w) and M, on L,(p) are both equivalent to M,, on
L,(%;) since the identity point isomorphism between &; and &, induces a
surjective isometry J: L,(%;)— L,(%,) such that JM,, = M, J.

(=) Suppose K: L,(un)—> L,(v)is a surjective isometry such that
KM; = M,K. Then using the notation as in the proof of Lemma 3.2, K
induces a set isomorphism I': (X, 2, u)— (Y, ®, v) such that K, M;, =
M, K4 for A €X,since p#2. Let M, be the regular part and M}, be
the singular part of M;. Let A, € 2 be as in Theorem 3.2 (i). We see that
K, M, =M,,., K, and that K, M, =M, K, where A =
X\A, Thus, since K, and K,, preserve the cyclicity of a multiplication
operator, we see that M, . = M, is the regular part and M, ., =M, is
the singular part of M,. Let ¢, and ¢, be the measures associated with
M, and M,, respectively. Let ¢, and ¢, be the measures associated with
M,, and M,, respectively. Then we conclude that ¢, = ¢, and ¢, = ..

There exists a complete set of invariants {¢;}/5” for M, such that
M, = P M fia» Where @; is the measure associated with M, 1=i =1L,
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and M/, has a cyclic decomposition of cardinality #(¢:). (Here A, is.
the pre-support of ¢.) There exists a sequence of disjoint measurable
sets of =, {A;}¢® such that M, =@M, is a cyclic
decomposition. Let ¢; be the measure associated with M ghrap 1SS
L. Then we conclude that {y;}i, is a complete set of invariants for M,
with ¢, = ¢, and M(Y)= M(P:) for 1=i=L.

ReEMARK 4.1. The “if”” direction of Theorem 4.1 is true for p =
2. The proof is exactly the same as was presented for p#2. However,
the “only if” direction is false if p = 2. In fact, by standard multiplicity
theory for normal operators on Hilbert space ([4], Chapter 10) it is
possible to construct a surjective isometry K between two L,-spaces such
that a singular multiplication operator M; is isometrically equivalent to a
regular multiplication operator M, under K.
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