REPRESENTATIONS BY SPINOR GENERA

JOHN SOLLION HSIA
If \(f \) and \(g \) are two nonsingular quadratic forms with rational integral coefficients such that \(f \) represents \(g \) integrally over every \(p \)-adic fields and also over the reals, then it is a well-known classical result that the genus \(\text{Gen}(f) \) of \(f \) represents \(g \). This paper considers the question of how many spinor genera in the genus of \(f \) will represent \(g \), when \(f \) and \(g \) are integral forms defined over some fixed domain of algebraic integers and when \(\dim(f) - \dim(g) \geq 2 \).

Unless otherwise mentioned the following general assumptions will be understood throughout this paper: \(F \) is an algebraic number field with \(R \) as its ring of algebraic integers, \(V \) and \(W \) are finite dimensional regular quadratic spaces over \(F \) with \(\dim V - \dim W = d \geq 2 \), \(L \) and \(K \) are respectively \(R \)-lattices on \(V \) and \(W \), and \(S \) is the set of all discrete spots on \(F \). All unexplained notations and terminologies are from [6]. Suppose now that \(L_p \) represents \(K_p \) for every \(p \in S \), then it is a well-known result that there is a lattice \(L' \) in the genus of \(L \) that represents \(K \), provided \(V \) represents \(W \) (in fact, if \(W \) were a subspace of \(V \), this \(L' \) may be chosen so as to contain \(K \); see 102:5, [6]). We introduce the notations \(K \rightarrow \text{Gen}(L) \), \(\text{Spn}(L) \), \(\text{Spn}^+(L) \), \(\text{Cls}(L) \), \(\text{Cls}^+(L) \) to denote respectively that \(K \) is representable by a member in the genus, spinor genus, proper spinor genus, class, proper class of \(L \). Thus, in this notation, \(L \), represents \(K \), locally everywhere at \(p \in S \) and \(W \rightarrow V \) is equivalent to \(K \rightarrow \text{Gen}(L) \), which is, of course, the same as representation by \(\text{Gen}^+(L) \). We show here that if \(d \geq 3 \) then \(K \rightarrow \text{Gen}(L) \) implies \(K \rightarrow \text{Spn}^+(L) \) so that in the indefinite case for \(L \) every proper class in the genus represents \(K \). This fact must surely have been known to the specialists although I have not seen it in print and choose to record it here for completeness; its proof is quite standard and does not employ any of the subtler or deeper aspects of the theory. On the other hand, when \(d = 2 \), the theory is a good deal more intricate. We show that here too in most cases \(K \) is representable by every proper spinor genus in the genus of \(L \); the exceptional cases will be pointed out, and there one needs to know the precise results for the local computations of the spinor norms of local integral rotations on \(L \); the known facts about these are found in [3] for nondyadic \(p \), in [1] for unramified dyadic \(p \), and in [2] for arbitrary dyadic \(p \) but with \(L_p \) modular. This study was motivated by Kneser's paper [4], and the results as well as the method follow closely along his
lines with some refinements necessitated by handling here also the cases where L may not be totally indefinite. Indeed, it may be definite.

Suppose for all spots on F we are given that $K_\mathfrak{p} \rightarrow L_\mathfrak{p}$, then surely $F_\mathfrak{p} K_\mathfrak{p} \rightarrow F_\mathfrak{p} L_\mathfrak{p}$ for every \mathfrak{p}. Hence, Hasse-Minkowski implies $W \rightarrow V$. Thus, we may as well assume at the outset that W is a regular subspace of V, and K is a lattice in V. Write $V = W \perp U$, and δ the discriminant (in O'Meara's sense) of U. As in Example 102:5, [6] if we let $T = \{ \mathfrak{p} \in S: L_\mathfrak{p} \not\cong K_\mathfrak{p} \}$, then T is a finite set. By lattice theory, there is a lattice L' on V such that

$$L' = \begin{cases} L_\mathfrak{p} & \text{for } \mathfrak{p} \in T \\ s_\mathfrak{p} L_\mathfrak{p} & \text{for } \mathfrak{p} \in T. \end{cases}$$

Here $s_\mathfrak{p} \in O(V_\mathfrak{p})$, and the hypotheses permits us to choose $s_\mathfrak{p}$ so that $s_\mathfrak{p} L_\mathfrak{p} \cong K_\mathfrak{p}$. Clearly, $s_\mathfrak{p}$ can be assumed to be in $O^+(V_\mathfrak{p})$. Should $d \geq 3$, then $\theta(O^+(U_\mathfrak{p})) = F_\mathfrak{p}^\times$ by 91:6, [6]. Therefore, we may find a rotation $t_\mathfrak{p}$ on $U_\mathfrak{p}$ whose spinor norm $\theta(t_\mathfrak{p}) = \theta(s_\mathfrak{p})$. Extend $t_\mathfrak{p}$ trivially to a rotation on $V_\mathfrak{p}$ and composing it with $s_\mathfrak{p}$, one sees that $t_\mathfrak{p}s_\mathfrak{p} L_\mathfrak{p}$ still contains $K_\mathfrak{p}$. Thus, we may further assume that our original $s_\mathfrak{p}$ belongs to $O^+(V_\mathfrak{p})$. This shows that L' belongs to the proper spinor genus of L. Thus, we have: if $L_\mathfrak{p}$ represents $K_\mathfrak{p}$ at every (finite and infinite) spot \mathfrak{p} and if $d = \text{rk}(L) - \text{rk}(K) \geq 3$, then K is represented by every proper spinor genus in the genus of L; in particular, if L is indefinite with respect to S, then K is representable by every proper class in $\text{Gen}(L)$.

Remark. Specializing this statement to the case when L is indefinite, $\text{rk}(K) = 1$, $F = \mathbb{Q}$, a theorem of Watson's [9] is recaptured. Suppose we permit W to be a degenerate space, say the radical $\text{Rad}(W)$ has dimension r. Then, the same result prevails provided we have: $\text{rk}(L) - \text{rk}(K) = d \geq 3 + r$. To see this, note that one can embed W in a nonsingular space $\tilde{W} = H \perp W_{an}$, where W_{an} is the anisotropic kernel of W, and H a hyperbolic space of dimension $2r$.

From here onward we assume that $d = 2$. Clearly, the group $J_\mathfrak{p}$ of split rotations (adèles) on U may be viewed as a subgroup of $J_{\mathfrak{p}'}$; similarly $P_\mathfrak{p}, J', J_\mathfrak{p}$ are defined in Chapter X, [6], as are the following subgroups of the idèle group $J_{\mathfrak{p}}$ of F: $P_{\mathfrak{p}}, P_{\mathfrak{p}}, J_{\mathfrak{p}}$. We ask the following two basic questions:

(A): If L represents K properly, is it true that for every $\phi \in J_{\mathfrak{p}}$ we have $K \rightarrow \text{Spn}^+(\phi(L))$?

(B): What is the group index $[J_{\mathfrak{p}}: J_{\mathfrak{p}} P_{\mathfrak{p}} J_{\mathfrak{p}}']$?
We shall see below that Question (A) has an affirmative answer (Theorem 1); and Theorem 2 will show that this group index mentioned above is less or equal to two. This means that at least half (if not all) of the proper spinor genera in the genus of L will represent K, provided there is just one lattice in the genus that represents K.

To treat Question (A), suppose $s: K \to L$ is a proper representation of K by L, choose any full lattice N on U (recall that $V = W \perp U$), and set $K' = K \perp N$. If $\phi \in J_U$ is given, clearly, the lattice $\phi(K')$ is just the lattice $K \perp \phi(N)$. If we select our N above to be the lattice $s^{-1}(L) \cap U$, then $s(K') = s(K \perp N) = s(K) \perp s(s^{-1}(L) \cap U) \subseteq L + L = L$. Therefore, s also induces a proper representation of K' by L. Now, $rk(K') = rk(L)$. We have $s^{-1}(L) \supseteq K'$ so that $\phi s^{-1}(L) \supseteq \phi(K')$. Since J_U' contains the commutator subgroup of J_U, J_U'/P_UJ_U' is abelian. Hence, $\phi s^{-1} \in \phi P_U \subseteq \phi P_UJ_U' = P_UJ_U' \phi$. This means there is a lattice in the proper spinor genus of $\phi(L)$ that represents $\phi(K')$. But, ϕ is trivial on K and therefore, we obtain:

Theorem 1. If $K \to \text{Cl}_s^+(L)$, and $d = rk(L) - rk(K) = 2$, then $K \to \text{Spn}^+(\phi(L))$ for every $\phi \in J_U$, where $FL = FK \perp U$. In particular, if L is indefinite with respect to the defining set S of spots on F, then $\phi(L)$ represents K properly for all such ϕ.

Put $E = F(\sqrt{-\delta})$, where $\delta = \text{disc}(U)$, and $D = \theta(O^+(V))$. The map from J_U into J_F given by $s = (s_\delta) \mapsto j = (j_\delta)$ where $j_\delta \in \theta(s_\delta)$ induces a monomorphism $\phi_L: J_U/P_UJ_U'J_L \to J_F/P_FJ_F'$ (which is an isomorphism when $rk(L) \geq 3$). As a preliminary step toward determining the group index in Question (B), we have:

Lemma. ϕ_L described above induces an isomorphism:

\[
\phi_{L,K}: J_U/P_UJ_U'J_L \to J_F/P_FN_E,F(J_E)J_F' .
\]

Proof. If $-\delta$ is a square in F, then $E = F$, and the right hand side in (*) is trivial. But then, U is a hyperbolic plane and $\theta(O^+(U_\delta)) = F_\delta^\times$. Hence, every split rotation on V may be composed with one U so as to have the resulting element lying inside J_U', and this implies the left hand side of (*) also is trivial. Therefore, we may suppose that $-\delta$ is a nonsquare. If $s \in J_U$, then $\theta(s_\delta) \in \theta(O^+(U_\delta)) = \theta(O^+(1, \delta)) = Q(1, \delta)F_\delta^\times = N_E,F(E_\delta)$ for $\mathfrak{p}\mathfrak{p}$. Thus, the map which sends J_U into J_F mentioned above also sends J_U into $N_E,F(J_E)$ so that the map $\phi_{L,K}: J_U/P_UJ_U'J_L \to J_F/P_FN_E,F(J_E)J_F'$ is well induced by ϕ_L. Since $rk(K) > 0$, $rk(L) \geq 3$ necessarily so that our $\phi_{L,K}$ must be surjective as well by the above discussion. To see the kernel is precisely
consider $s \in J_v$ such that $\phi_{L,K}(\tilde{s}) = \tilde{1}$. This means that $\theta(s) = a_ji_vF_v^{\pm}$, where $a \in D$, $j = (i_v) \in \mathcal{N}_{E/F}(J_E)$, and $i = (i_v) \in J_v$. Write $a = \theta(f), f \in O^+(V), i_v = \theta(\Sigma_v), \Sigma_v \in O^+(L_v)$. For each $\mathfrak{p}|p$, the local norm $N_{\mathfrak{p}u(E_{\mathfrak{p}}^u)}$ is either all of $F_{\mathfrak{p}}^u$ or it is a subgroup $Q(1, \delta)$ of index two in $F_{\mathfrak{p}}^u$. Therefore, we can find a local rotation h_v on U_v such that $\theta(h_v) = j_vF_v^{\pm}$.

Thus, $0(s) = \theta(f)\theta(h_v)\theta(\Sigma_v)$ which implies that s_v belongs to $h_vf\Sigma_v\cdot O'(V_{\mathfrak{p}})$, or equivalently, s belongs to $J_vP_rJ_vJ_L$, proving the lemma.

This lemma translates the index computation in Question (B) to an equivalent one in terms of idèles, which is usually more manageable, and we now take up this calculation.

Lemma. $[J_F: P_D\mathcal{N}_{E/F}(J_E)] = 2\cdot[F^\times: D]$.

Proof. Here D is characterized as the set of nonzero field elements from F that are positive at all real spots p for which the quadratic space V_p is definite. See 101: 8, [6]. Let R denote the set of such real spots on F. Note that if Card $(R) = t$, then F^\times/D is a vector space of dimension t over F_2. It is well-known that $[J_F: P_D\mathcal{N}_{E/F}(J_E)] = 2$; see 65: 21, [6]. Therefore, $[J_F: P_D\mathcal{N}_{E/F}(J_E)] = 2\cdot[P_F\mathcal{N}_{E/F}(J_E) : P_D\mathcal{N}_{E/F}(J_E)] = 2\cdot[P_F : P_D] = 2\cdot[F^\times : D]$. Only the second last equality requires some explanations. If $x \in F^\times$, and $d \in D$, then x/d belongs to $\mathcal{N}_{E/F}(J_E)$ implies, in particular, that at each real spot p from R, x/d is a local norm at p. But V_p is anisotropic so that $-\delta$ is a nonsquare at p. Hence, the local norms at p consist of all the positive reals. This means x/d is positive at p, and so x is positive at p. Therefore, $x \in D$.

Lemma. $J_F \subseteq P_D\mathcal{N}_{E/F}(J_E)$ if and only if $J_F \subseteq \mathcal{N}_{E/F}(J_E)$.

Proof. This is the type of result that is typically bewildering and yet at the same time powerfully evident of the beauty and depth of the arithmetic of global fields. For the proof, clearly it suffices to prove the “only if” part. Let T be the set of discrete spots p on F for which $\theta(\mathcal{O}^+(L_v))$ is not contained in $\mathcal{N}_{E/F}(J_E)$. So, T is a finite set. If T is not empty, there must be an $x_v \in \theta(\mathcal{O}^+(L_v))$ not lying in $N_{\mathcal{E}^u/F_v}(E_{\mathfrak{p}}^u)$ for $\mathfrak{p}|p$. This means x_v is not represented by the binary quadratic space $\langle 1, \delta \rangle$ over F_v. Consider the idèle $i = (i_v)$ where $i_v = x_v$ at $q = p$, and $i_q = 1$ elsewhere. Surely, j belongs to J_F. Hence, by hypotheses, there exists $d \in D$ such that $dj \in N_{E/F}(J_E)$. This means d is a local norm at all the spots $q \neq p$. Hence, by Hilbert Reciprocity Law, d is also a local norm at p. On the other hand, dx_v is a local
norm at \(p \). So, we arrive at a contradictory conclusion that \(x_9 \) is a local norm after all. Therefore, \(T \) must be empty and \(J_F^p \subseteq N_{E/F}(J_E) \).

Theorem 2. \([J_F: P_DN_{E/F}(J_E)J_F^p] \leq 2\).

Proof. If \(D = F^\times \) (i.e. when \(L \) is totally indefinite with respect to \(S \)), then already \([J_F: P_DN_{E/F}(J_E)] = 2\) in which case the index is two if and only if \(J_F^p \) is contained in \(N_{E/F}(J_E) \) by lemma. So, we may assume that \(D \neq F^\times \).

Let \(R = \{p_1, \ldots, p_t\} \) be the set of all real spots on \(F \) for which \(V_{p_i} \) is anisotropic, and let \(e_i \) (1 \(\leq \) \(i \) \(\leq \) \(t \)) be the idèle which has \(-1\) as its component at \(p_i \) and \(1 \) elsewhere. Clearly, all these \(e_i \)'s belong to \(J_F^p \) but not to \(N_{E/F}(J_E) \), and therefore, also not to \(P_DN_{E/F}(J_E) \) by Lemma. Define the chain of subgroups of \(P_DN_{E/F}(J_E)J_F^p \) by: \(G_0 = P_DN_{E/F}(J_E), G_j = I_F(p_j)G_{j-1} \) for \(1 \leq j \leq t \), where \(I_F(p_j) \) denotes the group of idèles which have all the components different from \(p_j \) the value \(1 \). Thus, we have an increasing tower:

\[
P_DN_{E/F}(J_E) = G_0 \subseteq \cdots \subseteq G_t .
\]

We assert that all the inclusions are strict. If not, we shall have at some \(j \), \(I_F(p_j) \subseteq G_{j-1} = I_F(p_1) \cdots I_F(p_{j-1})P_DN_{E/F}(J_E) \). The idèle \(e_j \) surely belongs to \(I_F(p_j) \) and this means for some \(d \in D \) and \(\eta \in I_F(p_j) \cdots I_F(p_{j-1})N_{E/F}(J_E) \) one has \(e_j = (d)\eta \). But, at all the spots outside of \(R \), \(\eta = d^{-1} \) which implies that \(d^{-1} \), hence also \(d \), is a local norm. Inside of \(R \) the element \(d \) is positive at each \(p \) and so is also a local norm. Thus, \(d \) is itself a global norm. Therefore, we conclude that \(e_j \) belongs to \(I_F(p_1) \cdots I_F(p_{j-1})N_{E/F}(J_E) \). On the other hand, at \(p_j \), \(e_j \) is negative whereas every element from \(I_F(p_1) \cdots I_F(p_{j-1})N_{E/F}(J_E) \) has positive component at \(p_j \). This contradiction proves our assertion.

Since for each \(j (1 \leq j \leq t) \) we have \([G_j: G_{j-1}] = 2\), we obtain:

\[
2^j = [G_j: G_0] \leq [P_DN_{E/F}(J_E)J_F^p: P_DN_{E/F}(J_E)] \\
= [J_F: P_DN_{E/F}(J_E)] \div [J_F: P_DN_{E/F}(J_E)J_F^p] \\
\leq [J_F: P_DN_{E/F}(J_E)] = 2^{t+1} .
\]

This proves the theorem.

Corollary. If \(D \neq F^\times \) (i.e., \(V \) is not totally indefinite with respect to \(S \), then it is not possible for \(J_F^p \subseteq P_DN_{E/F}(J_E) \). In particular, \(J_F = P_DN_{E/F}(J_E)J_F^p \), and \([J_F: P_DN_{E/F}(J_E)J_F^p] = 2\) if and only if \(P_F \subseteq P_DN_{E/F}(J_E)J_F^p \).

Suppose \(D = F^\times \). Then, \([J_F: P_DN_{E/F}(J_E)J_F^p] = 2\) if and only if
$J^p_e \cong N_{E/F}(J_E)$ by Lemma. In particular, if p is any real spot on F, then p splits in E and $\delta < 0$. Hence, δ is a totally negative element. Moreover, at each discrete spot we must have $\theta(O^+(L_\mu)) \cong N_{q,p}(E'_q)$ for $\mathfrak{p} | p$; equivalently, $\theta(O^+(L_\mu)) \cong Q(1, \delta)$ over F'_q. Note that if p does not divide the volume $\text{Vol}(L)$ of L, then L_μ is unimodular. Hence, as $rk(L) \geq 3$ here, $\theta(O^+(L_\mu)) = U_q F'_q^\ast$ unless p is dyadic and the norm generator has odd order parity with respect to the weight generator for L_μ. See [2]. In the exceptional cases, the spinor norm group is all of F'_q^\ast. By the local theory of quadratic forms, we see that $\text{ord}_q(\delta)$ must be even; modulo squares in F'_q^\ast, $-\delta$ is a unit of quadratic defect $4R_\mu$. Hence E_q/F_q must be quadratic unramified.

If p is an exceptional dyadic prime, then $-\delta \in F'_q^\ast$. Therefore, the only ramified primes for E/F must also divide $\text{Vol}(L)$. In particular, if L is unimodular, E/F must itself be quadratic unramified. Of course, there are number fields F for which every finite (let alone only quadratic) extension is ramified.

Finally, we point out here that the local lattice representation theory is completely determined when: (i) p non-dyadic, (ii) p unramified dyadic, and (iii) p arbitrary dyadic but L_μ modular. For (i) and (ii), see [7]; for (iii), see [8]. Also, see [5] for p arbitrary dyadic but $rk(L_\mu) = 2$.

REFERENCES

Received October 14, 1975.
Pacific Journal of Mathematics
Vol. 63, No. 1
March, 1976

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralph Artino, Gevrey classes and hypoelliptic boundary value problems</td>
<td>1</td>
</tr>
<tr>
<td>B. Aupetit, Caractérisation spectrale des algèbres de Banach commutatives</td>
<td>23</td>
</tr>
<tr>
<td>Leon Bernstein, Fundamental units and cycles in the period of real quadratic number fields. I</td>
<td>37</td>
</tr>
<tr>
<td>Leon Bernstein, Fundamental units and cycles in the period of real quadratic number fields. II</td>
<td>63</td>
</tr>
<tr>
<td>Robert F. Brown, Fixed points of automorphisms of compact Lie groups</td>
<td>79</td>
</tr>
<tr>
<td>Thomas Ashland Chapman, Concordances of noncompact Hilbert cube manifolds</td>
<td>89</td>
</tr>
<tr>
<td>William C. Connett, V and Alan Schwartz, Weak type multipliers for Hankel transforms</td>
<td>125</td>
</tr>
<tr>
<td>John Wayne Davenport, Multipliers on a Banach algebra with a bounded approximate identity</td>
<td>131</td>
</tr>
<tr>
<td>Gustave Adam Efroymson, Substitution in Nash functions</td>
<td>137</td>
</tr>
<tr>
<td>John Sollion Hsia, Representations by spinor genera</td>
<td>147</td>
</tr>
<tr>
<td>Eric P. Kronstadt, Interpolating sequences for functions satisfying a Lipschitz condition</td>
<td>169</td>
</tr>
<tr>
<td>Gary Douglas Jones and Samuel Murray Rankin, III, Oscillation properties of certain self-adjoint differential equations of the fourth order</td>
<td>179</td>
</tr>
<tr>
<td>Takaŝi Kusano and Hiroshi Onose, Nonoscillation theorems for differential equations with deviating argument</td>
<td>185</td>
</tr>
<tr>
<td>David C. Lantz, Preservation of local properties and chain conditions in commutative group rings</td>
<td>193</td>
</tr>
<tr>
<td>Charles W. Neville, Banach spaces with a restricted Hahn-Banach extension property</td>
<td>201</td>
</tr>
<tr>
<td>Norman Oler, Spaces of discrete subsets of a locally compact group</td>
<td>213</td>
</tr>
<tr>
<td>Robert Olin, Functional relationships between a subnormal operator and its minimal normal extension</td>
<td>221</td>
</tr>
<tr>
<td>Thomas Thornton Read, Bounds and quantitative comparison theorems for nonoscillatory second order differential equations</td>
<td>231</td>
</tr>
<tr>
<td>Robert Horace Redfield, Archimedean and basic elements in completely distributive lattice-ordered groups</td>
<td>247</td>
</tr>
<tr>
<td>Jeffery William Sanders, Weighted Sidon sets</td>
<td>255</td>
</tr>
<tr>
<td>Aaron R. Todd, Continuous linear images of pseudo-complete linear topological spaces</td>
<td>281</td>
</tr>
<tr>
<td>J. Jerry Uhl, Jr., Norm attaining operators on $L^1[0, 1]$ and the Radon-Nikodým property</td>
<td>293</td>
</tr>
<tr>
<td>William Jennings Wickless, Abelian groups in which every endomorphism is a left multiplication</td>
<td>301</td>
</tr>
</tbody>
</table>