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A stratification of the spectrum of the mod p equivariant
cohomology ring of a compact Lie group action in terms of
elementary p-subgroups has been obtained by Quillen. A
corresponding result for compact connected Lie group actions in
terms of subtori is proven in this paper by different means. In
addition some localization and primary decomposition theorems
are obtained. The paper closes with an application to uniform
torus actions.

Introduction. In[11] Quillen proves a stratification theorem for
compact Lie group actions by elementary abelian p-subgroups in
equivariant cohomology with coefficients in Z/pZ. In the first section of
this paper we prove the stratification theorem for compact connected Lie
group actions by subtori in equivariant cohomology with rational
coefficients. We do not attempt to follow Quillen’s method of proof,
however. There are three reasons for this. First, the existence in
Quillen’s situation of a ‘“‘universal invertible” (the element e, of
Theorem 4.2 of [10]) has no natural analogue in our situation. Secondly,
Quillen’s vital Main Theorem (Theorem 6.2 of [10]) appears to require
certain restrictions on the orbit structure which can be avoided. (See
Lemma 1.5, below). Thirdly, the results and techniques of Hsiang,
Chang and Skjelbred ([7], [6] and [13]) give rise to a proof which is more
direct and less sophisticated than the proof Quillen gives for his theorem.

In the second section of this paper, we prove a localization theorem
for H;(X)-module structures and deduce analogues of the results of 6],
using Hy(X)-module structures instead of H(B;)-module structures. The
advantage of this approach is that it distinguishes between components of
the fixed point set of a subtorus. In the third section, by way of an
application, the useful concept of a uniform torus action is defined, and a
simple algebraic characterization of uniformity is given.

Throughout this paper the cohomology and equivariant cohomology
theory used will be sheaf theoretic, or equivalently, Cech. Rational
coefficients will be used throughout, and these will be suppressed from
the notation. The form of the ‘“going up” theorem of Cohen and
Seidenberg, which is used in the first section, is that which may be found
in Serre ([12]).

We wish to thank Professor W.-Y. Hsiang, T. Chang and T.
Skjelbred for many useful discussions and suggestions.
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1. The stratification theorem. Let G be a compact con-
nected Lie group, and let X be a topological space, on which G acts
continuously. Throughout this paper we shall assume that the G-space X
satisfies one of the following two assumptions:

(A) X is compact (Hausdorff), and dimeH *(X) < ;

(B) X is paracompact, cdo(X) <, dimeH*(X)<®, and G acts
on X with finitely many orbit types.

We shall be concerned with the set 7 (X) of all pairs (K, ¢), where K
is a subtorus of G, such that X*# @, and ¢ is a component of
X% J(X) will be partially ordered as follows:

for (H, d) and (K, ¢) in J(X), (H,d)= (K, ¢), if and only
if there exists g € G, such that gHg'C K and gd D c.

If (H,d) = (K,c)and (K, c¢) = (H, d), then we shall write (H,d) = (K, ¢).
Thus, in I (X), (H, d)= (K, c) if and only if there exists g € G, such that
gHg'=K and gd = c.

Following Quillen [11], let Hs(X) = HE*(X), and let H, = H*(B,),
for any closed subgroup L C G. A pair (K, c)€ J(X) determines a
cross-section of the bundle Xx — By, and hence a map Bx —> X;. The
induced map on cohomology, Hs(X)— Hg, will be denoted by (K, ¢)*,
and the kernel of (K, c)* will be denoted by p(K, ¢). Since we are using
sheaf-theoretic cohomology, (K, ¢)* is independent of the choice of point
in ¢ used to determine the cross-section Bx — Xi. Itisclear, too, that if
(H,d)=(K,c) in I(X), then p(H,d)=p(K, c).

Continuing to recall the notation of [11], let

V(K, ¢)={p € Spec(Hs(X))|p 2 p(K, c)},

and let V(K,c) = V(K,c)— U{V(H,d)|p(H,d) D p(K, c)}.

Let Norm(K,c)={g € G|gKg'=K and gc =c}, and let ZK =
{g € Glgxg™' = x, for all x € K}. Since the centralizer of K, ZK, is
connected (see, for example, Bredon [5]), gc = ¢, for all g € ZK, and all
components ¢ of X*. Let T be any maximal torus in G, and let NT be
the normalizer of T in G. Thus the Weyl group of G, W, is equal to
NT/T. 1f K C T, let W(K,c) be the group Norm(K,c)N NT/ZK N
NT.

Given a maximal torus T C G, and given (H,d)€ J(X), there
exists (K, c)€ J(X) such that K C T and (K,c)=(H,d). Thus we
may find a subset I of J(X), such that

i) (K,c)elI; > KCT, and

(i) forany (H,d)€ J(X), there exists one and only one (K, ¢) € Ir
such that (H,d)= (K, c).
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Recall from Chang and Skjelbred {6] that for a torus, K, there is a
function

o: Spec(Hy)— {PL € Spec(H)|L is a subtorus of K},

which assigns to each prime ideal p of Hg, the ideal generated by
pN H*Bg). Thus p D PL if and only if o(p) 2 PL. o(p) will be
called the support of p. Let K* = {p € Spec(Hx)|o(p) = (0)}.

The remainder of this section will be devoted to proving the
following version of the Stratification Theorem.

THeEOREM 1.1. Let T be a maximal torus of G. Then
(i)  The spectrum of Hs;(X) admits a stratification as a disjoint
union

Spec(Hs(X)) = ] V(K ¢);

(K, c)elr
(i) W(K,c) acts on K*, and there is a homeomorphism
K*/W(K,c)= V(K,c);

(i) for any (H,d) and (K,c) in I(X), p(H,d) 2 p(K, ¢) if and
only if (H,d) = (K,c).

REMARKs 1.2.
(i) Theorem 1.1 (i) is equivalent to asserting the existence of a
function

a: Spec(Hgs (X))— {p(K, ¢)| (K, c)E I}

with the property that, for any (H,d) &€ 7(X), p 2 p(H, d) if and only if
a(p) 2 p(H,d). o(p) will be called the support of p.

(ix’) In the above remark we have used the fact that the commuta-
tive ring Hs (X)) is Noetherian. This is clear since H is Noetherian, and
the fact that dimoH *(X) <« implies that Hs(X) is a finitely generated
H,-algebra ([10]).

(i) The sufficiency of the condition in Theorem 1.1 (iii) is clear,
since (H,d) = (K, c) implies that we may factorize (H,d)* through
(K, c)*.

(iv) If S, is the multiplicative set generated by nonzero elements in
H*(By), then K* is homeomorphic to Spec(S;'H).

(v) All topologies on ring spectra used above are Zariski to-
pologies.
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(vi) W(K, c¢) has the discrete topology. Since we have an epi-
morphism [Norm(K,c¢)N NT]/T— W(K,c), and a monomorphism
[Norm (K, c)N NT]/T — W, it is clear that W(K, ¢) is finite, with order
less than or equal to the order of W.

The following proposition will enable us to prove Theorem 1.1 by
two separate applications of the going up theorem of Cohen and
Seidenberg. r is the bundle map Xy — B, R = Hy, and J is the kernel
of #*: R — Hy(X). =* will be denoted by p. Part (ii) is due to T.
Skjelbred [8]: we include his proof.

ProrosiTiON 1.3,

(i) Hy(X) is an integral extension of R/J.

(i1) Hy(X) is a finite Galois extension of H;(X). In particular the
extension is integral.

Proof.

(i) Let x € Hy(X). Then the R-submodule of H,(X) generated
by powers of x is finitely generated.

(ii)) Skjelbred has shown that it is an easy consequence of a
theorem of Borel, that the natural map Hgs(X)— Hy(X) is an isomor-
phism of H;(X) onto Hy (X)Y, the subring of H;(X) fixed by the natural
action of W ([8]). For x € H-(X), consideration of Il,cy (x — wx)
completes the proof.

REMARK. In [7] W.-Y. Hsiang shows that VJ= N7, PK, where
K,, -+, K, are the maximal connective isotropy subgroups of the action
of T on X.

For the time being we shall assume that G = T, a torus, and we shall
prove Theorem 1.1 in this case. For a subtorus K C T, let B« be the
map Xx— Xr, and let QK be the ideal generated by p(PK) in
H:(X). If K;is the identity component of the isotropy subgroup of the
action of K on X at x € X, let F(K, x) be the component of X* which
includes x.

ProrosiTiON 1.4. In H;(X),

Vker(B%)= VOK = N P(KS, F(K, x)).

Proof. To prove that Vker(8%) =V QK, consider the Serre spec-

tral sequence in rational cohomology of the fibration XK,E'—; X B,
where L = T/K. R = H; ® Hx acts on E, via the action of H, on itself,
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and the action of Hx on H*(Xy). E, is a finitely generated bigraded
differential R-module.

Since E. is a subquotient of E, and R is Noetherian, it follows that
E.=E, forsome r <, and E, is a finitely generated R-module. Thus,
with the standard filtration, there exists a set of generators for E, as an
H, -module having bounded filtration degree. Let n be an integer
greater than the maximum filtration degree of the elements of such a
generating set. Let x €kerB% Then x € FHY(X), and so x"€&€
F.H%(X).

It now follows that there exist y,, - -+, y,, in H}(X), and a,,* - -, a. of
positive degree in H,, such that x" = a,y,+ - + a,y.. But ¢* maps the
elements of positive degree in H, into p(PK). Hence, if x€&
ker(B%| Hr (X)), then x" € OK.

Clearly, QK C ker(B%).

We must prove now that Vker(8%) = M,cx p(KS, F(K, x)). Given a
subtorus L C K, and a component ¢ of X*, let (L, c)*: Hx(X)— H, be
the associated map, and let p'(L,c)=ker(L,c)*. Then p(L,c)=
Bx'(p'(L, ).

_ Now Quillen’s Proposition 3.2 of [10] implies that in Hg(X),
V(0)=N,exp'(K;, F(K, x)). Hence

Vker(83) = BX'(V0) = N (K, F(K, x)).

The next lemma enables us to dispense with any condition on the
number of orbit types when X satisfies condition (A).

LEMMA 1.5, Ifa torus K acts on a space X satisfying condition (A),
then the family

{p(K%, F(K, x))| x € X} C Spec(Hy (X))

has only finitely many minimal members.

Proof. By Remarks 1.2 (iii) it is enough to show that the family
F={(K;, F(K, x))|x € X} has only finitely many maximal members. Let
0=r=rank(K), and let F, = {(K;, F(K, x))|x € X and corank(K;) = r}.
Let S,., = {x € X |corank(K})=r - 1}.

If (K, F(K, x))isin F, and is maximal in F, then F(K,x)N S,., = .
Hence, by the Localization Theorem ([6]), PK; € Supp(Hx(X, S,-1)).
Furthermore, PK is clearly minimal in Supp (H (X, S,-,)). But, from [2],
H(X, S,-)) is a finitely generated Hx-module, and so Supp(H¥(X, S.-1))
has only finitely many minimal elements.
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REMARKS.
(1) From the commuting diagram
(K, ¢)*
HT(X) —_—> HK
pl 11

R —— Hig

it follows that p~'(p(K, ¢)) = PK.

(2) Since V(0)= MN,ex p(T;, F(T, x)), every prime ideal in Hy(X)
contains some p(K, c).

To establish the existence of supports we need the following lemma:

LEmMMA 1.6. Let p&€ Spec(Hr(X)). If p~'(p) = PK, then there is a
component ¢ of X* such that p=p(K,c).

Proof. p~'(p)= PK = p D QK. Hence by Proposition 1.4 (and
Lemma 1.5), there exists x € X such that p D p(K;, F(K, x)).

Therefore, PK =p~'(p) D p '(p(K, F(K,x))= PK;. But K;C K,
and so PK;D PK. Hence K=K, and p and p(K,c), where ¢ =
F(K, x), are two prime ideals of H-(X) lying over the prime ideal p (PK)
in R/J, with p D p(K,c). The result follows by the Cohen-Seidenberg
Theorem from Proposition 1.3 (i). (Note that PK D J, since K is
contained in T3).

The next lemma is straightforward.

Lemma 1.7. For any (K, c) in J(X), the map
r+ PK—p(r)+p(K,c)
is an isomorphism : R/PK = Hy = H(X)/p(K, ¢).

LEMMA 1.8. Let p € Spec(Hr (X)), let PL = op~'(p), and let d and
d' be components of X*. If pD p(L,d)+p(L,d’), then d =d’.

Proof. Suppose d# d’, and let d =d,, d' = d,, - - -, d, be the com-
ponents of X' Let x be the element (1,0,---,0) in HYX")=
HYd) P - - - B HYds). Following the notation and methods of [6], let

I, ={a €ER|ax EIm[e}: H}(X)— H3(X")]}.
Let a€I. Then e¢jfp(a)=a-(1,1,---,1). There exists y €&

H;(X), such that ¢7(y)=ax =a-(1,0,---,0). Hence y € p(L,d"), and
p(a)—y €p(L,d). Thus pa €p.
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We have, then, that p~'(p) D I, and hence, PL = op~'(p) contains
some PH, where H belongs to x. Since it is clear that the subtori, which
belong to x, cannot contain L, we have a contradiction.

If d and d’ are distinct components of X*, for L a subtorus of T, we
shall say that a pair (K, c) in J(X) connects d and d' if K C L and
dUd' C c. Then the following corollary is deduced easily from the
above.

CoroLLARY 1.9. Vp(L,d)+p(L,d')= Ni_,p(K, c,),where (K,,c)),
-+ (K., ¢) are the maximal pairs of I (X), which connect d and d'.

Lemma 1.10. Let A be a Q-linear subspace of H,(X), such that
p(K,c)C A. Then

A =p(K,c)+ (A Np(R)),

as Q-linear subspaces.

Thus, if A is an ideal in H(X), and A’ is the ideal generated by
A Np(R), then A =p(K,c)+ A', as ideals.

In particular, if (K,c)= (L,d), then

p(L,d)=p(K,c)+ QL.

Proof. Clearly p(K,c)+(ANp(R))C A. Let a€ A, and let
q: R—>R/PK, q: H;(X)— H;(X)/p(K,c) be the projections. By
Lemma 1.7, there exists r € R such that gp(r) = yq(r)= g(a). Thus
p(r)—a€kerg=p(K,c)C A, and so p(r)E A Np(R). Hence a €
p(K, c)+ (A N p(R)).

We shall now prove Theorem 1.1 (iii) for a torus acting on X.

Lemma 1.11. If p(H,d) D p(K,c), then (H,d)= (K, c).

Proof. By applying p~' we have that PH D PK, and hence H C
K. Thus there exists a component d’ of X*, such that d’ D ¢; and so
p(H,d') D p(K, c) also. Lemma 1.10 implies that

p(H,d)=p(H, d")=p(K, c)+ OH.

It follows that p(H,d)=p(H,d)+p(H,d'),andso d' = d, by Lemma
1.8.

The next lemma, together with Lemma 1.8 completes the proof of
Theorem 1.1 (i) for torus actions.

Lemma 1.12. If p D p(K,c) in Hy(X), and if PL = op~'(p), then
there exists a component d of X", such that
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p2p(L.d)DpKc)
Proof. By Lemma 1.10,
p=p(K,c)+pp '(p) 2 (K. c)+p(PL)=p(L,d),

where d is the component of X", which contains c.

Suppose that X is a compact rational Poincaré duality space with
X'"#&. Let F be a component of X7, and let f € H¥(XT") be the top
class of F. Let

I={a € R|af €Elm[e*: H}(X)— HHX")]};

Let I;be the ideal generated by I; in Hy(X); and let J; be the annihilator
in H;(X) of the H;(X)-submodule of HZ(X,XT") generated by
8f. Then J, = {x € H/(X)|¢*(x)f € Im ¢ *}, and we have the following
corollary of Lemma 1.10.

CoroLLARY 1.13. J, = I}+p(T, F), and V' J,= N;_,p(K, c,), where
K, -+, K, are the local weights at F, with corresponding F-varieties
Ci, ", €, respectively.

Proof. Clearly J; D p(T,F), and J,Np(R)=p(L). Thus J, =
I;+p(T, F) by Lemma 1.10. B

For the second part, we have that V'I,= N:_ PK, by [1]; and, letting
¢, be the component of X*, which contains F, we have, by Lemma 1.10
again,

N p(K.c)=p(TF)+p( () PK)

=p(T,F)+p(VT)
= p(T, F)+pp~' (V)
N

REMARKS. B

(1) The part of Corollary 1.13 which states that V' J;= N, p(K, c,),
follows directly from Theorem 2.4 (ii), below.

(2) Let  Strat(H;(X))={p(K,c)|(K,c)E T(X)}, and et
Strat(R) = {PK | K is a subtorus of T}. Then Lemma 1.12 implies that
the support functions enjoy the following commutativity:
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Spec (Hy (X)) —> Strat (H; (X))
p*l | p*[Strat (Hr(X))

Spec(R) 5 Strat (R)

(3) Since, with the notation of Lemma 1.10, ¢q = gp, ¥ being the
isomorphism of Lemma 1.7, it follows easily that K'= V(K c) C
Spec(H(X)), the map being p— (K, ¢)'(p).

We shall now prove Theorem 1.1 in the general situation, where G is
a compact connected Lie group, T is a maximal torus of G, and W is the
Weyl group. The action of W on H;(X) induces an action of W on
Spec(H+(X)). The next lemma, together with Proposition 1.3 (ii), is the
key to extending the results.

LEmma 1.14. Let p&€Spec(Hs(X)). Let a=p-Hy(X) be the
ideal of H;(X) generated by p. Let q€& Spec(H(X)) be such that
q N H(; (X) =p. Then

Va = N wgq.

weWw

Proof.  First, note that there always exists q such that ¢ N Hg(X) =
p, by the Cohen-Seidenberg Theorem. Now p C q,andsop=w -pC
w-q. Hence

aC N w-q.
weWw
Suppose x € MN,cww -q. Then, for any w € W, wx €q. As be-
fore, consider Il ew(x — wx)=0. If the order of W is n, then we obtain
an equation x"+bx"'+---+b, =0, where each b EqN
H;(X). Thus x" € a.
CoroLLARY 1.15. There exists a homeomorphism

f: Sepc(Hg (X)) — Spec(H (X)) W

such that the diagram

Spec (Hr(X)) —— Spec (Hr(X))/W

i* /
Spec(Hs (X))

commutes, where i* is the restriction, and  is the orbit map.
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Proof. Clearly there exists a well-defined continuous map
g: Spec(H(X))/W — Spec(Hs(X)), such that gm=i* g(W(q))=
q N Hg(X).

If g(W(q))=g(W(q')) =p, say, then, with p, q and a as in Lemma
1.14, we have that ¢’ D Va, and hence q' D wgq, forsome w € W. Thud
q' = wq, by the Cohen-Seidenberg Theorem, and hence g is injective.

Finally, i* is closed and surjective by the Cohen-Seidenberg
Theorem; and hence g too is closed and surjective.

To distinguish between H,(X) and H;(X), we shall, for the
remainder of this section, denote the elements of Strat(H;(X)) by
q(K, ¢), reserving the notation p(K, ¢) for Spec(Hs(X)).

LEmMMA 1.16.

(i) q(K,c)N Ho(X)=p(K,c)

(it) If w € W is represented by gT in NT/T, then w-q(K,c)=
q(gKg ™, go).

Proof. (i) is clear from the definition of p(K,c). To see (ii)
consider the diagram

By — ck - Xy

0&’ ‘[’ \l’ d’g
Bng S (gC )ng" - Xy

where for z € E;(Bs = Es/G), 6, is the map K(z)— gKg'(gz), and, for
x € X, ¢, is the map T(x,z)+ T(gx, gz). Y, depends only on w, but 6,
depends upon the choice of g. Clearly the rows may be chosen so that
the diagram commutes, and the composition on the top row gives (K, ¢)*,
while the composition on the bottom row gives (gKg™', gc)*, and clearly,
the latter map depends only on w, since t¢c = ¢, forany t € T. The result
now follows since 6, is a homeomorphism, and ¢, is the homeomorphism
on Xy, which induces the action of w™' on Hr(X).

Thus Strat(H;(X)) is W-invariant, and we have the following
lemma.

LEmMMA 1.17. o: Spec(Hr(X))— Strat(H(X)) is W-equivariant.

Proof. Let q€&Spec(Hr (X)), let o(q)=q(K,c), and _let
w € W. Suppose that wq D q(H, d) for some (H,d)€ J(X). Then
q2 w'q(H,d), and so q(K,c) D w'q(H,d). Thus wq D wq(K,c) D
q(H, d), and, hence o(wq)= wo(q) = wq(K, c).

We are now in a position to prove Theorem 1.1 as stated.
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Proof of Theorem 1.1. Given p€& Spec(Hs(X)), choose q€&
Spec(H:(X)), such that qN Hg(X)=p, and set o(p)=oa(q)N
Hi(X). By Lemma 1.17, o is a well-defined map of Spec(Hs (X)) onto
Strat (Hs (X)) = {p(K, ¢)|(K,c) € I+}, and o(p) is independent of the
choice of q. Clearly, if p D p(H, d), then o(p) D p(H, d), and so parts
(1) and (iii) of the theorem are proved.

For (K, c) € I, we have

V(K, c¢)' ={p € Spec(Hs(X))| o(p) = p(K, c)}.
Let
U(K, ¢)" ={q €€ Spec(Hr(X))| o(q) = q(K, c)},

and let Wy={w € W|wq(K, ¢)=q(K, ¢)} be the isotropy subgroup of
the W-action on Spec(H (X)) at q(K,c). Then U(K,c) is W,
invariant by Lemma 1.17.

As in Corollary 1.15, we have a homeomorphism

UK, c)'|W,= V(K,c),

defined by W,(q)— q N Hs(X).

Now, representing w € W by gT € NT/T, g € NT, it follows from
Lemma 1.16, that w € W, if and only if g € Norm (K, c). Thus W, is
isomorphic to (Norm (K, ¢)N NT)/T, which maps onto W(K,c), with
kernel (ZK N NT)/T.

Since ZK is connected, it follows that (ZK N NT)/T acts trivially on
U(K, ¢), and, hence, there is induced on U(K, ¢)* an action of W(K, c),
with U(K, ¢)*/W(K, c¢) homeomorphic to U(K, c)'/W,.

K™, however, is homeomorphic to U(K,c)*; and so we have an
induced W(K, c)-action on K*, with K*/W(K,c) homeomorphic to
V(K, c)*, completing the proof of the theorem.

RemARK. The essence of the proof of Theorem 1.1 (i) and (iii) is
that the homeomorphism, f, of Corollary 1.15 induces a homeomorphism
f: Strat(Hg (X))— Strat (Hr(X))/W, such that fo =o'f where o'
Spec(Hgs (X))/W — Strat (H-(X))/W is induced from o:Spec(H:(X))
— Strat (Hr (X)), by Lemma 1.17: and Strat (H;(X))/W is in one-to-one
correspondence with I, by Lemma 1.16 (ii).

The support maps defined above are natural, in as much as we have
the following theorem, whose proof is straightforward, and will be
omitted.

THEOREM 1.18. The diagram
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Spec(R) <« Spec(Hr (X)) — Spec (Hg (X))
al ol gl
Strat (R) < Strat (Hy (X)) — Strat(Hs (X))

in which the horizontal maps are the obvious ones, is commutative and
natural with respect to equivariant maps (G, X)— (G', X'), where G, G'
are compact connected Lie groups, X, X' satisfy conditions (A) or (B) and
the maximal torus of G' is chosen to contain the image of the maximal
torus of G.

REMARK. The support maps are not, in general, continuous with
respect to Zariski topologies. The set of all V(a), where a is an ideal in
Hg (X) such that a = (0) or (1), or Va= N, p(K,c), forany (K, c,) € I,
is a topology of closed sets on Spec (H;(X)); and if we take the subspace
topology induced from this topology on Strat(H; (X)), then, clearly, o is
continuous.

2. The localization theorem and ideal theory. In [6],
Chang and Skjelbred use the Localization Theorem of [7] (and [10]) to
discuss the primary decomposition of certain ideals of geometric
significance. This theory is concerned with R-module structures, and
ideals in R. In this section, we shall recover similar results for H;(X)-
module structures and ideals in Hr(X).

We shall be concerned only with torus actions on X, and we shall
consider closed invariant subspaces of X, Y and Z, which satisfy the
conditions that dimoH *(Y) <o, and dimoH *(Z) < «. (Merely, we need
H73(Y) and H%(Z) to be finitely generated H;(X)-modules.) The long
exact sequence of the pair (X, Y) in equivariant cohomology is an exact
sequence of Hy(X)-modules.

To simplify notation we shall denote the ring H-(X) by B. Recall,
too, the notation of [10], §3, that g: X — X/T is the orbit projection, and
if u € B, then i is the corresponding global section of the Leray sheaf on
X/T. 1t is clear from the definition of i, that, in B,

p(T3, F(x)) = {u € B |i(q(x)) =0},
where F(x)= F(T, x).
DeriNiTION.  For fE B, let Y/ ={x € Y|fZp(T;, F(x))}. Thus
Y =XNq{y€X/T|f(y)#0}; and so Y’ is a closed invariant sub-
space of X.

LeEMMA 2.1. Upon localizing the B-module structures, the restriction
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H3(Y)— H3(Y’), induces a Bj-module isomorphism, H7(Y),
— H*(Y’). (As usual, B; is the localization of B with respect to the
multiplicative set generated by f.)

Proof. Let ¢*: Hr(X)— Hr(Y) denote the restriction, and, for
yEY, let

p(T;, F(y))=ker[H:(Y)— Hr(F(y))— Hr]. Thus,
p(T5, F(y)) €Strat(Hr(Y)), and p(T5, F(y))=¢*'p(T7}, F(y)).

Suppose that Y/ =& Then ¢*(f)€p'(T;, F(y)), for all yEY.
Hence ¢ *(f)is nilpotent in H(Y), and we have H¥(Y), > H¥(Y’'); =0.

Now suppose that Y/'# . Just as in [10], let N be a closed
invariant neighborhood of Y/ in Y, and let N'=Y — N. Then (N'Y =
@, and the Mayer—Vietoris sequence implies that H3(Y), = H7(N),.
Again, as in [10], the result follows from taking direct limits as N varies.

We may now prove the Localization Theorem for B-module struc-
tures.

THEOREM 2.2. Let p€ESpec(B), and suppose that op=
p(K,c). Then, with respect to B-module structures, localization induces
isomorphisms,

HiH(Y),—= HHcNY),
and

H%(X,Y),= H%c,cNY),.

Proof. From the long exact sequence for the pair (X, Y), the
second isomorphism will follow from the first.

The first isomorphism follows from the continuity of sheaf cohomol-
ogy, and Lemma 2.1, and the fact that

c=N{X'|f&p}.

REMARKS.

(1) Give Spec(B) the Zariski topology and let D;=
{p € Spec(B)|f& p} denote a typical basic open set. Let % denote the
sheaf, D;— H3(Y);,, and let % denote the presheaf, D;—
H%(Y’). Then Lemma 2.1 says that ¥ and ¢ are isomorphic as
presheaves, and hence, as sheaves. The first isomorphism of Theorem
2.2 is then the isomorphism induced on the stalks at p.

(2) Given p(K,c), let r(K, ¢) = ker[Hr(c)— Hg]. Then it is easy to
show that restriction induces a ring isomorphism, Hy(X)yk.o
= Hr (¢ ). o)
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We have the following analogue of [6], Lemma 1.1.

PropoSITION 2.3. Let p€E Spec(B), and suppose that op=
p(K,c). Let N be the B-module H3(c,c N YY) QuuyHHc N Z). Then
the localization map, N — N,, is a monomorphism.

Proof. Let L =T/K, so that H}(c,c N Y)=Hy @Hi(c,cNY),
Hi(cNZ)=H¢@Hi(cNZ), and Hr(c)=Hx ® H. (c). Then the
middle four interchange ([9]), gives an isomorphism

H¥c,c N Y)RunoHi(c N Z)=> Hy Q[HT(¢,c NY)QuiyHi(c N Z)).

The result now follows just as in [6].

Let M be a B-submodule of H¥X, Y)QsH7%(Z). For a given
(K, ¢) € J(X), denote by M (K, c), the image of M under restriction into
Hi(c,c NY)Qun, Hi(c N Z).

DEeriniTION.  With the above notation, let ann(M) be the an-
nihilator of M in B, and let ann®“(M) be the annihilator of M (K, ¢) in
B. We shall say that a pair (K, ¢) € 7 (X) belongs to M if and only if

(i) ann®9(M)#(1); and

(1) if (H,d)>(K,c), (i.e. (H,d)=(K,c)and (H,d)# (K, ¢)), then
ann® (M) = (1).

The following results may be proved in a manner strictly analogous
to the corresponding results of [6], using Theorem 2.2 and Proposition
2.3.

THEOREM 2.4.

(1) if p&eSpec(B), and op=p(K,c), then ann(M),NB =
ann(M,) N B = ann®9(M).

(i) Vann(M)= N{p(K, c)|(K, c) belongs to M}.

CoOROLLARY 2.5.
() _If (K,c) belongs to M, then ann®(M) is primary, with
Vann® (M) = p(K, c).
(i1) If (K, c) belongs to M, then

ann® (M) ={x € B|lann(M): (x)Z p(K, c)}.

THEOREM 2.6. There exists a reduced primary decomposition of
ann(M) of the form ann(M)= N{ann®(M)|(K,c) belongs to M}
Nq N -+ Nq, where, for each i, 1=i=m, Vq,=p(H,d,), for some
(H, d;) € 9 (X), which does not belong to M, but for which (K, c) = (H, d;)
for some (K, c), which does belong to M; and
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ann®™ (M) C N{ann®(M)|(K, ¢)> (H, d,)}.

REMARK. Let F be a component of X7, assuming that X" # . Let
M= H¥X, XTYQR®s H%(F), and let N = H}(X, F) Qs H%(F). It is easily
verified that Supp (M) = Supp (N); and indeed, from [3], for example, we
have that

Supp(M) = V(ann(M)) = Supp (H (X, X™)) N Supp (HI(F))
= Supp (H (X, F)) N Supp (H(F))
= Supp(N) = V(ann(N)).

Thus, if X is a Poincaré duality space over Q, the local weights at F,
and their corresponding F-varieties ([1]), are precisely the pairs, (K, ¢),
which belong to M, or, equivalently, which belong to N.

3. An Application. We shall say that an action of a torus, T,
on a space, X, is toricly uniform, if given any two subtori, H and K, such
that H C K, and X*# J, then every component of X" contains at least
one component of X*; that is ¢ N X*# J, for every component, ¢, of
X" Aspace, X, will be called toricly uniform, if every torus action on X
is toricly uniform. It is clear that X is toricly uniform if, and only if,
every torus action on X with a nonempty fixed point set is toricly
uniform.

Toricly uniform spaces are common. For example, if the even
rational homotopy groups of X are zero, then X is toricly uniform, since
all nonempty fixed point sets are connected in this case ([4]). It will
follow from Corollary 3.4 below, that X is toricly uniform if H**(X) =
0. Thus, if X has the rational cohomology of complex or quaternionic
projective space, then X is toricly uniform. The following is a simple
example of a nontoricly uniform action.

ExaMpPLE. Let Y = S?Xx S!, and let the torus T>*=S'X S'acton Y
by the product action of S' rotating S* about an axis through the north
and south poles, n and s, and S' acting on S' by multiplication. Let A
be the invariant subspace {n}X S', and let X be the quotient space
Y/A. Clearly X inherits a T?-action from Y and this action is not
toricly uniform, since T° fixes the single point A /A, and the first factor of
T* fixes this point plus {s} X S*.

We shall use the ideals, p(K, c), to give the following algebraic
characterization of toricly uniform actions. In H7(X), let N be the ideal
of R-torsional elements.

THEOREM 3.1. If the torus T acts on X, such that X" # ), then the
action is toricly uniform, if, and only if, N C V(0) in Hr(X).
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RemArk. If X7 is not necessarily nonempty, then the action is
toricly uniform if and only if M C V(0), where the ideal M is the
intersection of all ker[ H(X)— Hy(X*)], K ranging over the maximal
subtori of T with X*# . The proof is strictly analogous to the proof
of Theorem 3.1 as stated. By [7], M may be characterized algebraicly as
the set of all x € Hy(X), such that ann(x) and J =ker[p: R — H;(X)]
have no common minimal primes.

For the proof of Theorem 3.1 we need the following proposition.

ProrosiTiON 3.2. If a torus T acts on X such that X" # &, and if F",
1=i=s, are the components of X', then

VN = m p(T, F').

Proof. Let ¢:(XT)r— Xr, ¢,: Fir— Xy, 1 =i =5, be the inclusions.
The localization theorem of [7] or [10] implies that N = ker ¢ *. Clearly
kero*=1_ kero*. L

Now p(T, F') = ¢* (R @ H(F')), and so Vker¢* = p(T, F'). The
result follows.

COROLLARY 3.3 ([7]). XTis connected if, and only if, /N is prime.

Proof of Theorem 3.1. Clearly the action is toricly uniform if, and
only if, M., p(T, F') =V(0). The theorem follows.

The following corollary also follows easily from the localization
theorem.

CoroLLARY 3.4. If the torus T acts on X such that X is totally
nonhomologous to zero (with respect to rational cohomology) in X; — B,
then the action is toricly uniform.

Proof. N = (0) in this case.

Concluding Remarks. The ideals, p(K, c¢), or similar ideals in a
closely analogous context were used to great effect, with varying degrees
of explicitness, by Hsiang, Chang and Skjelbred in [7], [6] and
[13]. Indeed, one could rework the program of [7] in the following
way. Let 7w: R[x,, -, x,]— Hr(X)/V(0) be an R-algebra epimorph-
ism; suppose that X7 # (J, and let F', 1 =i =< s, be the components of X7;
let a;=(T,F')*w(x;)€ R. Then #7'p(T, F')=(x,~ a}, -, x — ai) for
1=i=s; and we have that

[77'p(T, F)+ 7 'p(T, F)] N R = p”'[p(T, F') + p(T, F")]

=(ai—al, - ai—al)
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The latter ideal has, therefore, minimal primes of the form PK in R ; and
it is a very useful ideal for describing the geometry of connecting subtori,
as was done in [7], [6] and [13]. (Cf. Corollary 1.9, above).
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