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In this paper two exact sequences are established which
are useful in computing πo^(M), the group of isotopy classes
of concordances for a noncompact Hubert cube manifold M.
Roughly speaking, this enables one to study the noncompact
case in terms of the compact case. The situation is analogous
to Siebenmann's description of groups of infinite simple
homotopy types in terms of two exact sequences.

1, Introduction* For any space X we will use ^(X) to denote
the space of all concordances of X. It is the function space, with
the compact-open topology, of all homeomorphisms of I x X onto
itself (I = [0, 1]) which are the identity on {0} x X. We use ττoίf (X)
to denote the group of all isotopy classes in ^(X), where the group
operation is composition. A Q-manifold is a separable metric manifold
modeled on the Hubert cube Q, the countable infinite product of
closed intervals. In [3] and [4] the author investigated the group
π^(M) for M a compact Q-manifold. The main result established
there was the following: Let M be a compact Q-manifold which is
written as R x Q, where R is a PL n-manifold. (It follows from
[1] that this can always be done.) Then π^{M) is isomorphic to
the direct limit of the sequence

x I) J^h-> πr^{B x Γ)

Fortunately this direct limit has been studied in [8], and as a result
we get the following consequences for Q-manifolds.

A. If M is a compact Q-manifold, then π^{M) depends only
on the S-type of M.

From this we get.

B. // M and N are homotopy equivalent compact Q-manifolds,
then π^(M) is isomorphic to π^(N). (See §2 for a proof which
uses only infinite-dimensional techniques.)

C. If M is a compact Q-manifold, then πo^(M) is trivial iff
each component of M is 1-connected. (This holds in spite of the
recently discovered gap in [9].)
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D. If M is a compact Q-manifold, then π^(M) is άbelian.
(See §2 for an elementary proof which was suggested to the author
by the referee.)

The purpose of this paper is to investigate the group
for M a noncompact Q-manifold. Our main results are Theorems 2
and 3, where we establish two exact sequences for π^{M) which
relate the noncompact case to the compact case. They are remarkably
similar to the exact sequences of [10] used to compute the group
of all infinite simple types on a given locally compact polyhedron.
Below we will give precise descriptions of these exact sequences and
related results.

Recall that a map between spaces (always locally compact, separ-
able and metric) is proper provided that preimages of compacta are
compact. In analogy with the ordinary homotopy category we obtain
the proper homotopy category, where all maps and homotopies are
proper. In §2 we show how a proper map / : M—+N between Q-
manifolds induces a homomorphism /*: π^(M)—>π^{N) and then
prove the following result.

THEOREM 1. π^ is a covariant proper homotopy functor from
the category of Q-manifolds and proper maps to the category of
groups and homomorphisms.

By a proper homotopy functor we mean that proper homotopic
maps /, g:M-+N induce the same homomorphisms from

This implies the following result.

COROLLARY 1. If M, N are Q-manifolds which have the same
proper homotopy type, then πo^(M) is isomorphic to πo

For any Q-manifold M we define lim Whπ^M) to be the inverse

limit of the inverse system

{Whπ,(M - C)\CaM compact} ,

where Wh is the Whitehead group functor and the homomorphisms
are inclusion induced. It is easily seen that lim WhπL(M) depends

only on the proper homotopy type of M. The following exact se-
quence is established in §3.

THEOREM 2. For any Q-manifold M there is an exact sequence

πo%?(M) - X lim Whπ^M) > Whπ^M).
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This result easily gives us examples for which π^(M) is non-
trivial. For example let K c Q be a compact polyhedron with
nontrivial Whitehead group and let M = (Q x [0, 1]) - {K x {0}).
Then Whπ^M) = 0 and it is not hard to show that lim Whπx{M) &

Whπx{K). Thus Theorem 2 gives a homomorphism of π^{M) onto
Whπt(K) Φ 0.

For any Q-manif old M we define lim πo^{M) to be the direct

limit of the direct system

IM1 c M is a compact Q-manif old} ,

where the homomorphisms are inclusion induced. Observe that

lim π^{M) is just πftfc{M)> where ^C(M) denotes concordances with

compact support. In §4 we show that \ϊm.π^ quite naturally gives

us a covariant homotopy functor from the category of Q-manifolds
and maps to the category of groups and homomorphisms. Consider
the inverse system

(*) {lim πo^?(M - C)\CaM compact} ,

where the homomorphisms are inclusion induced. We define

to be the inverse limit of (*) and we define \iva1π(^'{M) to be the first

derived limit of (*). These are both groups which depend only on
the proper homotopy type of M. We refer the reader to §4 for
further details of these constructions. The following exact sequence
is established in §5.

THEOREM 3. For any Q-manίfold M there is an exact sequence

lim ττoίr(M) > lim π^{M) > Ker ( r j - ^ lim hco&(M) > 0 .

There is an important class of Q-manifolds for which lim1

is trivial. We say that a space X is movable at °° provided that
for each compactum A c X there exists a larger compactum BaX
such that X — B can be homotoped into any neighborhood of oo,
with the homotopy taking place in X — A. It is easy to see that
if (K, L) is a finite simplicial pair, then the noncompact polyhedron
K — L is movable at oo. The following result is established in § 6.

THEOREM 4. If M is a Q-manifold tvhich is movable at oo, then
lim1 πQ^(M) is trivial.

A closed subset A of a space X is said to be a Z-set in X provided
that there exist arbitrarily small maps of X into X — A. In § 6 we
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use Theorems 2, 3 and 4 to prove the following result.

THEOREM 5. If (M, N) is a pair of compact Q-manifolds such
that N is a Z-set in M, then there is an exact sequence

π^(N) > πo^(M) > πo^(M - N) > Whπλ(N) > Whπλ(M) .

As an immediate consequence of Theorem 5 we get the following
result.

COROLLARY 2. If Mo. Q is a compact Q-manίfold which is a
Z-set in Q, then π^(Q — M) is isomorphic to Whπ^M).

2 The functor πf^. We first prove the assertion made in D

of §1.

THEOREM 2.0. If M is any Q-manifold, then π^(M) is abelian.

Proof. Write M = N x [0,1], where N is a Q-manifold. Then
is naturally homeomorphic to ^Q(M), the subset of ^(M)

consisting of all h e ^(M) which are point-wise fixed on (Ix Nx {0}) U
(Ix Nx {1}). Let G be the subset of %fo(M) consisting of all h e<έfo(M)
which are point-wise fixed on / x N x [0, 1/2] and let H be the subset
of ^0(M) consisting of all h e ^0(M) which are point-wise fixed on v

I x N x [1/2, 1], Clearly G and H are deformation retracts of ^Q(M).
Now elements of G and H commute, so ^(M) is homotopy-commuta-
tive. Hence πo^o(M) is abelian.

We will now describe the functor π0^ and prove Theorem 1.
Our first step will be to show how a proper map / : M —> N between
Q-manifolds induces a homomorphism f*:π^(M)—>π^(N). Ele-
ments of π^(M) will be denoted by [h], where he^(M); that is,
[h] denotes the isotopy class of h.

Description of /*. We are given a proper map f:M—>N of
Q-manifolds. We will need an open embedding i: M x [0, 2) —> N

Xθ
such that i(M x [0, 1]) is closed and such that the map M > M x
[0, 2) > N is proper homotopic to /, where x 0(m) = (m, 0). One
constructs ί as follows. First find an embedding f: M-+N which is
proper homotopic to / and such that f(M) is a Z-set in N, and then
use the fact that f^M) is collared in N. The existence of f and
the collaring of f~(M) follow from [2]. Let ψ:Ix [0, l]~>Ix [0, 1] be
a homeomorphism such that φ takes ({0} x [0, 1]) U (/ x {1}) onto {0} x
[0, 1] and let φ x id: I x M x [0, l ] ^ / x i l ί x [0, 1] be defined so
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that it is the identity on the M-ίactor and on I x [0, 1] it is defined
by ψ. For any h e ^(M) we define h* e ^(N) as follows: h* = id
on I x (N — i(M x [0, 1))) and on I x i(M x [0, 1]) we define h* by
the commuting diagram

Ix Mx [ 0 , l ] i X - / x I x [0, 1] <{id X i y l Ixi(Mx [0, 1])

/ι x id \h*

I x M x [0, 1] i ^ i i ^ j x M x [0, 1] ^ i l > ϋ _ lχi(Mx [0, 1]) .

Then define /*([&]) = [ft*]. It is clear that /*: 7Γ0<§f(M) -> πQ^(N) is
a homomorphism. The proof of Theorem 1 below contains a proof
that /* is well-defined.

Proof of Theorem 1. We aim to prove that π^ is a covariant
proper homotopy functor. We have divided the proof into several
steps.

I. We will first show that the definition of /* given above
depends only on the proper homotopy class of /. Let i: M x [0, 2)—>N
be as above and let %': M x [0, 2) —• N be an alternate choice for i.
Choose any h e ^(M) and let A4 e <g*(N) be defined in analogy with
the definition of h* e ^(N) by replacing i with ϊ. We must prove
that [h*] = [fe'̂ ]. Since the embeddings

ik ί-^ ik ί x [0, 2)^-^iV

i k f - ^ i k ί x [0, 2)-^N

are proper homotopic we can find an isotopy Ft: N-+N, 0 ^ ί ^ 1,
such that Fo = id and i*\i = i' on M x {0}. This follows from Z-aet
unknotting [2]. Then Fxi{M x [0, 2)) and i\M x [0, 2)) are collars
on the same base and it is easy to get an isotopy Gt:N—>N such
that Go = id and G&i = i' on M x [0, 1]. The construction of Gt

is elementary and uses no Q-manifold theory. Define an isotopy
Ht:N->N by

= (F2t , 0 £ t ^ 1/2

' " l ^ - ^ , 1/2 ^ ί ^ 1 .

The effect of Ht is to move i\M x [0, 1] to i ' | J l ί x [ 0 , l ] . Now
define ht e <Sf (iV) by setting Λt = id on I x (N - Hti(M x [0, 1]))
and on J x Hti(M x [0, 1]) we define ht by the commuting dia-
gram
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IxMx [0,l]ΛxU-/χMx[0,l]fc-^-/xίf{i(Mx [0,1])

h X id \ \ht

I x M x [0, 1] - ^ ^ Λ I x M x [0, 1] _^^!_, j x Hti(M x [0, 1]) .

Then ht is an isotopy from h* to h* rel {0} x i\Γ, hence [h*] = [h'*\.

II. Now let f^.M-^N and f2:N—>P be proper maps of Q-
manifolds. We will prove that (f2fi)* = (ΛJ+ί/i)*- To simplify nota-
tion let J i b e a Z-set in N, with fx the inclusion M^—> N, and let
N be a i?-set in P, with /2 the inclusion Nc—> P. By abuse of
notation we may assume that Mx [0, 2) c=—> N is a collaring of M Ξ
ilί x {0} such that M x [0, 1] is closed and similarly let N x
[0, 2) <=—> P be a collaring of N = N x {0} such that JV x [0, 1] is
closed. Choose any [h] e 7ro^(Λί). We will prove that {f2fι)ΛWi) =

We first examine (/2)*(/i)*([^]) It is just [g], where g may be
chosen so that it is supported on / x (M x [0, 1]) x [0, 1], and on this
set it is given by the commutative diagram

/ x M x [0, I]2 <-^X-^- I x M x [0, I]2

h X ίd\

I x M x [0, l ] 2 ( i ^ - ^ I x AT x [0, I]2 ,

where φ*: I x [0, 1] 2 -+Ix [0, I]2 is the composition, ^ 2 , of homeo-
morphisms φ1 and &> defined as follows: φλ: I x [0, 1]2->I x [0, I]2 is
given by φ^t, u, v) = (^(ί, %), v) and ^2: / x [0, I]2 —> / x [0, I]2 is given
by φ2(t, u, v) = (έ', w, v') where (f, v') = φ(t, v).

In order to examine (f2fi)*([h]) w e will need to choose a collaring
of M in P. Let i: M x [0, 2)2 —* ikf x [0, 2) be a homeomorphism such
that

i(M x [([0, ί] x {£}) U ({«} x [0, *])]) - M x {ί} ,

for each t e [0, 2). The existence of i follows routinely from the
techniques used to prove the Stability Theorem [2]. Then

i-1: M x [0, 2) > M x [0, 2)2 c=_> p

gives a collaring of M in P. Using this collaring we compute
(/2/i)*(M) = [g']t where ί/' may be chosen so that it is supported on
M x [0, I]2, and on this set it is given by the commutative diagram
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I x Mx [0,l]fiί—Jx Mx [0, i]<-Uί-i-Ix Mx [0, I]2

hxidl \g'

I x M x [0, 1] - ^ ^ l / x M x [0, 1] i ΐ l ί i ^ / x M x [0, I ] 2 .

So it suffices to prove that g \ I x M x [0, I] 2 is isotopic to g'\ I x M x
[0, I]2 rel

({0} x Λf x [0, I]2) U (I x M x [0, 1] x {1}) Ό (I x M x {1} x [0, 1]) .

This is equivalent to proving that the composition

( * ) (Φ* x id)(id x i)~ι(φ x id)~ι(h x id)(φ x id)(id x i)(φ* x id)*1

is isotopic to h x id rel {0} x M x [0, I] 2 .
Note that φ x id and 0* x id are clearly isotopic to their respec-

tive identities. Thus to prove that (*) is isotopic to h x id it suffices
to prove that (id x i)~\h x id)(id x i) is isotopic to h x id rel {0} x
ilίf x [0, I] 2, and for this it suffices to prove that (id x i)(h x id)(id x i)~ι

is isotopic to h x id rel {0} x M x [0, 1]. It follows from [2] that i
can be chosen so that the M-coordinate is moved as little as we
please. In fact there exists an isotopy it: M x [0, I]2—>ikfx [0,1],
0 S t ^ 1, such that i0 = ΐ|Λf x [0, I] 2,

it(M x [([0, u] x {u}) U ({u} x [0, u])]) = Mx{u} ,

for each u e [0, 1], and it extends to a proper homotopy

ϊt: M x [0, I] 2 > M x [0, 1] ,

0 <Ξ t ^ 1, by defining

^({m} x [([0, u] x {u}) U ( M x [0, u])]) = {m} x {u} ,

for all meM and u e [0, 1]. Then

(id x it)(h x id)(id x ΐ*)" 1

provides an isotopy of (id x i)(h x id)(id x i)~ι to h x id.

III. For the last part of the proof we establish (id)* = id.
Choose any Q-manifold M and consider id: M x [0, 2] —* M x [0,2].
We will prove that (id)*([fc]) = [h], for all [h] e π^(M x [0, 2]). Ghoose
a homeomorphism

i: M x [0, 2] • I Ξ I X { 0 } C I X [ 0 , 2 ]

which is homotopic to the identity on M x [0, 2] and let [h] e π^(M x
[0, 2]) be given. Then (id)*([h]) — [g], where g may be chosen so
that it is supported on I x M x [0, 1], and on this set it is given
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by the commutative diagram

I x Mx [0, 2] x [0, 1] / ϋ - — Ix Mx [0, 2] x [0, 1] ^112^ j x jf x [ 0, 1]

Λ- x id \ \g

Ix Mx [0, 2] x [0, 1] {ί?J^ iχ Mx [0, 2] x [0, 1] _ i ^ _ i ^ l j x Mx [0,1].

(Recall that ό operates on I x [0, 1].) Define μ by the commutative
diagram

I x M x [0, 2]2 j^_i2Lί*£L I x Λf x [0, 2]

fc X id μ

J x Λf x [0, 2]2 _ ! l ^ _ ! ^ U f x Λf x [0, 2] .

We will prove that [g] = [μ] and [μ] = [ft]. This will fulfill our
requirements.

To see that [g] = [μ] let θt: [0, 2] — [0, ί], 1 ^ ί ^ 2, be the unique
linear homeomorphism such that βt(0) — 0 and let gt, 1 ^ t ^ 2, be
the isotopy from / x M x [0, 2] to itself defined by

gt = (id x θt)~ιg(id x θt) .

Then [g] — [g2] = [gj. Similarly we r̂βέ [μ] = [ ί̂j, where /ix is the
composition

Then to get [#J — [jtίj we just use the fact that φ x id is isotopic
to the identity. Thus [g] = [^].

Finally we prove that [μ] = [h]. For this we will need to know
that i can be chosen so that there exists a proper homotopy it: M x
[0, 2] —> Λf, 0 <; £ ̂  1, such that ΐ0 = i, ίt is a homeomorphism for
0 ^ £ < 1, and iγ\ M x [0, 2] —> ikf is the projection map. For it we
again appeal to [2]. Let a: Mx [0, 2]2 -* Λf x [0, 2]2 be the homeo-
morphism defined by a(m, t, u) = (m, u, t). Then let /Ŝ , 0 ^ έ ^ 1,
be defined by the commutative diagram

I x Λf x [0, 2]2 Jί^— I x Λf x [0, 2]2 i ^ A ^ i ί ^ l / x M x [0, 2]

h X ia

IxMx [0, 2 ] 2 — ' ~ J x Λf x [0, 2 ] 2 _ ^ i ϋ ^ ^ / χ M χ [ 0 > 2 ] #

This gives [β0] = [A], To show that [/90] = [̂ ] we just use the fact
that a is isotopic to the identity. For this we use the fact that Λf
is homeomorphic to Λf x Q and any homeomorphism on Q is isotopic
to the identity [14].
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We now establish Theorem 2.1, a result which will be needed in
the sequel. First it will be convenient to establish two lemmas.

LEMMA 2.1. If M is a Q-manifold, h e ̂ (M), and x 0: M—> M x
[0, 2] is given by xθ(m) = (m, 0), then (xθ)*([ft]) = [h x id[0>2l].

Proof. Using the definition we have (xθ)*([ft]) = [g], where g
is supported on I x M x [0, 1] and on this set it is given by g =
(φ x id)~\h x ίd)(0 x id). We must prove that [g] = [h x id]. As in
the proof of Theorem 1 let Θt: [0, 2] —• [0, t], 1 ̂  ί ^ 2, be the unique
linear homeomorphism such that θt(0) = 0. Using θt it follows that
[9] = [&], where

Λ = (id x tfj"^ x id)~\h x id)(φ x id)(id x θx) .

Using the fact that φ x id is isotopic to the identity we get

[&] = [(id x βy-\h x id)(id x θ,)] = [h x id] .

LEMMA 2.2. Let M, N be Q-manifolds and assume that M x
[0, 2] is a closed subset of N such that Bd (M x [0, 2]) = M x {2}.
Choose h e ̂ (M x [0, 2]) such that h = id on I x M x {2} and define
h 6 ̂ (N) which extends h by the identity. Then the inclusion-induced
homomorphism π^(M x [0, 2]) —• π^(N) sends [h] to [h].

Proof. It is clear that we may additionally assume that h — id
o n l x l x [ l , 2]. Define μ\ I x M x [0, 1] —• I x M x [0, 1] by μ =
(Φ x id)h(φ x id)~\ Then μ = id on {0} x M X [0, 1]. Using Lemma
2.1 and the fact that xO: M—>M x [0, 1] is a proper homotopy equi-
valence we can find an f e^(M) such that [/x id] = [μ]. Thus
(̂  x id)~\f x id)(φ x id) is isotopic to h | / x M x [0, 1] rel ({0} x M x
[0, l ] ) U ( I x ! x {!}). This implies that ΐ*([/]) = [ft], where i is the
map x 0: M-+M x [0, 2]. It j is the inclusion M x [0, 2] <=—> JV, then
we also have (#)*([/]) = [ft]. Therefore j*([h]) - [ft].

THEOREM 2.1. Let M, N be Q-manifolds such that M is closed
in N and such that Bd (M) is a bicollared Q-manifold. Choose
[ft] e πo^(M) such that ft = id on I x Bd (M) and define g e <^(N)
which extends ft by the identity. Then the inclusion-induced homo-
morphism πo'^(M)-^πo

(^p(N) sends [ft] to [g].

Proof. We first note that M and N can be replaced by M x
[0, 1] and N x [0, 1], where we now have he^(M x [0, 1]) and ge
^(N x [0, 1]). This easily follows from Lemma 2.1 and the following
commutative diagram:
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M x [0, 1] <=—> N x [0, 1]

ΐ ΐ
xO xO

M - — + N

Define hr e £f (M x [0, 1]) by setting h' = (φ x id)~ιh{φ x id). Then
K — id on I x M x {1} and clearly [/&'] = [&]. We also define g' e
^{N x [0, 1]) which extends h' by the identity and note that [g'] =
[g]. It is easy to see that [hf] = [h"] and [#'] = [g"]9 where ft" = id
on (I x Bd (M) x [0, l ] ) U ( ί x i f x [0, 1]) and g" extends ft" by the
identity. Let τ e <g%8f x [0, 1/2]) be defined by τ - ft" | / x ΛT x [0, 1/2].
Let i be the inclusion M x [0, 1/2] <=—> M x [0, 1] and let j be the
inclusion M x [0, 1] c—> N x [0, 1]. Then Lemma 2.2 implies that
ΐ*(M) = [Λ'Ί and similarly (#)*(M) = [l/'Ί- Therefore i,([/ι"]) - [flf"].

3* The first exact sequence* The purpose of this section is
to establish the exact sequence of Theorem 2, and the first step will
be to construct the homomorphism τ^: πo

<^p(M)-^lim.Whπί(M). Before

doing this it will be convenient to prove Lemma 3.1 below. The
following notation will be useful: (1) If M is a Q-manifold, then
Mi c M is said to be clean provided that Mλ is a compact Q-manifold
and Bd(Mj) is a bicollared Q-manifold; (2) If Mt and M2 are clean
in Mf then M1czdM2 means that Mx lies in the interior of M2.

LEMMA 3.1. If M is a Q-manifold, he^(M) and M.ciM is
clean, then there exists a clean M2 such that /^(Jxilίjcc/ x M2 and
such that the inclusion

{0} x (M2 - Int (M0) ̂ — I x M2~h{Ix Int (M,))

is a homotopy equivalence.

Proof. Choose clean M', M" and M2 such that

M / x J I ί J c c ί x J I ί ' c c h(I x M") c c ί x l 2 .

We will prove that M2 fulfills our requirements. By pushing down
in the /-direction we can get a homotopy rt of / x M2 — h(I x Int (MJ)
into itself such that r0 = id, rx takes I x M2 — h(I x Int (Λfi)) onto

( * ) [Ix M' -h{Ix Int (ikf,))] U [{0} x (M2 - Int (M,))] ,

and r t = id on (*) for each t. Similarly let st be a homotopy of

U ) λ(I x (M" - Int (ikf,))) U [{0} x (M2 - Int (M,))]

into itself such that s0 = id, st takes (**) onto {0} x (M2 — Int
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and st = id on {0} x (M2 — Int (JlίΊ)), for each t. Define a homotopy
ft oΐ I x M2- h(I x Int (ikQ) into itself by

= jr2ί , 0 ^ t ^ 1/2

" U2ί-in , 1/2 ^ t ^ 1 .

Then ft gives a strong deformation retraction oί I xM2 — h(I x Int(Mx))
onto {0} x (M2 - Int (ikQ).

Below we define a preliminary version of τ^, but first it will be
convenient to recall the connection between homeomorphisms on Q-
manifolds and simple homotopy theory. It follows from [1] that to
each homotopy equivalence f:M—+N between compact Q-manifolds
there is a torsion τ{f) e Whπ^N) (the Whitehead torsion of /) which
vanishes iff / is homotopic to a homeomorphism. This enables one
to do most of the standard results of simple homotopy theory for
compact Q-manifolds. This gives us such tools as the Sum Theorem,
the formula for the torsion of a composition, etc. We refer the
reader to [5] and [6] for further details.

The function τjh, Mλ). Choose a Q-manifold M and M^aM
clean. Then to each h e r^(M) we are going to define an element
τjji, Mλ) e Whπ^M - Int (MJ). This will be used later on to define
the homomorphism r^. Choose a clean M2 as in Lemma 3.1 and let
i be the inclusion

{0} x (M2 - Int (M,)) <=—> I x M?~ h(Ix Int (M,)) ,

which is a homotopy equivalence. Then we have a torsion τ{i) lying
in Whπ^I x M2 ~ h(I x Int (M,))), Let a be the composition

Whπλ(I x M2 - h(I x Int (M,))) > Whπ,(I x M- h(I x Int (ΛfL))

>Whπ1(M-lnt(M1)) ,

where the first homomorphism is inclusion induced and the second
is induced by the map from I x M — h(I x Int (M,)) to M - Int (Mλ)
which sends h(t, x) to x. Then we define

τ^h, Mλ) = a{τ{ί)) e Whπ^M - Int (Mj) .

The following result establishes some basic properties of τjji, MJ.

LEMMA 3.2. (1) τjji, M,) is well-defined.
(2) If M19 Ml are clean and M1 c c Ml then τjji, M,) is the

image of τjjίi, Ml) under the inclusion-induced homomorphism
Whπ, (M - Int (Ml)) — Whπt(M - Int (AT,)).
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(3 ) For any h, h' e i f (M) we have τjh'h, Mt) = τjjι\ M,) +
Γco(Λf Mi).

(4) If [h] = [A'], ίλβn r^ft, Mx) = ΓcoίΛ', MJ.

Proof. (1) Choose M2, i and a as in the definition of τjji, MJ
and let Mi a M be clean such that M2 c c M2'. Then

i': {0} x (M2' - Int (ikfj) - — I x M2' - fe(J x Int (MO)

is also a homotopy equivalence and in analogy with the definition of
τjji, My) = a(τ(i)) we could also define τjjιy MO = a'(r(i')), where α'
is the composition

Whπtf x ikf2' - A(I x Int (MJ) >Whπ1(I x M - h(I x Int (ΛQ)
- Int (MJ) .

We must prove that a(τ(i)) = a\τ(i')). For this it will suffice to
prove that τ(i') is the inclusion-induced image of τ{i) in Whπ^I x M2

; —
h(I x Int (Mi))). But this is an easy consequence of the Sum Theorem
for torsion.

(2) Again choose M2, i and a as in the definition of τjji, Mt)
and note that (1) implies that we may also select M2 so that

i': {0} x (M2 - Int (Ml)) - — I x M2 - h(I x Int (MO)

is a homotopy equivalence. Thus τjji, Ml) — a'(τ(i'))f where

a9: Whπx(I x M2 - h(I x Int (MO)) > Whπx{I x M - h(I x Int (MO))

M - Int (MO) .

It will suffice to prove that τ(i) is the inclusion-induced image of τ(i')
in Whπx(I x M2 — Λ(/ x Int (M^)). Again this is an easy consequence
of the Sum Theorem.

(3) With M2, i and a as above we can choose a clean M3 in
M such that fe'(I x M2) c c I x M3 and such that the inclusion

V: {0} x (Ms - Int (M2)) ̂ —> J x i l ί 3 - λ'(J x Int (M2))

is a homotopy equivalence. Let j be the inclusion

j : {0} x (M3 - Int (M0) - — I x M3 - fe'fc(/ x Int

which is also a homotopy equivalence. Using the Sum Theorem we
see that τ(j) is the sum of the inclusion-induced images of τ(i) and
τ(ΐ') in Whπil x Mz - hrh(I x Int (M0)), where

?: {0} x (M2 - Int (M,)) - — Λ'(/ x M2) - h'h(I x Int

Note that the image of τ(j) under the composition
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r: Whπtf x M3 - h'h(I x Int (M,))) — Whπ^M, - Int (M,))

>Whπ1(M- Int (MO)

is τ^h'h, Mi), where the first homomorphism is induced by a homotopy
inverse of xO: M3 - Int (MO->/ x M3 - h'h(I x Int (MO) and the second
is induced by inclusion. It follows from the Sum Theorem that
β(τ(j)) = s(τ(ί)) + ί(r(i')), where

s: Whπ^h'il x M2) - λ'ft(/ x Int (MO)) -^-> TFftrr, (M2 - Int (M,))

M3- In t (M,)) f

t: Whπil x M3 - &'(/ x Int (M2))) -^-> FF/IT^M, - Int (M2))

> WhπάMz - Int (MO)

are defined in analogy with r. Let

Whπ, (I x M2~ h(I x Int (M,))) -A* W/ι7τ1(M2 - Int (Λfi))

be defined in analogy with βlm To conclude thatτj j i 'h, Mι) = τoo(h',
τjh, M^ all we need to do is prove that βι(τ{i)) = β3(τ(i)). This is
an easy consequence of the formula for the torsion of a composition
and the fact that the torsion of

h'! :I x M2- k(I x Int (M,)) > h'(I x M2) - h'h(I x Int (MJ)

is zero.
( 4 ) Choose M2, i and α so that τjji, Mλ) — a(τ(i)). We can

choose M2 so large such that h'(l x Mλ) c a l x M2 and

ϊ\ {0} x (M2 - Int (M,)) <-—> I x M2 - Af(/ x Int (M,))

is a homotopy equivalence. Then rTO(A', MO — ^'(τ(i')), with a choice
of α:' which is analogous to the choice of a. Let ht: I x M-+ I x M
be an isotopy such that h0 — h1h1— hf and ht \ {0} x M — id. We
may assume that ht(I x My) a a I x M2, for each t. At this point
we have to apply the Isotopy Extension Theorem for Q-manifolds.
Since it is also needed at several other places in the paper we state
it below. The Isotopy Extension Theorem implies that there exists
a homeomorphism f: I x M2—+I x M2 such fh = K on / x Mι and
/ - id on ({0} x M2) U (I x Bd (M2)). Then / 11 x M2 - h(I x Int (M,))
induces an isomorphism θ of Whπ^I x M2 — h(I x Int (MO)) onto
Whπil x M2 - h'(I x Int (MO)) which takes τ(ϊ) to r(ΐ'). This easily
follows because τ(f) = 0. We have a commutative diagram
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Whπ^Ix Mt-h(I x Int (Mx))) > Whπ&I x M

-h(Ix Int (Afi

Whπ^Ix M2-hf (I xlnt (M1))) >Wh^(I x M Whπ .(M-Int (Mt))

- h\Ix Int (M,)))

where the top composition is a and the bottom is a!. Since θ (τ{i)) =
τ(i') we have τj}ι9 Λfi) = τjh', M,).

We now state the Isotopy Extension Theorem used in the proof
above. It follows from [7] or it can be deduced from [4].

ISOTOPY EXTENSION THEOREM. Let M be a Q-manif old, UaM
be open, and let CaUbe compact. If gt: I xU—+I x M is an isotopy
of open embeddings such that gt\{0} x U — id, then there exists an
ambient isotopy ht: I x M—> I x M such that hQ = id, ht\{0} x M = id,
and htgQ = gt on I x C, for each t.

Description of rM. We now define the homomorphism

UmWhπ^M)

of Theorem 2. Write M = U?=i Mi9 where the Jkf/s are clean and
Mi c c Mi+1. This can be done because all Q-manif olds are triangulable
[11]. In a natural way we may represent lim Whπ^M) by

lim {Whπ^M - Int

which is the subgroup of TJT^Whπ^M — Int (Mi)) which consists of
all (τl9 τ2, ) such that τi+1 is sent to r< by the inclusion-induced
homomorphism. This representation of lim Whπx(M) is independent of

the choice of the ikf/s. For any [h] e π^(M) we note that Lemma
3.2(2) implies that (τjh, Mx), τj)ι, M2), •) e \ιm{WhπiM-lnt(M%))}7^.
Then we define τ^dh]) to be the element of lim Whπ^M) represented

by (τjji, Mx), τ^h, M2), •)• It follows from^Lemma 3.2(4) that this
definition depends only on [h] and it follows from Lemma 3.2(3) that
Γoo is a homeomorphism, i.e. ^([fc'Πfr]) = τj[hr\) + τj[h\). Finally it
follows from Lemma 3.2(2) that τj{h\) is independent of the choice
of the M/s.

Proof of Theorem 2. Recall that we want to establish an exact
sequence

-̂> lim Whπ,(M) - ^ Whπ,(M) ,
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where φ is yet to be defined. For this proof we will assume that
M = UΓ=i Mτ is given as above and lim Whπ^M) will be represented by

lim {WhπiM - Int (Λf,))}^ .

We define φ by φ(τιt τ2, •••) = flf the inclusion-induced image of rL

in Whπx(M). To see that φτ^ = 0 choose any h e r^(M) and consider
?«,(/&, MJ G Whπx(M — Int (MΊ)). We must show that the inclusion-
induced homomorphism

( * ) Whπx(M - Int (M,)) > Whπ^M)

sends τTO(/ι, MJ to 0. Assume that M2 and i are as in the definition
of τjji, Mλ) and let j be the inclusion {0} x M2

 c—> I x M2, which
has zero torsion. By the Sum Theorem we have τ(j) equal to the
inclusion-induced image of τ(i) in Whπ^I x M2), which suffices to
prove that (*) sends τjji, Mλ) to 0.

For the other half of the proof we must show that Ker (φ) c
Im ( r j . This is a little harder to do since we are trying to realize
the elements of Ker (φ) geometrically. Choose

(τlf τ2, ) e lim {Whπ^M - Int (Jlί,))}~ i

such that φ(τl9 τ2, •) = 0. We must construct an element h e r^{M)
such that τcc([/ι]) = (rL, τ2, •).

Our first step will be to show that we can write M — |JΓ=i Ni9

where the JV/s are clean and Nt c c Nt+1, and choose elements μt e
Whjc^Bά (Ni)) such that

( 1 ) the inclusion-induced homomorphisms, Whπ^Bd {Ni)) —+
^ - Int (Nt)) and Whπ£Bά (Ni+1))^Wh^(Ni+1 - Int (Nt)), send

and /^_κ to the same element,
( 2 ) the inclusion-induced homomorphism, Whπ^Bά (iVJ) —>

N,), sends μ1 to 0,
( 3 ) if μ\ denotes the inclusion-induced image of μi in Whπ^M —

Int (Ni)), then (μί, ^ , •) and (τί9 τ2, •) represent the same element
of

The construction of {Nt}?=ί and {μJJLi will follow from successive
modifications of {ΛfJ°ii and {τJΓ=i.

To begin we may assume that there are elements τ e Whπ1(Mi+1 —
Int (Mi)) such that

( 1 ) τ' is sent to zt by the inclusion-induced homomorphism
Int (M^^Whπ^M - Int (M,)),

( 2 ) the inclusion-induced homomorphisms,

M<+2 - Int (M<+1)) >TF^τr1(M,+2 - Int
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and Whπ1(Mi+ι-Int(Mi)) —Wh^(Mi+2~ Int (Mi))y send τ[+ι and τ\
to the same element,

(3) rί is sent to 0 by Whπ^M, - Int

If the elements {τ }^ do not exist, we can find them by passing
to a subsequence of {ikfJΓ=i This follows from the fact that Whπλ(M —
Int (Mi)) is naturally the direct limit of

{Whπλ(Ms - Int (Mt))\j ^ i + 1} .

Next we show how to modify {ΛfJ and {τ } to get our required
{Nt} and {μt}. For each i we will show how to construct Nt and μif

but we will leave it as an exercise for the reader to check details.
Let a: M—+M x [0, 1] be a homeomorphism such that a(Mt) = Mt x
[0, 1] and a(Mi+1) = Mi+ι x [0, 1]. Choose a clean N[cMx [0, 1] so
that Nί is the union of Λf, x [0, 1] and a subset of (Mi+1 — Int (Mi)) x
[0, 1] which consists of the union of all {x} x [0, αj, for xeMί+1 —
Int (Mi), such that αβ = 1 f or x e Bd (M,) and αβ = 0 iff x e Bd (Mi+1).
Thus Bd (JV/) <=—> I x (Miif! — Int (ikQ) is a homotopy equivalence. Put
Nt =r a~\Nl) and note that Bd (ΛΓ̂ ) «=—• J|ft+1 — Int (Mx) is a homotopy
equivalence. Thus there exists an element μt e Whπ^Bά (Nt)) which
is sent to τ by the inclusion-induced homomorphism Whπ^Bά (Nt)) —>
Whnx(Mi+1 — Int (M%)). Then the reader can easily check that {Nt}
and {μt} fulfill our requirements.

Now that we have {NJ and {μt} we must show how to use them
to construct our required h e ^(M). For notation we say that a
clean Adi x M intersects {0} x M cleanly provided that

(1) i n ({0} x M) is clean in {0} x M,
( 2) Bd (A n ({0} x M)) = Bd (A) f) ({0} x M),
(3) there is a collaring of A Π ({0} x M) in A which restricts

to give a collaring of Bd (A) Π ({0} x M) in Bd (A).

In Lemma 3.3 below we will show that for each i there exists a
clean At in I x (Nt — Int (N^)) (where NQ = 0) such that

(1) At intersects {0} x M cleanly and At Π ({0} x M) is a collar
on {0} x Bd ON,),

(2 ) I x Bd (iVO c Int (A%) (Interior computed in / x NJ,
( 3 ) I x Bd (JV,) c=—> A, is a homotopy equivalence,
(4) Ai Π ({0} x M) c=—• Ai is a homotopy equivalence,
( 5) Bd (A,) Π ({0} x M) <=—> Bd (A,) is a simple equivalence (Bd (A«)

is computed in J x Λ )̂,
( 6 ) Bd (AO c=—> Ai is a homotopy equivalence,
( 7) τ(Ai Π ({0} x M) c=—> A^ is equal to the image of μt under
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the composition

Whπ^BdiNt)) Ά Whπ.iAi Π ({0} x M)) >Whπ1(Ai),

where the second homomorphism is inclusion-induced.
Let Al denote the projection of At Π ({0} x M) into M, for each

i. We will construct an element h e ^(M) such that for each i, h
takes

Cl (I x [((Nt - Int (N^)) U AU) - A?])

to

Cl (I x ((N% - Int (Nt-j) U A,_x) - A,) ,

where Ao = φ, A°o — φ and Cl denotes closure. Let us see how τ^h])
is represented by the element (μlf μi9 •)• Write M = UΓ=i Pi, where
P, = Cl (JV, - A?). Then the P/s are clean and P ( c c P<+1. Note
that the torsion of the homotopy equivalence

{0} x (P,+ 1 ~ Int (P.)) — ί x P,+ 1 - Λ(/ x Int (PJ)

equals the image of ^ under the composition

Whπ, (Bd (JV*)) — TFATΓ^A, Π ({0} x AT)) > Whπ^A,)

sWhπtf x Pi+ί - Λ(I x Int (P,))) .

Thus Γco(fe, P ^ equals the inclusion-induced image of μt in Whπx(M —
Int (P^)). This implies that ^([fe]) is represented by (μ19 μly •••).

Finally we show how to construct h. Repeatedly using the Sum
Theorem the reader can easily check that the following inclusions
are simple equivalences:

{0} x P1 ^—• Cl (/ x N,- A,) ,

{0} x (P, - Int (P^)) - - . Cl (/ x ((N< - Int (N^)) U Λ_,) - Λ) .

Then we can easily construct our required h by (1) using the fact
that simple equivalences between compact Q-manifolds are homotopic
to homeomorphisms and (2) Z-set unknotting, which enables us to
fit various compact pieces together.

LEMMA 3.3. Let M be a compact Q-manifold and choose τ e
Whπx(M). Then we can find a clean A c / x M x [0, 1) such that

( 1 ) A intersects {0} x M x [0, 1) cleanly and AΠ({0} x l x [ θ , 1))
is a collar on {0} x M x {0},

( 2 ) I x M x {0} c Int (A),
(3 ) / x M x {0} <=—> A is a homotopy equivalence.
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( 4) Af] ({0} x M x [0, 1)) <=—> A is a homotopy equivalence,
( 5 ) Bd (A) Π ({0} x ikf x [0, 1)) <=—• Bd (A) is a simple equivalence,
( 6 ) Bd (A) <=—> A is α homotopy equivalence,
( 7) τ(A Π ({0} x M x [0, 1)) <=—> A) equals the image of τ under

the composition

Whπλ(M) {-^S Whπ,(A n ({0} x M x [0, 1))) >Whπx(A) .

Proof. Our first step will be to prove that there exists a clean
NczM x [0, 1) such that

( 1 ) ikf x {0} c Int (JV),
( 2 ) ikf x {0} c=—> JV is a homotopy equivalence,
( 3 ) Bd (JV) <=—> JV is a homotopy equivalence,
( 4) τ(Bd(JV) <=—> JV) + τ(Jkf x {0} -—> JV) - 0,
( 5 ) τ(Λf x {0} c=—> JV) equals |the image of τ under the com-

position

WhπJiM)(-^ WhπiM x {0}) >Whπι{N) .

To begin let f:M—>M1 be a homotopy equivalence such that τ(f) —
f*(τ) and M, is a compact Q-manifold. (Here/^rT^^TΓ^M)-^^^^! ! !)
is induced by /.) By taking the mapping cylinder of / and thickening
it we get a compact Q-manifold P1 containing M, Mι as Z-sets such
that Mί

 c—> Px is a simple equivalence and such that τ(M <=—> P J =
(M c—> Pi)*(r). The thickening that is required is provided by West's
Mapping Cylinder Theorem [13]. Next let g: M2-^M1 be a homotopy
equivalence such that τ(g) = / * ( — τ) and Mz is a compact Q-manifold.
Again we thicken the mapping cylinder of g and obtain a compact
Q-manifold P2 containing M1 and Λf2 as ^-sets such that Mt

 c=—> P2

is a simple equivalence and τ(Λf2

 c=—• P2) — {Mx

 c—> P2)*/*(—τ) Define
JV' = Px Uiif! P2, the Q-manifold formed by sewing Px to P2 along Mlm

Then we see that τ(M<^-*N') + τ(Λί2 <=—> N') = 0 and τίikf^—+iSP) =
(j)f cz—>N')*(τ). By the above comments it is now clear that we can
find a compact Q-manifold P 3 containing M2 as a Z-set such that
M2

 c=—> P 3 is a homotopy equivalence and if N" — N' \JM2 P3, then
r(M c r—> N") = 0. Thus there exists a homeomorphism u: N" —>
M x [0, 1] such that u(M) = M x {0} and w ( i \ ί ' ) c l x [0, 1], Then
JSΓ = w(ΛΓ) fulfills our requirements. (Note that in order to get
u(M) = M x {0} and u(N') c M x [0, 1] we have to use Z-set un-
knotting.)

Finally we show how to get our required A from JV. Choose
ε > 0 so that M x [0, ε] c Int (N) and let A be a clean set carved
out of I x JV which is the union of all {x} x [ax, bx], where
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(1) [α.f6J = [0,l] if xeMx[0,6]9

(2) [α.f δ.]c(0, 1) if xeN-Mx [0, ε].

In the picture below the shaded region represents A. It is obtained
from I x N by "poking in" in the /-direction.

,1]
MxO Mxe Bd(ΛΓ)

The reader can easily check that A fulfills out requirements.

4* The functors lim ττ0^, lim π^ and lim X ^ * In §2 we
introduced ττ0^, a covariant proper homotopy functor from the cate-
gory of Q-manifolds and proper maps to the category of groups
and homomorphisms. In this section we will use the restriction of
π^ to the category of compact Q-manifolds and (ordinary) maps
to define functors lim π^, lim π^ and lim1 πf^. There are used
in the exact sequence of Theorem 3.

1* The functor lim 7Γ0^. We will first describe lim π^, a
covariant homotopy functor from the category of Q-manifolds and
maps to the category of abelian groups. It is defined as follows.
For any Q-manif old M let lim π^(M) denote the direct limit of the
direct system

{π^(M^) I Mx c M is a compact Q-manif old} ,

where the homomorphisms are inclusion-induced. It follows from D
of § 1 that lim π^(M) is abelian and we write it multiplicatively.

If f:M—>N is a map of Q-manifolds and MxaM is a compact
Q-manifold, then we can choose a compact Q-manifold NxaN such
that f(Mλ) c JVΊ. This induces a homomorphism

lim

where the last arrow follows from the direct limit construction.
This homomorphism is independent of the choice of Nλ. If M2 is a
larger compact Q-manifold in M, then we get a similarly-defined
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homomorphism πo^(M2) —> lim π^{N) such that the following diagram

commutes:

ΐ \

Here the vertical arrow is inclusion-induced. In this manner
there is induced a homomorphism /*: lim πo^(M) —> lim πo^(N). The

following result is easy.

THEOREM 4.1. limτr0^ is a covariant homotopy functor from

the category of all Q-manifold and (ordinary) maps to the category
of abelian groups.

IL The functor lim π<^+ We now describe lim π^ a covariant
proper homotopy functor from the category of Q-manifolds and
proper maps to the category of abelian groups. For any Q-manifold
M let lim π^(M) denote the inverse limit of the inverse system

{limπf^{M -C)\CaM compact} ,

where the homomorphisms are inclusion-induced. If / : ikf —>N is a
proper map of Q-manifolds and C c N is compact, then we get a
homomorphism

lim πo^(M) > lim πo<έ?(M - f~\C)) Ά lim πQ^(N - C) ,

where the first arrow follows from the inverse limit construction.
If C c N is a larger compactum, then we get a similarly-defined
homomorphism lim π^{M) > lim π^(N — G) such that the follow-
ing diagram commutes:

, lim πQ^(N - C)

lim πo^(M)/

< - \̂

^ lim πo<έ?(N - C)

In this manner there is induced a homomorphism

Again we have an easy result.

THEOREM 4.2. lim π^ is a covariant proper homotopy functor



CONCORDANCES OF NONCOMPACT HILBERT CUBE MANIFOLDS 109

from the category of all-Q-manίfolds and proper maps to the category
of abelian groups.

IΠ* The functor lim xπ&. We now describe lim xπ^, a covar-
iant proper homotopy functor from the category of Q-manifolds and
proper maps to the category of abelian groups. For any Q-manifold
M we let lim1 πf^(M) denote the first derived limit of the inverse
system

{limπ^(M —C)\C(zM compact} .

To calculate lim ιπ^(M) we proceed as follows. Write Aί =
UΓ=i Ct9 where the C/s are compact and C ^ c c Ci+ί, and consider the
sequence

lim πo^(M - Q ^ — lim πo

rέ?(M - C2) 3 ,

where the p/s are inclusion-induced. Define a homomorphism Δ from
ΠΓ=i lim π,W(M - Ct) to itself by

92, •) = (9Φi(9ϊι), 92P2(971), •) •

Then we define lim1 (lim π^{M - C,)}Zi to be the cokernel

Π lim π^{M - Ct)βm (A) .

It is called the first derived limit of the inverse sequence

{lim πo

If (9i, 9tf •") is a n element of ΠΓ=i lim πo^(M — Ct), then we use

(9ι, 92, •> for its image in lim1 {lim π ̂ ( M — C<)}S=i.

Just as lim ̂ ^ ( M ) is represented by lim {lim π^(M — Ct)}?=1,
we will represent lim17Γ0<af(Λf) by lim1 {\imπo^F(M - C,)}r=i. We
must prove that this is independent of the choice of the C/s.
Thus let M = \JT=i C\ be given, where the C['$ are compact and
d c c C'i+1. We will describe a canonical procedure for constructing an
isomorphism from lim1 {lim πo^(M— CJ}Γ=i onto lim1 {lim πQ^(M—Ci)}?=1.
Write M = UΓ=i A? where the ZVs are compact and Dtcκz Di+ί, and
(1) some subsequence of {A}Γ=i equals a subsequence of {Ct}ΐ=ί and
(2) some subsequence of {A}Γ=i equals a subsequence of {C }Γ=i. Let
{C<n}n=i b e a subsequence of {CJΓ=i, where ΐi < i2 - It will suf-
fice to construct an isomorphism of lim1 {lim π^(M — G$?=ι onto
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Define

φ: Π lim π^{M - d) > Π lim π^(M - Cin)

by Φ(glf g2, •) = (hiί9 hh, . . . ) , where

hiγ = ft1ft1+i <7i2-i >

^i 2

 = = 9i2g%2+ι ft3-i ,
•

For convenience we have omitted writing down the appropriate
compositions of the p/s. Specifically this means that in the term
θifl^+i''' 9i2-i9 the multiplication all takes place in lim π^(M — Cτ),
and gd actually represents pil+1ph+2 Pj-i(9j)- The reader can easily
check that φ induces an isomorphism

φ: lim1 {lim π^(M — C€)}Π=i * lim1 {lim πQ^(M — d J}?=i .

Now let f:M-+Nbe a proper map of Q-manifolds and write
N = UΓ=iCi, where the C/s are compact and C t c c C < + 1 . Then Jkf =
US=i f~\Ci)> where the f~\Ctf& are compact and f~ι{Ci) c c f~~ι(Ci+^).
Define

α: Π lim 7Γ0^(ilί - f~\d)) • Π ϋ

by a(gu g2, ) = (α^A), α2(ft), •••)> where ^ represents the homo-
morphism

(/1M - /"XC,))*: lim ττo^(Λί - /-(Q) , lim πoί?(N - Ct) .

It is easy to see that the following diagram commutes:

Π lim πo^(M - f-'iCt)) - ^ Π lim πo<t?(N - Ct)

Π li

Thus a induces a homomorphism /*: lim1 πo^(M) —> lim1 πo^(N). We
leave it to the reader to check that /* is independent of the choice of
the C/s. In analogy with Theorems 4.1 and 4.2 we get the following
result.

THEOREM 4.3. lim1 π^ is a covariant proper homotopy functor

from the category of Q-manifolds and proper maps to the category
of abelian groups.
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There is an important case in which the first derived limit cons-
truction vanishes. An inverse sequence of groups, {Gif pJΓ=u satisfies
the Mittag-Leffler condition provided that for each i there exists a
j > i such that the compositions

Pj-i n Pj-z Pi
> (j j-! >

r

have identical images, for all k ^ j . We will need the following
result. For a proof see [12].

THEOREM 4.4. If {Giy Pi}T=i is an inverse sequence of abelian
groups which satisfies the Mittag-Leffler condition, then lim1 {Gu Pi}T=i
is trivial.

5* The second exact sequence* The purpose of this section is
to establish the exact sequence of Theorem 3, and the first step will
be to construct the homomorphism θ: Ker (τ^) —• lim1 π^{M). The

following result will be useful in the construction of θ. Throughout
this section we will assume that M is a given Q-manifold and

is the homomorphism of Theorem 2.

LEMMA 5.1. // [h] e Ker ( τ j , then we can write M=\Jΐ=ιMt

such that
(1) the M^s are clean,
(2) I x Mx c c h(I x M2) c c I x M, c c h(I x Λf4) c c .. ,
(3) {0} x (Mi+1 - Int (ikf,)) <-—> h{I x Mi+ι) - (I x Int (AQ) is a

simple equivalence, for i odd,
(4) {0} x (Mi+1 - Int (Mt)) -—> I x Mί+1 - Λ(J x Int (ikf,)) ΐs α

simple equivalence, for i even.

Proof. It follows from the definition of K e r ^ ) that for each
clean Mxc:M there exists a larger clean M2a M such that h(I x
ikfi) c c I x Λf2 and

{0} x (AT, - Int (ΛfO) ^—* Ix M2- h(Ix Int (Λfi))

is a simple equivalence. It will suffice to prove that M2 can be chosen
large enough so that / x M1 c c &(/ x Int (M2)) and so that

i: {0} x (AT, - Int (Mj) <^—+ h(I x M2) - (I x Int (If,))

is a simple equivalence. Once this is done we will have an inductive
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procedure for constructing our desired sequence
To see that we can make such a choice of M2 all we have to

do is choose M2 so that there exist clean M[, M" such that

Ix Mλ(Z(zh(Ix M[)ac:Ix MΐccAflx M2)

and such that

{0} x (M[r - Int (Ml))c=—- / x Ml' - h(I x Int (Ml))

is a simple equivalence. We will prove that i is a simple equivalence.
First it is easy to see that i is a homotopy equivalence. This

is just like the proof of Lemma 3.1. Using the Sum Theorem we
see that the torsion of i is equal to the inclusion-induced image of
the torsion of

j : {0} x (M2 - Int (Ml9)) ̂ — h(I x Int (AfΓ))

in Whπλ(h(I x M2) — (I x Int (Mi))). Again using the Sum Theorem
it is easy to see that the inclusion-induced image of the torsion of
j in WhπSJι(I x (M2 - Int (MO))) is 0. This is all we need.

Description of θ. Choose any [h] e Ker (τS) and write M = U?=i Mt

as in Lemma 5.1. Then we can choose homeomorphisms

f2i^: I x (M2i - Int (M2i^)) > h(I x M2ί) - (I x Int
/„: / x (Mii+1 - Int (M2ί)) > I x M2i+1 - h(I x Int (M2i))

such that

(1) /*-! = id on [{0} x (M2ί - Int (M^))] U (/ x Bd (M2i^))9

(2 ) /2i_, = h on I xBd (Mu),
( 3 ) f2ί = id on [{0} x (Mu+1 - Int (ilfa<))] U (/ x Bd (Mix+1)),
(4) fΛi = h on 7xBd(AfM).

We will use the symbol * to indicate the amalgamation of homeo-
morphisms on sets for which there is agreement on the common
parts. For example we define f2i^^f2i e ^(M2i+ι — Int (M2i_x)) by

/«-i, on I x (M2i - Int

fit, on / x (M2i+1 - Int

Similarly we define (f2i^f2ί+1)~'1he<^(M2i+2 — Int (ilf2ΐ)) to be the com-
position

x (M2i+2 - Int (M2ί)) -^h(Ix (M2i+2 - Int

x (M2ί+2 - Int (M2i)) ,
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where /2ί*/2i+i is defined in analogy with /«_!*/«. Note that

{fzi*fzi+d~ιh = id

on Ix (Bd(Mtt)\jBά(Mlt+ι)).

Let a2i_x = {/2ί_i*/2i} € lim π^{M — Int (Λf2<_!)) denote the inclusion-

induced image of [/£,_i*/2<] e πQ^{M2i+ι - Int (ikΓa^J in lim π^{M -

Int(Af2<-i)) and similarly let α2 ί = {(/2ί*/2i+1)"1Λ} denote the inclusion-

induced image of [(/i^/w+i)"1/*] in lim π^{M — Int (Λf2ι)). Then we

get an element (al9 <x2, •••) of ΠΓ=i lim πo^(M — Int(Jlf£)) and we let

θ([h]) denote the element of \imιπ^(M) which is represented by the

element (alf a2y •-•) of

lim1 {lim π^{M - Int {M%))}7=1 = Π lim πo^Γ(M - Int (Mt))/lm (Δ) .

There are several things which need to be checked in order to
conclude that θ is well-defined.

LEMMA 5.2. θ([h]) is independent of the choice of the fs.

Proof. Let {//}£=,. be an alternate choice for {/JΓ=i, thus giving
us an alternate (a[y a'2, •) € ΠΓ=i \iraπ^(M — hxt(Mi)), where

We will prove that (alf a2, •••) = (a[, a[, •>, and for this we must
prove that

, αiίαiΓ1, •• ) e l m ( z / ) .

Consider the element (βu β2, •) 6 ΠΓ=ilim πo^(M - Int(Mt))

denned by β2ι^ = {(f^Y'U-i) and ̂ M = {f?frγ* We will show that

It follows from Theorem 2.1 that the inclusion-induced image of β2i

in lim TΓô f (ilf - Int (-MM-!)) is given by {ΐd*(/27
1/j'i)} and similarly the

inclusion-induced image of /S2l+1 in lim π^{M — Int (lf2<)) is given by

{ίd ί/iΊ+iΓ'/n+i}- Thus JC8lf /S2, •••)"= K »Ί, •). where

vu = {/? l/iHti*(/i+I}- l/«+i}"1 >

Clearly y,,.! = {(//,_, *//,Γ1(/«-1*/«)}, and since πβ«g!'(Λf1<+1 - Int (Λf,,.,))
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is abelian this equals a^-iί^-i)"1- Similar reasoning gives v2i =

LEMMA 5.3. θ([h\) is independent of the choice of the Λf/s.

Proof. Using the notation of the definition of 0([h]) let {Min}™=1

be a subsequence of {Mt}T=i, where %2n_γ is odd, i2n is even and iγ <
i2 < •••. We call {Λf<Λ}»=i an odd-even subsequence of {ΛfJ Li. By
amalgamating the //s together we can use the Min's to define d([h])
as follows. Let

< = {ftl*ftί+ί* ''' */iS-i} e Hm τro^(ikf - Int (Mh)) ,

< = ί(/ia*/<2+i* */*4-iΓ1Λ} e Inn π^{M - Int (Λf<2)),

and thus get {a'h, α 2, •) e Π ? = i l i m ^o^(Λί — Int (Af<Λ)). This means

that we are replacing the sequence fl9 f2, by the sequence

Ji^J^+i* * ' * */ΐ2-l >

/ i 2 * ' Ϊ2+1* * ' ' */*3—1 *

Then we get an element (a'h, a'h, > e lim1 {lim π^{M — Int CMin))}SU.

Recall from §4 that \imιπ^(M) can be represented in a natural

way by limMlim7Γ0^(Λf^Int(Λft))}Γ=i and limHli

The isomorphism

φ: lim1 {lim π^(M - Int

> lim1 {limτro^(M - Int J

of §4 takes <α:, α2, •> to (ahah+1 aί2_u ai2+1 ah_u - •), where
we have omitted obvious inclusion-induced homomorphisms. So we
have to prove that φ((al9 a2, •>) = < α v «ϊ2, •>•

Again omitting obvious inclusion-induced homomorphisms we have

(a'iι9 a'h9 •) = (aHail+2 ah_2f ai2ai2+2 - α<4_2, . • ) .

So we must prove that

(ah, aiι+1 ai2_lf aH, ai2+1 - aH_u -. •>

Multiplying one by the inverse of the other we must therefore prove
that
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(β^+l^H+3* ^ 2 - 2 ^ 2 + 1^*2+3* # * ̂ ί3-2> ^ i 2 +l^i 2 +3* * " #* 3 -2^i 3 +l^i 3 + 3 * * * ̂ i4-2> * " ")

lies in Im (A). But it is clearly equal to

J{ah+1ail+s ai2_2, ai2+1ai2+3 α<3_2, •) .

We have just shown that the definition of θ([h\) is independent
of the choice of the Af/s up to passage to an odd-even subsequence.
As in §4 this clearly suffices to do the general case.

LEMMA 5.4. θ([h\) depends only on the ίsotopy class of h.

Proof. We must show that if h' e [h] is used to define θ([h]),
just as θ([h)) was defined by using h, then we get the same definition.
Let {Mt}T=i and {/JΓ=i be chosen as in the definition of θ([h\) given
above. It is easy to see that the Λf/s can be chosen so that I x
My c c h\I x M2) c c and so that

{0} x (M2ί - Int {M2i_x)) -—* h\I x M2i) - (I x Int (Jlf!M)) ,

{0} x {M2ι+ι - Int (M2i)) ^ ( 2 x M2i+ι) - h'{I x Int (M2ί))

are simple equivalences. For this all we have to do is observe that if

{0} x (M2 - Int (MJ) -—> h(I x M2) ~ (I x Int (MJ)

is a simple equivalence, then so is

{0} x (Mi - Int (MJ) - — h(I x Λf/) - (/ x Int (ML)) ,

for any clean Mi Ό M2. A similar statement holds for the other
inclusion, {0} x (M3 - Int (M2)) ̂ —> (I x M3) - h(I x Int (M2)). Thus
{MJΓ=i can be chosen as indicated above. We will continue to use
d([h\) for the definition above which involved h and {Mi}T=ί, and we
will use θ([h])' for the similarly-worded definition which uses h' and
{MiJΠri The next step is to make a choice of homeomorphisms //
needed to define θ([h])'.

Since h' e [h] we have an isotopy ht: I x M-+I x Mτel {0} x M
such that h0 = h and /ιx = ft/. Then we may assume that the M/s
have been selected so that for each t and i,

(1) &,(/ x (^+2 - Int (M2i))) (zlx (Int (J|f2<+8) - M2x.,\
( 2 ) / x Bd (M2i+ί) c A^/ x (Int M2i+2 - M2i)),
(3 ) ht(I x Bd (M2ί)) c / x (Int (ikf2ΐ+1) - M^.J,
( 4 ) Λt(J x Bd (Jlf2i+a)) c / x (Int (M2i+3) - M2i+1).

For each i the Isotopy Extension Theorem gives us an isotopy
at of I x (Λί2ί+3 — Int (ikf2ί-i)) onto itself rel

[{0} x (M2ί+, - Int (M^.,)] U [/ x (Bd (Mit^) U Bd (Λf2<+8))]
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such that a0 = id and ath = ht on I x (M2i+2 — Int (ikQ). Define f2\_γ =
^iΛi-i and /2'<+2 = îΛΐ+2 and note that fζi~ι*h'*f2'i+2 is isotopic to
fu-i*h'*fii+2 rel

[{0} x (ilί2ί+3 - Int (M^))] U [/ x (Bd (M2i_d U Bd (Λf1<+,))] .

Again using the Isotopy Extension Theorem we can extend the isotopy
Q-tfn-i 11 x (M2i — Int (Λf2i-i)) and construct an isotopy βt of I x
(M2i+1 — Int (Λf2<_!)) onto itself rel

[{0} x (M2i+1 - Int (M^))] U [/ x (Bd ( i l f^) U Bd (M2ί+1))]

such that β0 = id and βtf2t-i = &thi-\ on I x (M2i — Int (Λf2t-i)) Then
define / i = ̂ / ^ and note that fii-^fli is isotopic to f2ί-^f2ί rel

[{0} x (Ma<+1 - Int ( M ^ ) ) ] U [I x (Bd (ikf,,.,) U Bd (M2i+ι))] .

Similarly we define f2ι+ι so that fL+i*fii+2 is isotopic to / 2 i + 1 */ 2 ί + 2 rel

[{0} x (M2 ί + 3 - Int (M2ί+1))] U [/ x (Bd (ikf2ί+1) (J Bd (AΓa4+8))] .

This gives us // defined for each i. Then the sequence {//}Γ=i may
be used in conjunction with {M*}Γ=i to define 0([h])'. Recall that θ([h\)
is represented by

and θ([h])r is represented by

( * * ) < { / / * / / } , « / ; * / ; ) - % } , • • • > •

We observed above that f2ί^^f2ι is isotopic to f2ί^*f2i, therefore
{/«-i*/2<} = {/2i-i*/2J. This takes care of the odd terms. We will
not be able to show that {(/i^/i+i)""^'} = {(Λtί/i+iΓ1^}, but we will
show that they have the same inclusion-induced image in lim πo^(M —

Int {M2i_ύ). The reader can use this fact to easily show that (*) and
(**) represent the same element of \\mιπ^{M).

To establish this fact note that the inclusion-induced image of

Kf2t*f2i+i)'ιh] in π^{M2i+z - Int(M2i^)) is

V / lj2i-l*j2i*j2i + l*J2i + 2) \J 2i*"/*J 21+2/1

and the inclusion-induced image of [{fL^fL+ι)~ιh'\ in π

Int (ikf^)) is

V / \\J2i—1*/2ι*/2ΐ+l*/2i+2/ \j2i—l*fo *j2i+2/\

We have already seen that [/i-i*^'*/^] = [/2ί-i*λ*/2<+2], [/i-i^/i] =
[/2i-i*/2i] and [/2'ΐ+1*/2ΐ+2] = [/2i+i*/2ί+2]. This gives us ( + ) equal to
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This concludes the proof that θ([h]) is well-defined. We next
prove that θ is a homomorphism.

LEMMA 5.5. θ is a homomorphism.

Proof. Choose elements [h], [hf] e Ker (:„). We must prove that
θ([h'h]) = θ([h'])θ([h]). We can write M = UΓ=i Mt so that for each
i,

( 1 ) Mi is clean,
( 2 ) Mt<zczMi+1,
( 3 ) {0} x (M4ί_λ - Int (M4i_2)) - - > h(I x M^) - (I x Int (M4i_2))

is a simple equivalence,
( 4) {0} x (M4ί - Int (ikf^)) - — / x M4ί ~ h(I x Int (M4ί_x) is a

simple equivalence,
( 5 ) {0} x (ikf4i_2 - Int (Jlf4i_,)) -—* h\I x ikΓ4ί_2) - (I x Int (ikΓ4ί_3))

is a simple equivalence,
( 6 ) {0} x (JkΓ4<+1 - Int (Λf4<)) -—> (/ x M4i+1) - Λ'(I x Int (M4ί) is

a simple equivalence.

Then we can find homeomorphisms as follows:

( 1 ) /«-*: / x (Λf^-i ~ Int (Λf4<_2)) - /*(/ x Jlf«-i) ~ (/ x Int (M4i_2))
is the identity on [I x Bd (M4,_2)] U [{0} x (M^ — Int (M4ί_2))] and equals
ft on I x Bd {M4i-X).

( 2 ) /,,_,: / x (M4ί - Int (M^)) - ( / x Jtf«) - h(I x Int (ikf^.,)) is
the identity on [/ x Bd (M4ί)] U [{0} x (M4i - Int (M4%_$)\ and equals h
on I x Bd (M4i^).

( 3 ) //,_3: / x (M4ί_2 - Int (If4<_8)) — λ'(J x Λf«_») - (/ x Int (M4i_3))
is the identity on [I x Bd (M4i_3)] U [{0} x (M4ί_2 - Int (Λf4ί_3))] and
equals h' on / x Bd (M"4i_2).

( 4) /;,: / x (M4i+1 - Int (Λf4<)) — J x M4 i + 1 - λ'(/ x Int (Af41)) is
the identity on [/ x Bd (M4i+1)] (J [{0} x (M4i+1 - Int (.M4ί))] and equals
h' on / x Bd (ΛΓ4<).

Writing If = ilί̂  U M3 U and representing lim1 πQ^(M) by

lim1 {lim πo

r^(M - Int (ΛfJ) | i odd}

we calculate <9([ft]) to be

(alf α8f . •> 6 Π lim π^(M - Int

where
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Note that id*f2*f%*id e %?(M5 - Int (MJ) and (fz*id*id*f%yιh e
Int (AT,)).

Now write Λf = Mx U M"2 U M"5 U MQ U M9 U MίQ U and represent
lim1 π, •,- (Λf) by

lim1 {lim π^(M - Int (Mt)) \ i = 1, 2, 5, 6, •} .

Then we calculate θ([h']) to be

*([*Ί) - « < < < ) e Π {lim ττo^(ikΓ - Int (M,

- 1 , 2 , 5 , 6 , . . }/Im(J),

where

αί = {fUh'*ft\ ,

Note that / ^'*// e ^(ilί5 - Int (.Mi)) and (A'\fUfίYιh' e 9"'(Af, -

Again writing Λf = ilίΊ U Λfs U and representing lim1 TΓ

as above we calculate θ{[h'h\) to be

θ([h'h)) = (βlt β3, •> s Π lim π^(M - Int (AfM_t))/Im

where

Note that fUh'Wfnfl e ^(Af, - IntCAQ) and (h'f^fUfUh'ΛΓh'h e
7 - Int (Aί8)). We now have representatives of 0([fe]), <?([A']) and

'fe]) Note that

This implies that β1 = αίαύ similarly /35=«5«5, /S9=«9«;9, •• However
we cannot directly compare the remaining terms because they do not
all lie in the same groups. For example α3 and β3 lie in lim π
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Int (Λf3)), but a2 lies in lim π^(M — Int (M2)). Let (az)lf (a2\ and

(β3)ί denote the inclusion induced images of a3, a[ and β3 in lim π^(M—

Int (M,)). We will show that (&X = (cQ^a^. Similarly it will follow
that (β7)6 = «) 5 (α 7 ) 5 , and so forth. Here (βγ)6, « ) 5 and (aγ)5 are the
inclusion-induced images of β7, a

r

Q and a7 in lim πo^(M — Int (M5)).

This will suffice to prove that θ([h'h]) = θ([h'])θ({h]).
To prove that (β3\ = {a'2)ι(az)ι it will suffice to prove that the

composition of
(a) [id+ih'+fUfO-WJd+id+id]

and
(b) [id*id*(fz*M*id*fs)~ιh*ίd*id]

gives
(c) [id*id*{tifz*fl*fUh'fQ)~ιh'h*id*id\.

These are elements of 7Γ0̂ (]kf9 — Int {Mx)). Obviously
(a) - [fUh\fUfUh\fl\-'[fUh\fi]9

(b) = [id*f2*fz*id*id*fQ*fΊ*idYι[id*f2*h*fΊ*id],

(c) = [fUh%*h%*fUfUh%Λ7τ*fn-ι[fϊM
Using the commutativity of πo

c^?(M9 — Int (ML)) it is clear that (c)
is the composition of (a) and (b).

Proof of Theorem 3. We now show that there is an exact
sequence

lim πQ^(M) -?-> lim πo^(M) - ί U Ker ( r j -^-> lim1 ττo^(M) > 0 .

1* Exactness at lim1 π0^ (M). We say that an element of

lim1 πQ^(M) is good provided that it can be represented by (a19

a2y •••>, for Λf=US=i-Mt> where a< e lim τr 0 ^(M — Int (Jkft)) is the

inclusion-induced image of [h] e πo

<^p(Mi+ι — Int (Λf<)) and h = id on

I x (Bd (MO U Bd (Λf<+1)). We will first show that each element of

lim1 πQ^(M) is the product of two good elements. To see this write

M = \JT=I Mi9 where the M/s are clean and J l ί . c c Mi+l9 and choose

any (a19 a2, > e lim1 {lim π^{M — Int (Mi))}Γ=i. Let a be the ele-

ment of lim1 πo^(M) represented by (aίf a2, •••>. It is easy to see

that we can find a subsequence of {MJΓ=i> call it {Ml}?=ι, and an

element (a[, a'2f > of lim1 {lim πo^(M - Int (Af/))}r=i such that

( 1 ) <αj, αj, > represents α,
( 2 ) for each i there is an element ht e ̂ ( M / + 2 — Int (Λf,')) such

that ht = id on I x (Bd (Af/) U Bd (Af/+2)) and αj = {ΛJ.

Writing M = M[ U Aί/ U we have an element β e lim π

represented by
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<{Λi}, {Λ8}, > G lim1 {lim π^{M - Int {Ml)) \ i odd}

and writing M — Ml U Ml U we have an element v of lim1 π

represented by

<{h2}, {K}, - > e lim1 {lim πo<έ?(M - Int (AT/)) | i even} .

Clearly βf v are good and the reader can easily check that a = βv.
Thus to see that θ is onto we need only consider a good element

a of lim1 π^(M). Let a be represented by (alf a2 —)> where as
above we have at = {hi}. Let h e ^(M) be defined by

h ~ id^hmhz* .

Then it is easily seen that θ([h\) = a.

II* Exactness at K e r ^ ) * We must first define the homomorphism
k: lim πQW(M) —> Ker (TΓ^). An element of lim πo^(ikf) can be repre-
sented by {/̂ }, where /̂  G ^(MJ and Mi c ikf is clean such that hx —
id on I x Bd (Mλ). Let fe e ^(M) extend hx by the identity and define
k{[h^\) = [h]. It is easy to see that k gives a well-defined homo-
morphism and it is clear that θk — 0. The other half of the proof
of exactness is more difficult.

Thus for any [h] e Ker (θ) we want to prove that [h] e Im (fc).
For the time being we assume that h can be written as foo*fti*Λ2* >
where M = UΓ=i Mt and

(1) the M^s are clean,
(2) Mtczc:Mi+1,
( 3 ) ht G ίT(ikfi+1 - Int (ilί,)) and is the identity on / x (Bd (Λf,) U

Bd(ilf<+1)), for i^l,
( 4) fe0 G ^(ikfx) and is the identity on / x Bd (M,).

Then θ{[h\) can be represented by

J, ί U •> e lim1 {lim π^(M - Int

Since [h] e Ker (0) we have

•) = (foHi^fc}-1, ίftJίW^.}-1, •),

where for each i we have gt e ^{Mό. — Int (M*)), for some j t > i,
such that gi — id on I x (Bd (ikQ U Bd (M^)). By passing to a sub-
sequence we may assume that j t = i + 1 and that

computations being performed in πo^(Mi+2 — Int (M^))). Details are
left to the reader.
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For each i we have [g^h^id] = [id^gτ+ι] and therefore

these computations being performed in π^(M — Int (M^)). Similarly
we get

Composing we get

or

This implies that [fe] e Im (&).
We now treat the general case. Choose any [h] e Ker (0). We

will prove that [h] — [/?/], where h' decomposes as h' = hΌ*h[*h'2* , in
the above sense. Thus we are going to reduce the general case to
the specific case treated above. Write M = US=i Mt and choose {/<}£=i
as in the definition of θ([h]). We can easily choose the Λf/s and //s
so that there are even pairs (Jlί/, Λί4"), W , -M"β"λ "" such that

(1) M2i c c ML c c ikf27 c c JlfM+1,
( 2 ) /2< = id on J x (Jlf2<+1 - Int (Λfi)),
(3 ) h(I xBd {Mil)) c / x (M2ΐ+1 - Int (Mi)).

By definition we have

for some ({flrj, {g2}, •) e ΠΠ=i lim π^(M — Int(Jli<)). Then we have

fifx e ^(Λf^ — Int (MJ), for some n1 > 1. We are going to show that
for any even m < nl9 h restricted to a neighborhood of / x Bd (MID
is isotopic to the identity, with the isotopy taking place in J x
(M — Int (MJ). The Isotopy Extension Theorem then implies that
h is isotopic to a new homeomorphism which is the identity on I x
Bd(ilf») Repeated applications of this observation will suffice to
prove that our required h' exists.

Choose any even m > nx and consider the sequence

Define a sequence uu u2, such that nι e ^(M — Int (M^)) extends
fi*f* by the identity, u2 e %f(M - Int (M2)) extends (f^f^h by the
identity, etc. Then it is easily seen that nnun_γ u2u1 = h on a
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neighborhood of I x Bd (Λf4")> for n ^ 4, u%un_ι w ^ = A on a
neighborhood of I x Bd (Me") for n ^ 6, etc. The equation

({/i*/J, ίί/.*/.)"^}, •) = ^({ί/J, {ft}, •)

implies that \umum_γ w2wj = [(ft+ΐdXίd^+iίid)" 1]. But

is the identity on a neighborhood of / x Bd (MZ) and we are done.

Il l* Exactness at lim π^(M). We must first define the homo-

morphism j:lim7Γ 0^(M)—ΛimπQ^(M). A typical element of limπo^(M)

may be represented by ({ft}, {g2}, •••), where M = \J?=ιMt and {ft} e
lim 7Γ0^(ikf - Int (Mt)). Then we define i({ft}, {ft}, . . . ) e lim τr o ^(M)

to be the inclusion-induced image of {ft} in lim πQ^(M). It is clear

that j is well-defined.
To see that kj — 0 choose ({ft}, {g2}, ) as above such that ft e

^(Mn. — Int (Mi)), for w, > ΐ, and such that ft = id on I x (Bd {M%) (J
Bd (ΛfΛί)). Then A j 1 = [A], where A e ^(M) extends ft by the identity.
The condition

A}, {ft}, •) e lim {lim π^(M - Int

implies that

[h] = [id+g^id] = [ΐd^ft^ΐd] = ,

and this provides our required isotopy of h = id^g^id to the identity.

For the other half of the proof choose Mx<zM clean and Λo£
<g%ML) such that hQ = id on ί x B d ^ ) . Then {fc0} e lim τ r 0 ^ (AT)

represents a typical element of lim πQ^(M). Clearly &({ft0}) = [A0*ίd]

and we assume that [h^ίd] = [id]. We will construct an hγ e ^(Mn —

Int (Mi)), f or n > 1 large, so that h, = id on / x (Bd (1Q U Bd (Mn)),

[h14:id] = [id] in ττ o ^(M - Int (Jl^)), and {h,} = {h0} in limπo^(M).

Repeated applications of this construction will produce an element

({AJ, {^}, ) e Inn {lim π^(M - Int (Mt))}ΐ^

which is sent to {h0} by j . Let ft: / x Λf—*Ix ilί be an isotopy
rel {0} x ikf such that #0 = Λ0*id and gγ — id. Choose w > 1 large
enough so that gt(I x Mx) c c / x ikίw, for each t. Using the Isotopy
Extension Theorem we can find an isotopy Gt: I x ikΓn—• I x ΛfΛ rel ({0} x
ΛΓJ U (I x Bd (Mn)) such that Go = feo*^d and Gt = ft on / x Jl^. Let
Λx 6 ^ ( M Λ - Int (MJ) be the restriction of G, to ikf2 - Int (ikQ. It
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is clear that [id^h^] = [hQ*id] in πo^(Mn); therefore {hj — {hQ} in
lim π^(M). To see that [h^ίd] — [id] in πo^(M — Int (ilίi)) consider
the isotopy /,: I x (M - Int {M,)) ~+1 x (M - Int (M,) defined by /« =
g7\Gt*id)\I x (If - Int (ikf,)). Then /0 = id and fx = h^ίd.

6. Proofs of Theorems 4 and 5*

Proof of Theorem 4. We are given a Q-manifold M which is
movable at oo and we want to prove that lim1 πo^(M) ~ 0. Write

M = UΓ=i Mi9 where the Λf/s are clean and Mt c c Mi+1. Recall from
Theorem 4.4 that all we have to do is prove that the inverse system

{lim πo<έ?(M - Int (ikQ)}Γ=i

is Mittag-Leffler. Choose any i and use the definition of movable at
oo to find a j > i such that (M — Int (Mj)) can be homotoped into any
neighborhood of oo, with homotopy taking place in M — Int (Λft)).
Now let k ^ j be given. We will prove that the inclusion-induced
homomorphisms

lim πoϊ?(M - Int (Mk)) > lim π^{M - Int (Mt)) ,

lim πQ^(M - Int (Ms)) > lim π&?{M - Int (Mt))

have the same image.
Consider the inclusions

a:M- Int (Ms) <^—> M - Int (Mt) ,

/S: M - Int (M,) -—> M - Int

and use the assumption of movability to get a map v: M —
M — Int (Λffc) such that βv is homotopic to a. Then the induced
homomorphisms

: lim πo^(ikΓ - Int {Mά)) • lim π^(M - Int (M,)) ,

: lim τro^(M - Int (Mk)) > lim π o ^ ( M - Int (Mt))

have the same image because /S*^* = #* and α^δ^ = /S*, where d:M —
Int (Λffc) - = — M - Int (M, ).

Proo/ of Theorem 5. We are given a pair (M, iV) of compact
Q-manifolds such that N is a Z-set in M and we want to establish
an exact sequence

- N) • Whπ^N) > Whπ£M) .
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This follows from Theorems 2 and 3 provided that we can verify the
following facts.

(1) l i m ^ o ^ l f - N) = 0.

( 2 ) lim πo<έ?(M - N) ^

( 3 ) lim πQ^?(M - N) ^

( 4) lhίi Whπ^M - N) « Whπ^N).

( 5 ) TF/^M -N)~ WhπJiM).

Since JV is a ϋΓ-set in M it must be collared in M. This implies
that M — N is movable at ©o and therefore lim1 πo^(M — N) = 0.

The isomorphisms 2 — 5 are easy.

REFERENCES

1. T. A. Chapman, Topological invariance of Whitehead torsion, Amer. J. Math., 96
(1974), 488-497.
2. , Notes on Hilbert cube manifolds, preprint.
3. 1 Homotopic homeomorphisms of Hilbert cube manifolds, Proceedings of
the Park City Topology Conference, February, 1974.
4. f Concordances of Hilbert cube manifolds, preprint.
5. , Simple homotopy theory for ANR's, preprint.
6. M. Cohen, A course in simple homotopy theory, Springer-Verlag, New York, 1973.
7. A. Fathi and Y. M. Visetti, Deformation of open embeddings of Q-manifolds, pre-
print.
8. A. E. Hatcher, Higher simple homotopy theory I, preprint.
9. A. E. Hatcher and J. Wagoner, Pseudo-Isotopies of compact manifolds, Asterisque
6, 1973.
10. L. C. Siebenmann, Infinite simple homotopy types, Indag. Math., 32 (1970), 479-
495.
11. , ΊJinvariance topologique du type simple d'homotopie, Seminaire Bourbaki,
25e anee, 1972/73, no° 428, fevier, 1973.
12. J. Vick, On K*(BG) for G a finite abelian group, Doctoral Dissertation, University
of Virginia, 1968.
13. J. E. West, Mapping cylinders of Hilbert cube factors, General Topology Appl.,
1 (1971), 111-125.
14. R. Y. T. Wong, On homeomorphisms of certain infinite dimensional spaces, Trans.
Amer. Math. Soc, 128 (1967), 148-154.

Received April 30, 1975 and in revised form October 31, 1975. The author is an
A. P. Sloan Fellow and is supported in part by NSF Grant GP-28374.

UNIVERSITY OF KENTUCKY



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GlLBARG AND J. MlLGRAM

Stanford University
Stanford, California 94305

E. F. BECKENBACH

ASSOCIATE EDITORS

B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 63, No. 1 March, 1976

Ralph Artino, Gevrey classes and hypoelliptic boundary value problems . . . . . . . . 1
B. Aupetit, Caractérisation spectrale des algèbres de Banach commutatives . . . . 23
Leon Bernstein, Fundamental units and cycles in the period of real quadratic

number fields. I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Leon Bernstein, Fundamental units and cycles in the period of real quadratic

number fields. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Robert F. Brown, Fixed points of automorphisms of compact Lie groups . . . . . . . . 79
Thomas Ashland Chapman, Concordances of noncompact Hilbert cube

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
William C. Connett, V and Alan Schwartz, Weak type multipliers for Hankel

transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
John Wayne Davenport, Multipliers on a Banach algebra with a bounded

approximate identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Gustave Adam Efroymson, Substitution in Nash functions . . . . . . . . . . . . . . . . . . . . . 137
John Sollion Hsia, Representations by spinor genera . . . . . . . . . . . . . . . . . . . . . . . . . . 147
William George Kitto and Daniel Eliot Wulbert, Korovkin approximations in

L p-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Eric P. Kronstadt, Interpolating sequences for functions satisfying a Lipschitz

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Gary Douglas Jones and Samuel Murray Rankin, III, Oscillation properties of

certain self-adjoint differential equations of the fourth order . . . . . . . . . . . . . . 179
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