ON THE CONVOLUTION ALGEBRAS OF H-INARIANT MEASURES

JOHN YUAN
ON THE CONVOLUTION ALGEBRAS
OF H-INARIANT MEASURES

JOHN YUAN

The totality $M(eSe/H)$ of bounded regular Borel measures on the orbit space eSe/H, where S is a locally compact semigroup and H is a compact subgroup with the identity e, forms a Banach space; however, its closed subspace $M_H(ESe/H)$ of H-invariant measures forms even a Banach algebra under a suitable convolution. Furthermore, if w is an idempotent probability measure with compact support on S, then $w * M(S) * w \equiv w_H * M(S) * w_H \equiv M_H(eSe/H)$ algebraically and in various topologies, where w_H is the normalized Haar measure on some compact subgroup H.

1. Introduction. We denote the Banach space of bounded regular Borel measures and the totality of probability measures on a locally compact (Hausdorff) space X by $M(X)$ and $P(X)$, respectively. Beside the norm topology, $M(X)$ may be equipped with the weak, weak* and vague topologies, which are the topologies of pointwise convergence on $C^b(X)$, $C_0(X)$ and $K(X)$, respectively, where $C^b(X)$ denotes the totality of bounded continuous functions on X, $C_0(X)$ and $K(X)$ the subspaces of functions vanishing at ∞ and functions with compact supports, respectively. In $P(X)$, the weak, weak* and vague topologies coincide (p. 59, [2]; [7]). Let S be a locally compact semigroup, then $M(S)$ is a Banach algebra and $P(S)$ a topological (Hausdorff) semigroup under the convolution \ast. We refer to [7] for the continuity of \ast in the weak, weak* and vague topologies.

Lemma 1.1. Let S be a locally compact semigroup. Then $\text{supp}(\mu * \nu) \subseteq (\text{supp}(\mu) \text{supp}(\nu))^\circ$ for $\mu, \nu \in M(S)$, and equality holds for $\mu, \nu \equiv 0$, where $\text{supp}(\mu)$ denotes the support of μ.

Proof. (Cf. 1.1, p. 686, [5]).

Lemma 1.2. Let $\alpha: X \to Y$ be a continuous map (resp. morphism) between locally compact spaces (resp. semigroups). Then $M(\alpha): M(X) \to M(Y)$ given by

$$[M(\alpha)(\mu)](f) = \mu(f \circ \alpha), \quad f \in C^b(Y)$$
is a norm-decreasing linear morphism (resp. algebra morphism) continuous in the weak topology. Moreover, if \(\alpha \) is proper, then \(M(\alpha) \) is also continuous in both weak* and vague topologies.

Proof. Straightforward.

Lemma 1.3. Let \(Y \) be a closed subspace of a locally compact space \(X \). Then every \(f \in K(Y) \) (resp. \(f \in C_0(Y) \)) has an extension \(F \in K(X) \) (resp. \(F \in C_0(X) \)).

Proof. This follows from (7.40, p. 99, [1]) and the following commutative diagram:

\[
\begin{array}{ccc}
X & \to & X \cup \{\infty\} \\
\uparrow & & \uparrow \\
Y & \to & Y \cup \{\infty\} \to C \\
\uparrow & & \uparrow \\
Y & \to & C \\
\end{array}
\]

\[(f(\infty) = 0). \]

Proposition 1.4. Let \(S \) be a locally compact semigroup and \(e^2 = e \in S \). Then \(\delta_e * M(S) * \delta_e = M(eSe) \) is a Banach subalgebra of \(M(S) \). In fact, if \(i : eSe \to S \) is the inclusion map, then \(M(i) : M(eSe) \to M(S) \) is an embedding. (Note that, unless mentioned otherwise, our statements are to apply to each of the topologies mentioned before.)

Proof. We first observe from Lemma 1.1 that \(\delta_e * M(S) * \delta_e \subseteq M(eSe) \) and that \(\delta_e \) is the identity for \(M(eSe) \), whence \(M(eSe) = \delta_e * M(eSe) * \delta_e \subseteq \delta_e * M(S) * \delta_e \) and thus \(\delta_e * M(S) * \delta_e = M(eSe) \). Since \(\mu \mapsto \delta_e * \mu * \delta_e \) is a Banach space linear retraction, \(M(eSe) \) is a linear closed norm retract of \(M(S) \). As to the others, we will show the weak embedding only. Let \(M(i) (\mu_o) \to M(i)(\mu) \) in \(M(S) \) and \(f \in C^b(eSe) \); then \(f \) has an extension \(F \in C^b(S) \) given by \(F(s) = f(es) \) and thus \(\mu_o(f) = [M(i)(\mu_o)](F) \to [M(i)(\mu)](F) = \mu(f) \). Hence \(M(i) \) is an embedding.

For the purpose of this paper it is therefore no loss of generality to assume that \(S \) is a monoid with the identity \(e \).

Proposition 1.5. Suppose that \(S \) acts on the left on a locally compact space \(X \). If \(\mu \in M(X) \) and \(f \in C^b(X) \), then \(f_\mu \in C^b(S) \) is well defined by \(f_\mu(s) = \int f(sx)\mu(dx) \).
Proof. Let $\varepsilon > 0$ be given. By the regularity of $|\mu|$, there exists a compact subset $K \subseteq X$ so that $|\mu|(X \setminus K) < \varepsilon$. For this K and a given $s \in S$, let

$$\varphi(t) = \sup\{|f(tx) - f(sx)| : x \in K\}.$$

Then $\varphi(t) \to 0$ as $t \to s$; otherwise, there exist nets $t_n \to s$, and $x_n \to x_0$ in K so that $|f(t_n x_n) - f(sx_0)| > \varepsilon$ which contradicts to the continuity of f at sx_0. Hence

$$|f_\mu(t) - f_\mu(s)| \leq \int_K \varphi(t) |\mu| (dx) + \int_{X \setminus K} 2\|f\| |\mu| (dx)$$

$$\leq \varphi(t) |\mu|(K) + 2\|f\| \varepsilon \leq 3\|f\| \varepsilon$$

whenever t is close enough to s. Hence $f_\mu \in C^b(S)$.

2. H-invariant measures. Let H be any compact group acting on the left on a locally compact space X. A $\mu \in M(X)$ is called H-invariant if $\int f(hx) \mu(dx) = \int f(x) \mu(dx)$ for all $f \in C^b(X)$, $h \in H$.

For convenience, we will denote by $M_H(X)$ the Banach subspace of all H-invariant measures in $M(X)$. We now assume that S acts on the left on X and H is a compact subgroup of units in S. Suppose now that $f \in C^b(X)$ and $\mu \in M_H(X)$. By Proposition 1.4, $f_\mu \in C^b(S)$ is well defined by $f_\mu(s) = \int f(sx) \mu(dx)$. If we set $(fs)(x) = f(sx)$, then we note that $f_\mu(sh) = \int (fs)(hx) \mu(dx) = \mu(fs) = \int f(sx) \mu(dx) = f_\mu(s)$ for all $h \in H$. Hence f_μ is constant on left cosets sH in S. If $S/H = \{sH : s \in S\}$ and $p : S \to S/H$ is given by $p(s) = sH$, then $F \mapsto F \circ p : C^b(S/H) \to C^b(S)$ is an isometry onto $C^b_h(S)$ of all functions which are constant on orbits sH. Hence there is a unique function $\mu * v \in C^b(S/H)$ such that $\tilde{\mu} \circ p = f_\mu$. If now $\mu \in M_H(S/H)$ and $\nu \in M_H(X)$, then we define

$$\mu * \nu(f) = \mu(\tilde{\nu})$$

on $C^b(X)$, which we will write

$$\mu * \nu(f) = \int f(sx) \mu(d\tilde{s}) \nu(dx), \quad \tilde{s} = p(s).$$

As $(fh)_\mu = (f_\mu)h$, we have $\mu * \nu(fh) = \mu((fh)_\mu) = \mu(f_\mu) = \mu(f)$, whence $\mu * \nu \in M_H(X)$. In particular, if μ, $\nu \in M_H(S/H)$, then $\mu * \nu \in M_H(S/H)$.

ON THE CONVOLUTION ALGEBRAS OF H-INVARIA NT MEASURES 597
Lemma 2.1. $M(p): M(S) \rightarrow M(S/H)$ is a norm-decreasing continuous linear morphism mapping $w_H^* M(S)$ into $M_H(S/H)$ where w_H is the normalized Haar measure on H.

Proof. We observe first that $w_H^* M(S) \subseteq M_H(S)$ by invariance of w_H, and that $M(p)$ maps $M_H(S)$ into $M_H(S/H)$. And since $M(p)$ is continuous in various topologies, then so is any restriction and corestriction of $M(p)$.

Lemma 2.2. $M(p)$ induces norm-preserving bijections $M(S)^* w_H \rightarrow M(S/H)$ and $w_H^* M(S)^* w_H \rightarrow M_H(S/H)$.

Proof. It suffices to show bijections only (cf. 2.45, p. 20, [6]).

1. **Surjectivity:** Let $f \in C^b(S)$ and set $f_H = \int f(s h) w_H(dh)$. Then $f_H \in C_H^b(S)$ and hence defines a unique $f_H \in C^b(S/H)$ such that $f_H \circ p = f_H$. If now $\nu \in M(S/H)$, then $f \mapsto \nu'(f_H)$ is a bounded linear functional. Hence there is a $\nu \in M(S)$ with $\nu(f) = \nu'(f_H)$. Now $\nu * w_H(f) = \nu(f_H) = \nu'(f_H) = \nu'(f_H) = \nu(f)$. Thus $\nu * w_H = \nu$, i.e. $\nu \in M(S)^* w_H$. Now suppose that even $\nu' \in M_H(S/H)$. Then

$$w_H^* \nu(f) = \int f(hx) w_H(dh) \nu(dx) = \int \nu(fh) w_H(dh)$$

$$= \int \nu'(fh) w_H(dh) = \int \nu'(f_H) w_H(dh) = \nu'(f_H)$$

since $\nu' \in M_H(S/H)$. The last term equals $\nu(f_H) = \nu(f)$. Thus $w_H^* \nu = \nu$, i.e. $\nu \in w_H^* M(S)^* w_H$. Now, for $f \in C^b(S/H)$, $[M(p)(\nu)](f) = \nu(f \circ p) = \nu'(f_H) \mu$. But $(f \circ p) \circ p = (f \circ p)_H = f \circ p$, whence $f = (f \circ p)_H$; thus $\nu'(f_H) = \nu'(f)$. This shows $M(p)(\nu) = \nu'$ in both cases, i.e. $M(S/H)$ is in the image of $M(S)^* w_H$ and $M_H(S/H)$ is in the image of $w_H^* M(S)^* w_H$ under $M(p)$.

2. **Injectivity:** For $\mu, \nu \in M(S)^* w_H$, we note that $M(p)(\mu) = M(p)(\nu)$ implies $\mu(f) = [M(p)(\mu)](f_H) = [M(p)(\nu)](f_H) = \nu(f)$ for $f \in C^b(S)$, hence $\mu = \nu$.

Lemma 2.3. $M(p): w_H^* M(S)^* w_H \rightarrow M_H(S/H)$ is an algebra morphism.

Proof. First of all, we observe the following facts: (1) For $\mu \in w_H^* M(S)^* w_H$ and $f \in C^b(S)$, $\mu(f) = [M(p)(\mu)](f_H)$. (2) For $\nu \in w_H^* M(S)^* w_H$ and $f \in C^b(S/H)$, $f \circ C_H^b(S)$ is well defined by
\[f_v(x) = \int f(xy) [M(p)(\nu)](dy) = \int f(xy) \nu(dy) = \int f \circ p(xy) \nu(dy), \text{ with } \nu = M(p)(\nu). \]

Then, if \(\mu, \nu \in w_H * M(S) * w_H \) and \(f \in C^*(S/H) \), we have

\[
[M(p)(\mu * \nu)](f) = \mu * \nu (f \circ p) = \int f \circ p(xy) \mu(dx) \nu(dy)
\]

\[
= \int f(xy) \mu(dx) [M(p)(\nu)](dy)
\]

\[
= \mu(f_v) = [M(p)(\mu)]((f_v)_H)
\]

\[
= [M(p)(\mu)](\tilde{f}_v) = [M(p)(\mu) * M(p)(\nu)](f).
\]

Proposition 2.4. \(M(p): w_H * M(S) * w_H \rightarrow M_H(S/H) \) is a norm-preserving algebra isomorphism.

Proof. It remains to show that \(M(p)|w_H * M(S) * w_H \) is open which follows from the facts that \(\mu(f) = [M(p)(\mu)](f_H) \) for all \(\mu \in w_H * M(S) * w_H \), and that \(f \in K(S) \) (resp. \(f \in C_0(S) \)) implies \(f_H \in K(S) \) (resp. \(f_H \in C_0(S) \)) and thus \(f_H \in K(S/H) \) (resp. \(f_H \in C_0(S/H) \)).

Corollary 2.5. Let \(H \) be normal in \(S \) (2.1, p. 17, [3]). Then \(M(p): M(S) \rightarrow M(S/H) \) is a continuous algebra morphism mapping \(w_H * M(S) * w_H \) isomorphically onto \(M_H(S/H) \).

Corollary 2.6. Let \(P_H(S/H) \) denote the totality of \(H \)-invariant probability measures in \(P(S/H) \). Then \(M(p): w_H * P(S) * w_H \rightarrow P_H(S/H) \) is an isomorphism.

In the remainder, we assume that \(w \) is an idempotent probability measure with compact support on \(S \); then \(w = \mu_e * w_H * \mu_F \) [4].

Lemma 2.7. The maps \(w * M(S) * w \xrightarrow{\alpha} w_H * M(S) * w_H \) defined via \(\alpha(\mu) = w_H * \mu * w_H \) and \(\beta(\nu) = w * \nu * w \) are mutually inverse norm-preserving continuous algebra morphisms so that \(\alpha(w) = w_H \) and \(\beta(w_H) = w \).

Proof. The proof in (3.1–2, [8]) yields this.
Proposition 2.8.

\[w * M(S) * w = w_H * M(S) * w_H = M_H(S/H) \]

algebraically and topologically.

Acknowledgement. The author wishes to thank the referee for many helpful suggestions.

References

Received May 12, 1975 and in revised form October 7, 1975.

National Tsing Hua University, Taiwan
Allan Russell Adler and Catarina Isabel Kiefe, *Pseudofinite fields, procyclic fields and model-completion* .. 305

Christopher Allday, *The stratification of compact connected Lie group actions by subtori* ... 311

Martin Bartelt, *Commutants of multipliers and translation operators* 329

Herbert Stanley Bear, Jr., *Ordered Gleason parts* 337

James Robert Boone, *On irreducible spaces. II* 351

James Robert Boone, *On the cardinality relationships between discrete collections and open covers* ... 359

L. S. Dube, *On finite Hankel transformation of generalized functions* 365

Michael Freedman, *Uniqueness theorems for taut submanifolds* 379

Shmuel Friedland and Raphael Loewy, *Subspaces of symmetric matrices containing matrices with a multiple first eigenvalue* 389

Theodore William Gamelin, *Uniform algebras spanned by Hartogs series* ... 401

James Guyker, *On partial isometries with no isometric part* 419

Shigeru Hasegawa and Ryōtarō Sato, *A general ratio ergodic theorem for semigroups* .. 435

Nigel Kalton and G. V. Wood, *Homomorphisms of group algebras with norm less than $\sqrt{2}$* .. 439

Thomas Laffey, *On the structure of algebraic algebras* 461

Will Y. K. Lee, *On a correctness class of the Bessel type differential operator S_μ* .. 473

Robert D. Little, *Complex vector fields and divisible Chern classes* 483

Kenneth Louden, *Maximal quotient rings of ring extensions* 489

Dieter Lutz, *Scalar spectral operators, ordered l^p-direct sums, and the counterexample of Kakutani-McCarthy* 497

Ralph Tyrrell Rockafellar and Roger Jean-Baptiste Robert Wets, *Stochastic convex programming: singular multipliers and extended duality singular multipliers and duality* .. 507

Joel Linn Schiff, *Isomorphisms between harmonic and P-harmonic Hardy spaces on Riemann surfaces* 551

Virinda Mohan Sehgal and S. P. Singh, *On a fixed point theorem of Krasonoselskii for locally convex spaces* 561

Lewis Shilane, *Filtered spaces admitting spectral sequence operations* 569

Michel Smith, *Generating large indecomposable continua* 587