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Let % be an (r — 1)(2n — r + 2)/2 dimensional subspace of
n X n real valued symmetric matrices. Then 9 contains a
nonzero matrix whose greatest eigenvalue is at least of multi-
plicity r, if 2=r=n—1. This bound is best possible. We
apply this result to prove the Bohnenblust generalization of
Calabi’s theorem. We extend these results to hermitian
matrices.

1. Introduction. Let %, be the n(n + 1)/2 dimensional vec-
tor space of all real valued n X n symmetric matrices. Let A belong to
W,. Arrange the eigenvalues of A in decreasing order

(1.1) MAYZMLA)Z- 2 A (A).
We say that A,(A) is of multiplicity r if

(1.2a) AM(A)=---=A(A),
(1.2b) A (A)> A a(A).

Let U be a subspace of W, of dimension k. We consider the
question of how large k has to be so that 9 must contain a nonzero
matrix A which satisfies (1.2a) for a given r. The nontrivial case would
be

(1.3) 2=r=n-1
Clearly for r = n we must have k = n(n + 1)/2 as % will contain the

identity matrix I.
We now state our main result:

THEOREM 1. Let U be a k dimensional subspace in the space W, of
n X n real valued matrices. Assume that an integer r satisfies the ine-
qualities (1.3).

If

(1.4) k = k(r)

where

389
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(1.5) k(ry=(—-1D)0C2n~-r+2)/2, r=1,2,--+,n
then U contains a nonzero matrix A such that the greatest eigenvalue of A
is at least of multiplicity r. The lower bound «k(r) is best possible for
2=r=n-1

Theorem 1 is proved in §2. In §3 we prove that Theorem 1 is
equivalent to the following result due to Bohnenblust (cf. [1] and
[4]). We denote as usual by (x, y) the inner product of the vectors x and

y in R", which is the underlying vector space for #%.,.

THEOREM 2 (Bohnenblust). Let V" be a subspace of dimension k in
W, and let 1=r=n—1. Assume that V" has the following property:

(1.6) 2 (Ax,x,)=0 for every A in V'
=1

implies that x, =0 fori=1,---,r. If

(1.7) k<f(r+1)=8..,
where
(1.8) f(r)y=r(r+1)/2,

then V" contains a positive definite matrix.

In case r = 1, Bohnenblust’s result reduces to the following theorem,
known as the Calabi theorem [2]: Let n =3 and suppose that S, and S,
are n X n symmetric matrices such that (S,x,x)=(S,x,x)=0 implies
x = 0. Then there exist real a, and «, such that «,S, + «,S, is positive
definite.

Bohnenblust defines a subspace 7" with the property:

(1.9 2 (Ax,x,)=0 for every A#0in 7 implies x, = x,=---=x, =0
1=1

to be jointly definite of degree r. Thus, the equivalence of Theorems 1
and 2 relates the notion of a subspace which is jointly definite of degree r
with that of a subspace containing a nonzero matrix whose largest
eigenvalue has multiplicity r.

Finally, in §4 we prove that if we let %', be the n* dimensional real
space of all n X n hermitian matrices then Theorems 1 and 2 remain
correct if x(r) and f(r) are defined as follows
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(1.10) k(r)y=(r—-1)Cn~-r+1),
(L.11) f(ry=r.
2. Proof of Theorem 1. We first establish a weaker form of

Theorem 1 which will be needed for the proof of Theorem 1.

Lemma 1. Let 1=r=n. Let U be a k-dimensional subspace of
W, and assume that

2.1 k=1+«k(r).
Then there exists A in U such that

(2.2) A(A)= - = A (A)=1.

Il

Proof. For r=1 (2.2) trivially holds. For r=n (2.2) is also
obvious as 1+ «k(n)=n(n+1)/2. Suppose that the lemma holds for
r =p. Next we construct A which satisfies (2.2) forr=p+1. Let B
satisfy

(2.3) M(BF)= - =A(B*)=1, (p=1).
The existence of B* follows from our assumptions. Assume that
(2.4) I>A,.(B7).
Otherwise B* would satisfy (2.2) for r = p+1. Let
(2.5) B*& = A (B*)&: (6,.6)= 8, ij=1n

Suppose that A, - -+, A, form a basis for %. Consider the system

k

(2.6) > AL =0, i=1..p

We claim that (2.6) is equivalent to «(p+1)=«(r) scalar
equations. Indeed, we can assume [£,, - - -, &, ] to be the standard basis in
R". Then each A, is represented by an appropriate n X n symmetric
matrix

(27) Alz(aiu)’ l:lk

So (2.6) is equivalent to
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k
(283) 2 afa;m: 0’ n= 1’ D

1=1
k
(2.8b) ®al,=0, wpu=1,--piv=p+l, - n
-1

J

Clearly (2.8a) and (2.8b) are a system of k(p +1)=p(2n —p +1)/2
linear equations in the unknowns a;,, - -, a. As kZ1+«k(p+1) we
have a nontrivial solution of (2.6). Hence there exists C# 0 in U such
that

(2.9) Ce¢ =0, i=1,---,p.

We can assume that
(2.10) A(C)>0.
(Otherwise take — C). Consider the matrix
(2.11) C(a)=B*+ aC.
Clearly, (2.3), (2.4) and (2.9) imply for |« | small enough
(2.12a) MC(a))=-=A1(Cla)) =1,
(2.12b) 1>A,.(C(a)).

We claim that there exists «* such that

(2.13) AM(C(@®)) == Au(Cla*)) = 1.

Otherwise we must have for all @ >0 the conditions (2.12). But for a
large positive a we have that A,(C(«a)) = aA,(C)+ O(1). This contradicts
(2.12a). Thus (2.13) holds. End of proof.

Thus, Theorem 1 shows that if we relax the condition that the largest
eigenvalue of A # 0 of multiplicity r would be distinct from zero then for
2=r =n—1 the bound (2.1) can be reduced by 1. We will show later
that the bound «(r)+1 is sharp.

LEmMMA 2. Let 2=r=n. Let U be a k-dimensional subspace of
W, and suppose that k = k(r). Assume that for any nonzero A in U we
have

(2.14) A(A)> A, (A).
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Let my, M, * * *, m,—1 be a set of r — 1 arbitrary orthonormal vectors. Consider
the system
(2.15) An, =An, i=12,---,r—1, and A €U

Then there exists a nonzero matrix A, in U and a scalar A, such that

(2~16) Ao’fh :Ao"]n l = 172"'."’_1’
and
(2.17) /\() = A](A()) == /\,~1(A0).

Moreover, for any pair A and A, where A belongs to U, that satisfies (2.15),
there exists a such that

A =aA, and X = al,.

Proof. From Lemma 1 we deduce the existence of B*#0 in U
such that A,(B*)=A,_,(B*)=1. Let &, ---,&_, be r—1 orthonormal
vectors corresponding to 1. We first prove the lemma in case that
n=¢&, i=1,---,r—1. Suppose that there exists a matrix C in %,
linearly independent of B*, such that C¢§, = ué,i=1,---,r— 1. We may
assume that w =0, for otherwise replace C by C —uB*. As in the
proof of Lemma 1 we define C(a)= B*+ aC and may conclude that
there exists @ * such that A,(C(a*))= A, (C(a*)) holds. This contradicts
(2.14). Thus C = BB* and since u =0 we must have that 3 =0. So

for n, =&, i=1,---,r—1 the lemma is proved.
Now let n,,---,m,-, be r—1 arbitrary orthonormal vectors. Since
r—1<n it is easy to show that there exists a system &,(¢), - - -, &-,(t) of

r — 1 orthonormal vectors for 0 = ¢ = 1 which depends continuously on ¢
and

(2.18) EO0)=¢&, &)=, i=1,---,r—1
For any #, 0=t =1, consider now the system
(2.19) A&E()=A&(@), i=1,---,r—1,and A €U

As was shown in the proof of Lemma 1, this system is equivalent to «(r)
linear equations. The number of variables is k + 1, namely a,, - - -, a, A
where A = 2, a,A, and k is the dimension of U (A, A, -+, A, form a
basis for %). The assumption k = k(r) implies the existence of a
nontrivial solution of (2.19). Clearly, if A =0 then A =0, so we always
have a nontrivial solution with respect to a, - - -, a.
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For t =0 it follows from (2.18) that the system (2.19) has rank «(r),
whence k = k(r). Thus for 0 =1t = € (¢ >0) we would always have, up
to scalar multiples, exactly one nontrivial solution A (t)in U such that

(2.20) A& ()= A(1)E (1), i=1--r—1

We can choose A (f) to be dependent continuously on ¢ as long as the
rank of the system (2.19) is «(r). Without any restriction we may
assume that |A(¢)]|=1 for some matrix norm on %, Since A(0)=
M(A0))=---=A_(A(0)), the continuity of A (¢) for 0=t = € and the
assumption (2.14) imply

z.21) M(A (1) = A (1)

for 0=t =e Suppose to the contrary that (2.15) has at least two
linearly independent solutions. Let 0<1#,=1 be the first time that the
system (2.19) has two linearly independent solutions. Thus A(¢) is
continuous for 0=t <t. Now (2.21) together with the assumption
|A(¢)| =1 implies the existence of B# 0 in % such that

(222) B¢, (to) = A&, ([n), i=1--r—1,

and Ay=A,(B)=--=A,_,(B). The condition (2.14) implies that
AM(B)> A, (B). By assumption we must have a solution C in %, linearly
independent of B, such that

(223) Cfx (t()) = p«& (to), 1= I, e r— 1.

If u =0 then, as in the proof of Lemma 1, we deduce that there exists a *
such that A,(C(a™))= A (C(a*)), where C(a)=B +aC. If u#0 let
B, = C(a,) where «, is chosen to be small enough such that A,(B,)>
A (B))and A,(B,) #0. Then as in the proof of Lemma 1 we may assume
that u = 0 and we again have the equality A,(C(a*))= A, (C(a*)). This
contradicts (2.14). The proof is complete.

Proof of Theorem 1. Let 2=r=n—1. Assume to the contrary
that any A # 0 in U satisfies the inequality (2.14). We then deduce the
existence of a nonzero matrix in % such that

(2.24) MC)Y>A(C)=---= X (C)> A, (C).
For r = 2 the condition (2.14) implies (2.24) for any C#0. Let3=r=

n—1. Consider again the matrix B* which satisfies A(B*)=---=
Ao(B*)=1. Let §&,---, &, be r—1 corresponding orthonormal
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eigenvectors. Let U’ be a «(r)— 1 dimensional subspace of % which
does not contain B*. Consider the equation

(2.25) Ct&=0, i=2,--r—land CEU"

Since U’ is x (r)— 1 dimensional, (2.25) is equivalent to a linear system of
k(r — 1) equations in k (r) — 1 unknowns. Since we assumed that3=r =
n —1 it follows that «(r)— 1> «k(r — 1), whence there exists a nonzero
solution C of (2.25).

If A,(C)="---=A,.,(C)=0 then (2.24) clearly holds. Hence we
may assume that A,(C)= A,(C)>0,and let C(a)= B*+ aC. It follows
from (2.25) that A,(B*) is an eigenvalue of C(a) of multiplicity r —2 at
least, for any a. But for « sufficiently large A,(C(a))>A(B*) and
A(C(a))> A (B*). Define

T={a:a 20, \(C(a))>A(B*) and A(C(a))> A (B*).

T is not empty, so define y =inf{a: « € T}. We must have y >0,
because of (2.14). The matrix C(y) satisfies (2.24).

Finally, we show that (2.14) leads to a contradiction. Let C be a
matrix that satisfies (2.24). Let n,, 7, -, .-, be r—1 orthonormal
eigenvectors corresponding to A,(C)=---= A, (C). By Lemma 2, there
exists a matrix A in U, A #0, such that A,(A)=A,_(A) and Ay, =
AM(A), i=1,2,---,r—1. Moreover, by Lemma 2 C = aA for some
a#0. But this contradicts (2.24). This contradiction proves that there
exists a nonzero matrix in 4 satisfying the condition A(A)=---=
A (A).

We now show that the bound « (r) is sharp. Consider the subspace
Y of n X n symmetric matrices A = (a,) of the form

(226) a,-,-=0, i,j':l,"',n"r"‘l,

(2.27) Z a; =0.

i=n-r+2

It is clear that the dimension of this subspace is k (r)—1. We claim that
there exists no A # 0 in % which satisfies A,(A)= A, (A). Suppose to
the contrary that such A exists. Astr(A)=0 and A # 0 we must have
that A,(A)>0. Consider the matrix B = A,(A)] — A. The assumption
A(A)= A, (A) implies that the rank of B does not exceed n —r. From
the conditions (2.26) we deduce that the principal minor B(}' 2 7/i) =
A (A) ' #0. So the rank of B is at least n — r + 1. From the contradic-
tion above we deduce the non-existence of A#0 in U satisfying
A(A)= A (A). The proof of the theorem is completed.
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RemArk 1. By modifying the example given in the proof of
Theorem 1 we demonstrate that the bound «(r) + 1 which was given in
Lemma 1is sharp. Consider the x (r) dimensional subspace U given by
the condition (2.26). Let A#0 and A,(A)= A, (A).” The existence of
such A follows from Theorem 1. Now let B = A,(A)] — A. Thus the
rank of B does not exceed n —r. So B(:nlii)=A(A) " =0.

Theorem 1 shows that the situation described in Lemma 2 can only
hold for r = n. Thus we have

CoroLLARY 1. Let U be a subspace of W, of co-dimension 1
(dim % = n(n +1)/2—1). Assume that U does not contain the identity
matrix 1. Then for any given n — 1 orthonormal vectors n,, - - -, m,-, there
exists a unique nonzero matrix A in U (up to a multiplication by positive
scalar) such that

(2.28) AMAY=- =X, (A)> A (A)

and the corresponding eigenspace for the eigenvalue A (A) is spanned by
nb Y nn—] .

3. The equivalence of Theorems 1 and 2. We regard
W, as a real inner product space with the standard inner product
(A,B)=tr(AB). Let

(3.1 B¢ = M\, (B)é, (&, &)= 8,, Lj=1, n
Then by choosing [£,,- -+, &, ] as a basis in R” we obtain
(3.2) tr(AB) = 21 A (B)(AE, &).

We need in the sequel the following well known lemma (cf. [3]).

LemmA 3. Let U be a subspace and X be a pointed closed convex
cone in R".  Let U* be the orthogonal complement of U and X * the dual
of # in R". Then the following are equivalent

(a) U NHK={0}.

(b) U N interior H* # O.

Now let ) be the cone of positive semidefinite matrices in %,. Itis
a well known fact that ¥* = J/. Finally we remark that the functions

k (r)and f (r) defined by (1.5) and (1.8), respectively, satisfy the identity

(3.3) k(r)+f(n—r+1)=dim ¥, r=1,--- n
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(In case that %, is the space of n X n hermitian matrices we use the
Definitions (1.10) and (1.11).)

Theorem 1 implies Theorem 2. Suppose that the subspace V" of W/,
satisfies the assumptions of Theorem 2. By Lemma 3 it suffices to prove
that

(3.4) VNI = {0},

Suppose this is not the case. It follows from (1.6) and (3.2) that 7"+
contains no nonzero positive semidefinite matrix of rank r or less. Let
d = dimension of ¥*. It follows from (1.7) and (3.3) that

65) a="0F0 S BOED ity s, = k(n o) +o,u

Since 1=sr=n—1wehave 1=n—-r=n-1.

Suppose first that 7"* contains a positive definite matrix. Since the
assumptions and the conclusion of Theorem 2 remain valid under a
congruence transformation, we may assume that 7€ ¥*. If r=n-2
then (3.5) and Theorem 1 imply that there exists a nonzero matrix in 9™
such that A,(A)= A,_,(A) > A,(A). Hence there exists a nonzero positive
semidefinite matrix in 7"* of the form a«A + BI which has rank r or less,
contrary to our assumption. If r =n —1 then d 22, by (3.5). Hence
there exists A in 7" which is linearly independent of I. The matrix
A(A) — A is a nonzero positive semidefinite matrix of rank n—1 or
less, contrary to our assumption.

It remains to consider the case that 7" contains no positive definite
matrix. Let A, be a nonzero positive semidefinite in 7" of minimal
rank gq. Then g=r+1. Hence we may assume that 1=r=
n—2. We may also assume that

L o
A, = [0 O] .
Let A, A,, -+, A; be a basis for ¥"*. Partition these matrices in the
form
A =[AP AP, i=1,2,---,d,

where A" is of size n X q. We claim that the matrices A?,---, A{ are
linearly dependent. Indeed, consider

d
> AP =0.

1=2
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This leads to a linear system of n(n+1)/2—q(q+1)/2=«k(n+1-q)
equations in d —1 unknowns. By (3.5) d —1=«(n—r), so we get a
nontrivial solution with the only possible exception being g =r +1 and
d —1=«k(n—r). But in the latter case, if AP --- AP are linearly
independent, we may form a new basis for 7"* that contains among its

matrices the matrix A, and the matrices B,, B,, -, B,_,, where
_ By 0 ] . o
B, = [0 E | i=12,---,n—q.

Here E; is the matrix of order n — g X n — q all of whose entries are zero
except the i,i entry which is 1. We can now form a positive definite
matrix as a linear combination of A, B,,---, B, contrary to
assumption. Hence AP, ---, AP are linearly dependent.

Hence there exists a matrix B, B =2’,aA,, such that b, =0
whenever i >¢q or j >gq. Clearly, there exists a linear combination of
A, and B which is nonzero and positive semidefinite of rank ¢ —1 or
less. This contradicts the definition of q. Hence (3.4) is satisfied,
completing the proof.

Theorem 2 implies Theorem 1. Assume that 2=r =n — 1 and that
U satisfies the assumptions of Theorem 1. Suppose that % contains no
nonzero matrix A such that A,(A)=A,(A). Then IZ U and let
U, = linear space spanned by % and I. Clearly dim %, = k(r)+1. Let
V' =1, so U,=V*. The subspace 4, contains no nonzero positive
semidefinite matrix of rank n—r or less. Now (3.3) implies that
dim ¥V <f(n—r+1). Since n —r=n—2 we have that §,,..., =0, so
the subspace 7 satisfies the assumptions of Theorem 2. It follows that
V" contains a positive definite matrix. However, since I is in %,, from
the fact that ¥" = % it follows that for any A in 7" we must have that
tr(AI)=tr(A)=0. Thus 7 could not contain a positive definite
matrix. This contradiction implies the existence of A # 0 in % such that
AM(A)= A (A).

4. Extensions and remarks. We now reformulate
Theorems 1 and 2 in the case where %/, is the n’ dimensional real space
of n X n complex valued hermitian matrices.

THEOREM 3. Let U be a k dimensional subspace in the space W, of
n X n complex valued hermitian matrices. Assume that an integer r
satisfies the inequalities 2=r=n—1. If k=«(r), where «k(r)=
(r —1)(2n —r + 1), then U contains a nonzero matrix such that the greatest
eigenvalue of A is at least of multiplicity r. The lower bound « (r) is best
possible for 2=r=n—1.
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Proof. The proof of this theorem is identical with the proof of
Theorem 1 except for the following detail. Let &,---,&-, be r—1
orthonormal vectors. Consider the system

(4.1) A& = AL, j=1,r—1,

where A belongs to %. We claim that this system is equivalent to «(r)
real valued equations. Indeed, if we complete the set &,---,&, to a
basis of orthonormal vectors [£,,---, & ] then, assuming this to be the
standard basis, we obtain instead of (4.1):

(42) a,m ZA, /.L :1,...”-_1’
and
(43) a‘w:O’ le,"',r”l;V:M+l,"',n.

Since A = (a;), is hermitian, a,, is real. So (4.2) is equivalent to
r— 1 equations. Since a,, for u# v is complex valued, (4.3) is equiva-
lent to (r —1)(2n — r) real equations. This fact explains the change of
the value of x(r) in case that W, is the space of hermitian matrices. End
of proof.

Finally, we restate Bohnenblust’s theorem for the hermitian case.

THEOREM 4 (Bohnenblust). Let V" be a subspace of dimension k in
W,and let 1 =r=n-—1. Assume that for any A in V" the equality (1.6)
implies that x, =0 for i =1,---,r. If the inequality (1.7) holds where
f(ry=r?, then V contains a positive definite matrix.
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