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It has been shown by D. P. Bellamy that every metric
continuum is homeomorphic to a retract of some metric
indecomposable continuum. This result was later extended by
G. R. Gordh who proved a similar theorem in the non-metric
case. In the present paper a different technique is used to
generate such continua.

It is shown that if a is an infinite cardinal number then there is an
indecomposable continuum with 2α composants and if / a (non-metric)
continuum then / is homeomorphic to a retract of such a continuum. An
indecomposable continuum is constructed such that if C is a composant
of it and H is an infinite subset of C then C contains a limit point of
H. Finally a non-metric continuum is found so that each proper
subcontinuum of it is metric.

Definitions a n d notat ions . A continuum is a compact con-
nected Hausdorff space. Suppose A is a well ordered set, for each
a E A Ma is a topological space, and if a < b in A θb

a is a continuous
function from Mb onto Ma so that if a < b < c in A then θb

a° θc

b = θc

a. The
space M is the inverse limit M = lim{Mα, θ}aeA means that M is the
topological space to which the point P belongs if and only if P is a
function from A into U α e Λ {M α } so that Pa E Ma and if a < b in A then
θb

a(Pb)= Pa- R is a region in M means that there is an element a E A
and an open set S C Ma so that R ={P\PaE S}. Pa denotes the function
from M into Ma so that Pα (P) = Pa. If 5 = Π α e Λ Sa is a product space
then x = {xa}a(ΞA denotes the point of S so that xa E Sα, and πα denotes
the function from S into 5fl so that πa(x) = xa. If a is an ordinal number
Π i < α [0, l] t denotes the cartesian product of a copies of the interval
[0, 1]. If M = lim{Mα, θ}aEA and for each a E A Ma is a continuum then
M is a continuum. Also if for each a E A, Ma is an indecompos-
able continuum then so is M. For theorems concerning inverse limits
the reader should consult [2].

THEOREM 1. Suppose M is a compact continuum, a is a well ordered
set with no last element, M is the inverse limit M = lim{Mα, 0}αGα of a
collection of Hausdorff continua, and for each a EL a there is a subcon-
tinuum Ia of Ma so that:

(1) θb

a(Ib) = Mafor a<b in a, and
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(1,0) (1,1)

Mox{0} Mox{l}

(0,1)

Mnx{0}.

(An,0)

•Mnx{l}

(2) if I is a subcontinuum of Ma intersecting Ia and Ma - Ia then I
contains Ia.
Then M is indecomposable.

Proof Suppose a E a and P is a point of Ma - Ia. Then there is a
subcontinuum V of Mα which is irreducible from the'point P to Ia. The
set V- IaDV is connected and V- IaΠV= V. From condition (2) it
follows that Ia C V, so Ia C V= V-/α Π V C M - / α .

Now suppose M is the union of two proper subcontinua H and
K. Let P be a point of H not in X and let Q be a point of K not in
H. There exists an element a E a and mutually exclusive regions Ra

and SΩ of Ma containing Pa and Qα respectively so that R = {x\xa E. Ra}
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does not intersect K and S = {x \xa E Sa} does not intersect H. Thus R
and S are mutually exclusive open sets in M containing P and Q
respectively. It follows from the above and condition (1) that θ{a+ir\Ra)
and 0(

α

α+irl(Sα) are mutually exclusive open sets in Mα+1 and each
intersects both Ia+ι and Mα+1 - /β+1. So Pa+ί(H) and Pα+i(X) both intersect
Jβ+i and Mα+1 - /β+1. So by condition (2) Jβ+1 is a subset of both Pα+i(H)
and P f l+1(X). But then P β ( ί : ) = Mβ = P β ( H ) , since Pβ = 0S+1°Pβ+i,
which is a contradiction. Thus M is indecomposable.

THEOREM 2. J/g w an infinite cardinal number, there is an indecom -
posable continuum M with 2q composants.

Proof. Let a be the first ordinal number so that | a | = q. The
continuum M will be constructed as an inverse limit of a irreducible
continua. Let Mo = [0, 1]. Let Mx be the subcontinuum of [0, 1] x [0, 1]
so that

y

The continuum Mλ is the union of countably many copies of Mo and
countably many arcs. If Aλ = (0, 0) and Bx = (1, 1) then Mx is irreduci-
ble from Ax to Bu Let θl be the function from Mλ onto Mo so that

θlo(PuPi) = Pu
Suppose that b<a and that Ma and θa

c have been defined for
c < a < b so that Mα is a subcontinuum of Π ι S α [0,1], which is irreducible
from the point Aa = {0}ιSα to the point Ba = {l}ίgί2, and θa

c is a function
from Ma onto Mc so that θa

c{{xι)i^-{xi}i^c. Suppose that b is not a
limit ordinal, b = α + 1 for some α < α. Let M* be the subcontinuum of
Π, g6 [0, 1], so that

[*] Mb = (Max {0}) U ( j j [(Mβ x {^

U ( { A } X L27T2'2TTϊ

The continuum Mb is the union of countably many copies of Ma and
countably many arcs. Mb is irreducible from any point of (Ma x {0}) to
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the point (Ba x {1}). Let Ab = Λa x {0} and Bb = Bax {1}. Let θb

a be the
function from Mb onto Ma so that if {xji^ E Mfe then 0 £({*,-}|S6)

 = {xj sα
If c < α define 0J to be the function θb

a°θ
a

c.
Suppose that b is a limit ordinal. Let M'b be the * continuum

M'b = lim {Mfl, 0}α<6. Let A b denote the point P so that P f l(P) = Aα and let
Bb denote the point P so that Pα (P) = Ba. Then Mi is irreducible from A b

to Bί since for each a < b Ma is irreducible from Pfl (A [) to Pα (2?£). Let
Lb denote the function from M'b into ΐli<b [0, 1], so that if P E Mi then
L fc(P) = {πI(P i)}I<6 where Pf is the fth coordinate of the point P,
P, = P,(P). Note that Pf (P) E M , C ΠfesSl [0, l ] k . L6 is a homeomorphism
because if P is a point of M'b and i<j <b then τrβ(P,(P)) = τrβ(P,(P)) for
all a ^i; in other words the αth coordinate in the cartesian product
Πfe^ [0, l] fc of P,(P) is the same as the αth coordinate in Π k g l [0, l]k of
P, (P). Then Lb{M'h) C Π f c <JO, l ] k . Mb is defined by replacing Ma by
Lb{M'b) in [*] above and Aa by Ld(Λ;) and Ba by Lft(Bί) S o M ^ i s

irreducible from any point of (Lb(M'b)x{0}) to the point (Lb(B'b)x{l}).
Let A, = (L,(A0 x {0}) and Bb = (L,(Bi) x {1}). If α < b let βj be the
function from Mb onto Ma so that if {x,}^^ E M6 then ΘJίίJC/},-̂ ) = {jCi}I3Sβ.
For notational convenience, if ί) is a limit ordinal let Mb^ denote the
space Lb(Mb) and let Pfe-i denote the function f°Pb where / projects
U{M'b) x [0,1] onto Lb{M'b) x {0}.

Let M = lim{Mα, θ}a<a. If for each a, Ia = Mα_t x {0} then M and the
collection {/α}α<α satisfy the hypothesis of Theorem 1 because Mα is
irreducible from the point Ba to each point of Ia. Thus M is indecomposa-
ble. If P E M let P γ denote P γ (P) . Let L denote the projection La as
defined above.

Suppose x is a point of M and vvx is the set to which P belongs if and
only if there exists a β < a so that if β < y < a then πa(Pγ) - πa(xγ) for
all a so that β < a ^ky. Equivalently: wx is the point set to which P
belongs if and only if there exists a β < a so that τra(L(P))= πa(L(x))
for all a > β. The set wx will be shown to be the composant of M
containing x.

Suppose PE.wx. Then there exists a β < a so that τrβ (L(P)) =
ττα(L(x)) for all α > 0. Then {y | y E M and (yγ)α = (xy)a for all α such
that β < a =S γ} is a proper subcontinuum of M containing JC and
P. The following lemma implies that wx is a composant.

LEMMA A. If I is a proper subcontinuum of M containing the point x
then there exists a β < a so that if β < y < a then ττα(Pγ(/)) = πQ{xy) for
all a so that β < a ^ γ (or, there exists a β < a so that ττa (L (/)) =
τζa(L(x)) for all a so that β < a < a.)

Proof. Suppose that / is a subcontinuum of M containing the point
x. Then there exists an element β < a so that Pβ(I)^ Mβ. Suppose that
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the lemma is false. Then there exists a first element aλ > β so that
τrfll(L(/)) is non-trivial. Likewise there is a first element a2 after aλ and a
first element α3 after a2 so that ττα2(L(/)) and πα 3(L(/)) are non-trivial,
β < ax < a2< a3.

Let γ > a3. Suppose 0 E ττα,(Pγ(/)) for some / = 1,2,3. Then there
is a number ί distinct from 0 in τrα,(Pγ(/)). But P γ(/) intersects
Mai^x{0} and M 4 -(Aί^,x{0}), so Aί f l r lx{0}CP f l i(/). Thus MβC
Pβ(I) which is a contradiction.

Suppose 1 E τrα2(Pγ (/)). Then there is a number t < 1 in πα2(Pγ (/)).
But there is a number r ^ ί so that {A^-J x [r, 1] C Pα2(/), this follows
from the construction of Ma2. Then 0 E τταi(Pα2(/)) since Aa2-X = {0}/<α2

and this is a contradiction. So 1 £ ττα2(Pγ (/)). Similarly 1 £ τrα3(Pγ (/)).
Suppose 0 < ί ! < ί 2 < l and [tu t2] C ττα3(Pγ(/)). But Pα3(J) does not

intersect any of the sets {{A^} x [1/(2/ + 2), 1/(2/ + l)]}Γ=o or any of the
sets {{Bα3-i} x [1/(2/ 4-1), l/2i]}Γ=i, or else either 0 or 1 would belong to
τrα2(Pa2(/)). Then Pα3(/) must be a subset of Mα 3x {1/fc} for some integer
fc> 1. But π β (?«(/)) = ττα(Pγ(/)) for a ^ α3 so ττα3(Pγ(/)) = 1/fc which is
a contradiction. So the lemma must be true.

LEMMA B. Suppose q is a cardinal number and a is the first ordinal
number so that q = \ a |. Then there exists a collection G of functions from
a into the set {0, 1} of cardinality 2q so that if f and g belong to G then the
set {x \x E a and f(x)^ g(x)} is cofinal in a.

Proof. Let T be a bijection from a x a onto a. If a £ α then the
set T({a) x a) is cofinal in a. Suppose that S is a subset of α, let /s be
the function from a into {0,1} so that fs(t) = l if and only if
t E T(S x a). Let G = {fs 15 is a subset of a}. Suppose S2 and S2 are
two distinct subsets of a and a is an element of Si not in S2. Then
fsXT({a}Xa))=ί and/S2(T({α}x α)) = 0 so {x |x E α and / S l (χ)^/ & (*)}
contains the set T({a} x α) which is cofinal in α. Thus | G | = 2q and the
lemma is proven.

The continuum M was constructed so that every function from a
into the set {0, 1} belongs to L(M). If q is a cardinal number and a is
the first ordinal number so that q = 2 |α | then, by Lemma B, the number of
composants of M is at least 2 |α |. If c denotes the cardinality of [0, 1]
then M has cardinality at most c | α |. But 2 |α | = c | α |, so M has 2 |α |

composants.
Notation: If λ is a limit ordinal let Mλ denote the indecomposable

continuum obtained by the construction of Theorem 2 with λ = a.

COROLLARY 2.1. If X is a continuum then X is homeomorphic to a
retract of an indecomposable continuum with an arbitrarily large number of
composants.
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Proof. It follows from the construction in [3] that X is homeomor-
phic to a retract of an irreducible continuum Y. Then if Y is irreducible
from the point A to the point B merely replace Mo by Y and {0} and {1}
by A and JB respectively in the above construction.

COROLLARY 2.2. There exists a non-metric continuum each proper
subcontinuum of which is metric.

Proof. Consider Mωi, where ωι is the first uncountable ordinal. By
Lemma A, if / is a proper subcontinuum of M there is a point JC E M and
an element β < ωx so that π f l (L(/))= τra(x) for all a so that β < a <
ω{. Thus L(I) is embedded in Πα<β[0, l]a x ({πa(L(x))}a<β). So / is
homeomorphic to a subset of the cartesian product of countably many
intervals and hence is metric. For each a < ω, let xa be the point of
Π ί < ω [0, 1], which is 1 at the αth coordinate and is 0 elsewhere. Then the
set {x \x = xa, a < a} is an uncountable set of points in L(M) which
contains none of its limit points. Thus L(M) is not metric.

Observation 1. If X is a non-metric continuum and every proper
subcontinuum of X is metric then X is indecomposable.

Observation 2. The continuum Mω] has 2Kl composants, and c ^
2Hχ ^ 2C. Thus the continuum could have c or 2C composants depending
on which axioms of set theory are assumed. It is also possible that
neither equality holds.

COROLLARY 23. There exists a continuum M every proper subcon-
tinuum of which is less numerous than M.

Proof. Let a be the first ordinal number so that 2C < 2 |α |, where c is
the cardinality of the interval [0, 1]. Then if β < a, 2m < 2 |α |. Consider
the continuum Ma constructed above. Ma contains at least 2 |α |

points. By Lemma A, if / is a proper subcontinuum of M there exists a
point x ELM and an element β < a so that π α (L(/))= πa(x) for all a so
that β <a <a. Thus 1(1) is embedded in ΠaS/3[0, l]a x ({πfl(L(jc))}β<α).
So / has at most c]βί points and cm^2c < 2 |α |. Again observe that any
continuum having this property must be indecomposable.

THEOREM 3. Suppose q is a cardinal number, a is the first ordinal
number so that_ | a \ = q, and C is a composant of Ma. If H C C and
\H\ < a then H C C.

Proof Suppose H C wx. It follows from the definition of wx that
there exists a β < a so that if P G H then πa(L(P))= πa(L(x)) for all a
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so that β < a < a. Suppose Q E M - wx. Then there exists a 8 > β so
that τrδ(L(Q))^ τrβ(L{x)). Let Sδ be a region in [0, l]δ containing
πδ(L(0)) and not πδ(L(x)). Then JR = {Z\ π δ ( Z ) e S} is an open set in
L (M) containing L (Q) but no point of L (H). So Q£H. So H C wx.

DEFINITION. The subset H of the Hausdorff space X is said to be
conditionally compact if and only if it is true that every infinite subset of
H has a limit point in H.

COROLLARY 3.1. There exists a conditionally compact indecompos-
able connected Hausdorff space with only one composant.

Proof By Theorem 3 any composant of Mm is such a space.
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