KOROVKIN APPROXIMATIONS IN L_p-SPACES

WILLIAM GEORGE KITTO AND DANIEL ELIOT WULBERT
KOROVKIN APPROXIMATIONS IN L_p-SPACES

W. Kitto AND D. E. Wulbert

The main result is a characterization of finite Korovkin sets for positive operators in l_p. It follows that a finite set containing a positive function is a Korovkin set in l_p if and only if it is a Korovkin set in c_0. The methods also show:

PROPOSITION. Let X be a compact subset of \mathbb{R}^n. Let K be a subspace of $C(X)$ containing the constants. If K is a Korovkin set in $C(X)$, then K is Korovkin set in $L_p(X)$.

Several related results are also given. For example a question of G. G. Lorentz about the restrictions of Korovkin set in $C(X)$ to a subset $Y \subseteq X$ is answered.

Let \mathcal{L} be a class of operators on a Banach space E. A subset $K \subseteq E$ is an \mathcal{L}-Korovkin set if whenever

(i) $\{L_i\}$ is a bounded sequence in \mathcal{L}, and

(ii) $L_i k \to k$ for each $k \in K$;

we have

(iii) $L_i f \to f$ for each f in E.

Let \mathcal{L}_1 be the class of norm one operators on E. If E is also a lattice, let \mathcal{L}^+ denote the positive operators on E; and, $\mathcal{L}_1^+ = \mathcal{L}_1 \cap \mathcal{L}^+$.

After Korovkin showed that $\{1, x, x^2\}$ is an \mathcal{L}^+-Korovkin set in $C[0, 1]$, interest in this field has been in characterizing the Korovkin subsets of the classic Banach spaces.

Papers by Berens and Lorentz [3], Franchetti [8, 9], Krasnosilskii and Lifschic [13], Lorentz [14], Saksin [18], Scheffold [19], and Wulbert [22] identified the various types of Korovkin sets in $C(X)$ spaces. Berens and Lorentz [3] have essentially characterized the \mathcal{L}_1^+-Korovkin subsets of L_1 spaces (see §3 of this article, also see [Lorentz, 14] and [Wulbert, 22]), and Dzjadyk [7] has shown that $\{1, \sin x, \cos x\}$ is an \mathcal{L}^+-Korovkin set in $L_p[0, 2\pi]$. (See also [James, 11], and [Zaricka, 24].)

The results here are related to identifying \mathcal{L}^+-Korovkin subsets of L_p-spaces. A sufficient condition is presented that encompasses the known (and the suspected) \mathcal{L}^+-Korovkin sets. For example each \mathcal{L}^+-Korovkin set in $C[a, b]$ that contains constants is also an \mathcal{L}^+-Korovkin set in $L_p[a, b]$. The main result given is a characterization of finite \mathcal{L}^+-Korovkin sets in l_p. A consequence of this characterization is that the l_p spaces have the same finite \mathcal{L}^+-Korovkin sets. That is, if K is a finite subset of both l, and l_p, and K contains a
positive sequence, then K is $\mathcal{L}^+\text{-Korovkin}$ in l_p if and only if K is $\mathcal{L}^\ast\text{-Korovkin}$ in l_p.

We use the last two sections of the paper to give short direct generalizations of some related Korovkin theorems. For example, a recent result by Bernau and Lacey [5] enables the removal of the last conditions from the characterization of $\mathcal{L}^\ast\text{-Korovkin}$ subsets of L_p-spaces with an easy argument.

G. G. Lorentz [14] proved that if X is a compact metric space, and K is $\mathcal{L}^+\text{-Korovkin}$ set in $C(X)$ containing a constant, then for each closed subset $Y \subseteq X$, $K|_Y$ is an $\mathcal{L}^+\text{-Korovkin}$ set in $C(Y)$. Lorentz asked if the property was true for any compact Hausdorff space X. A counterexample is given in section two.

NOTATION. If X is a compact Hausdorff space $C(X)$ is the space of continuous real functions on X. For $x \in X$, $\xi(x)$ is the linear functional on $C(X)$ given by $\xi(x)(f) = f(x)$. If K is a linear subspace of $C(X)$, we say $x \in \partial K$, the Choquet boundary of K, if the only positive linear functional on $C(X)$ that agrees with $\xi(x)$ on K is $\xi(x)$ itself. If F is a subset of a set Y, φ_F is the characteristic function of F. We use $f|_F$ to denote the restriction of a function f to the domain F, and for a set of functions K, $K|_F = \{k|_F : k \in K\}$. The dual of a normed space E is written E^\ast.

As usual, c denotes the space of convergent sequences with the sup norm,

$$c_0 = \{x(i) \in c : \lim x(i) = 0\}, \quad \text{and} \quad l_p = \{x(i) \in c_0 : \|x\|_p = \sup \sum |x(i)|^p < \infty\}.$$

The norm on l_p is assumed to be $\|\cdot\|_p$ as given above. We will frequently view these sequence spaces as spaces of continuous functions on the one point compactification of the integers.

Let \mathbf{L} be a class of linear operators on a normed space E. Let K be a subset of E. A member $f \in E$ is in the $\mathbf{L}\text{-shadow of } K$ if $L_n f \to f$ for each bound sequence $\{L_n\} \subseteq \mathbf{L}$ such that $L_n k \to k$ for each $k \in K$. Hence K is an $\mathbf{L}\text{-Korovkin}$ set if the $\mathbf{L}\text{-shadow of } K$ is E. Since the $\mathbf{L}\text{-shadow of } K$ is the same as the $\mathbf{L}\text{-shadow of the span of } K$ we will often assume that K is already a linear subspace of E.

1. $\mathcal{L}^+\text{-Korovkin}$ sets in L_p-spaces. The main result of this section is the characterization of finite $\mathcal{L}^+\text{-Korovkin}$ subsets of l_p-spaces. The condition is sufficient in general, and provides an accessible class of $\mathcal{L}^+\text{-Korovkin}$ sets in L_p-spaces.

We also show that an $\mathcal{L}^+\text{-Korovkin}$ set of an \mathcal{L}_p-space contains
three functions. The interest in this fact comes from the surprising observation that that \(\{1, x\}\) is \(L^1\)-Korovkin in \(L_2[0, 1]\) (see §3).

Let \(K\) be a linear subspace of a normed linear lattice \(E\). Let \(f \in E\). Two sets of vectors \(\{u_i\}_{i=1}^n\) \(\{l_i\}_{i=1}^n\) is an \(\varepsilon\)-trap for \(f\) if there is a vector \(e\) such that:

1. \(-e + \bigvee_{i=1}^n l_i \leq f \leq e + \bigwedge_{i=1}^n u_i,
2. \bigwedge_{i=1}^n u_i - \bigvee_{i=1}^n l_i + 2\varepsilon < \varepsilon,\) and
3. \(|e| < \varepsilon\).

DEFINITION. \(K\) traps \(f\) if for each \(\varepsilon > 0\), \(K\) contains an \(\varepsilon\)-trap for \(f\).

Proposition 1.1. If \(K\) traps \(f\), then \(f\) is in the \(L^1\)-shadow of \(K\).

Proof. Let \(L_i\) be a sequence of positive operators such that \(L_i k \to k\) for all \(k \in K\) and \(|L_i| < B\). Then for \(k\) sufficiently large,

\[
\left| \bigwedge_{i=1}^n L_k(u_i) - \bigwedge_{i=1}^n u_i \right| < \varepsilon, \text{ and } \left| \bigvee_{i=1}^n L_k(l_i) - \bigvee_{i=1}^n l_i \right| < \varepsilon.
\]

We also have,

\[
-L_k(e) + \bigvee_{i=1}^n L_k(l_i) \leq -L_k(e) + L_k\left(\bigvee_{i=1}^n l_i\right)
\]

\[
\leq L_k(f)
\]

\[
\leq L_k(e) + L_k\left(\bigwedge_{i=1}^n u_i\right)
\]

\[
\leq L_k(e) + \bigwedge_{i=1}^n L_k(u_i).
\]

Since,

\[
\left| \bigwedge_{i=1}^n L_k(u_i) - \bigwedge_{i=1}^n L_k(l_i) + 2L_k(e) \right| \leq \varepsilon B,
\]

we have,

\[
\left| L_k f - f \right| \leq \left| L_k f - L_k(e) - \bigwedge_{i=1}^n L_k(u_i) \right|
\]

\[
+ \left| L_k e \right| + \left| \bigwedge_{i=1}^n L_k(u_i) - \bigwedge_{i=1}^n u_i \right|
\]

\[
+ \left| \bigwedge_{i=1}^n u_i - f \right|
\]

\[
\leq 2\varepsilon(B + 1).
\]

We need the following known result. [Alfsen, 1, Cor. 1.5.10].

Let \(X\) be a compact Hausdorff space. Let \(K\) be a linear subspace of \(C(X)\) that contains the constants and separates the points of \(X\).
Lemma 1.2. If \(f \in C(X) \) and \(x \in \text{cb}K \) then
\[
f(x) = \inf \{ k(x) : k \in K, k \geq f \}.
\]

Corollary 1.3. Let \(X \) and \(K \) be as above. Let \(\mu \) be a positive finite, regular Borel measure on \(X \). If the support of \(\mu \) is contained in \(\text{cb} \, K \), then \(K \) is an \(\mathcal{L}^+ \)-Korovkin set in \(L_p(X, \mu) \), \(1 \leq p < \infty \).

Proof. From the lemma and Dini's theorem \(K \) traps every continuous function. Since the \(\mathcal{L}^+ \)-shadow of \(K \) is closed, and the continuous functions are dense in \(L_p(X, \mu) \), the corollary is proved.

Corollary 1.4. Let \(X, K, \) and \(\mu \) be as above. If \(\text{cb} \, K = X \) then \(K \) is an \(\mathcal{L}^+ \)-Korovkin set in \(L_p(X, \mu) \). In particular if \(X \) is metrizable and \(K \) is \(\mathcal{L}^+ \)-Korovkin in \(C(X) \), then \(K \) is \(\mathcal{L}^+ \)-Korovkin in \(L_p(X, \mu) \).

Proof. If \(X \) is metrizable the Choquet boundary of an \(\mathcal{L}^+ \)-Korovkin set is \(X \) [14]. (Also see §2.)

Example 1.5. (a) (Dzjadyk) \(\{1, \sin x, \cos x\} \) is an \(\mathcal{L}^+ \)-Korovkin set in \(L_p[0, 2\pi] \).
(b) \(\{1, x, x^2\} \) is an \(\mathcal{L}^+ \)-Korovkin set in \(L_p[0, 1] \).
(c) \(\{1, x, y, x^2, y^2\} \) is an \(\mathcal{L}^+ \)-Korovkin set in \(L_p([0, 1] \times [0, 1]) \).

In the above corollaries the \(\varepsilon \)-traps constructed are exact in the sense that \(\varepsilon = 0 \). Unfortunately such \(\varepsilon \)-traps cannot generally be constructed.

Proposition 1.6. If \(K \) is a finite dimensional subspace of an infinite dimensional \(L_p \) space, then there is an \(f \in L_p \) which cannot be bounded above by any \(k \in K \).

Proof. Let \(k_1, \ldots, k_n \) be a basis for \(K \), and let \(w = \Sigma^{|k_i|} \).
If \(k \geq f \) then there is a multiple of \(w \) which also bounds \(f \).
If \(w \) has a finite range a.e., then the infinite dimensionality of \(L_p \) can be used to construct an \(f \in L_p \) which cannot be bounded by \(w \). Otherwise looking at level sets we can find a countable family of disjoint measurable sets \(A(n) \) such that
\[
0 < \int_{A(n)} w^p \leq \left(\frac{1}{n^c} \right)^p.
\]
Let
\[
f(x) = \begin{cases} nw(x) & \text{on } A(n) \\ 0 & \text{otherwise} \end{cases}
\]
then \(f \in L_p \) and cannot be bounded by \(w \).

Definition. For the remainder of this section let \(V \) be either \(c_0 \) or \(l_p \) for some \(1 \leq p < \infty \).

With a series of lemmas we will prove a characterization theorem for finite dimensional \(\mathcal{L}^+ \)-Korovkin sets in \(V \).

Definition. \(K \subseteq V \) contains **essentially positive members** if for every \(\varepsilon > 0 \), and every integer \(x \) there is a \(k \in K \) for which

\[
(1) \quad k(x) \geq 1, \quad \text{and} \\
(2) \quad \|k \wedge 0\| < \varepsilon .
\]

(for example—if \(K \) contains a strictly positive function, \(K \) contains essentially positive members.)

Theorem 1.7. Let \(K \) be a finite dimensional subspace of \(V \) then:

(1) \(K \) is an \(\mathcal{L}^+ \)-Korovkin set, and

(2) \(K \) contains essentially positive members

if and only if

(3) \(K \) traps every member of \(V \).

Proposition 1.1 proved that (3) implies (1), and it is trivial that (3) implies (2).

Let \(K \) be a linear subspace of \(V \).

Let

\[
T = \{ f \in V: K \text{ traps } f \} .
\]

Lemma 1.8. \(T \) is a closed linear space.

Proof. Clearly \(K \) traps \(f \), implies \(K \) traps \(\alpha f \) for all \(\alpha \in \mathbb{R} \).

Suppose \(k \) traps \(f \) and \(g \).

Since it is always true that

\[
x \wedge y + z = (x + z) \wedge (y + z),
\]

it follows that

\[
\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{s} (u_i + v_j) = \bigwedge_{i=1}^{n} u_i + \bigwedge_{j=1}^{s} v_j .
\]

Therefore if \(\{u_i\}_{i=1}^{n} \), \(\{l_i\}_{i=1}^{m} \) and \(\{v_j\}_{j=1}^{s} \), \(\{h_j\}_{j=1}^{t} \) are \(\varepsilon \)-traps for \(f \) and \(g \), then

\[
\{u_i + v_j: i = 1, \ldots, n, j = 1, \ldots, s\} \\
\{l_i + h_j: i = 1, \ldots, m, \ldots, t\}
\]

is a \(2\varepsilon \)-trap for \(f + g \).
It is also easy to see that T is closed.

Lemma 1.9. Let K be an L^+-Korovkin subspace of V. If $p \in V^*$ is nonnegative and $p(k) = (i)$ for some integer i and all k in K then $p = \xi(i)$.

Proof. Suppose p is as above. Let

$$(Pf)(j) = \begin{cases} f(j) & j \neq i \\ p(f) & j = i \end{cases}.$$

Then P carries k onto k for all $k \in K$. Hence P is the identity and $p = \xi(i)$.

In particular K separates the integers.

Lemma 1.10. Let K be a subspace of V for which $cbK = \{1, 2, 3, \cdots\}$. For each integer i there is a $k \in K$ for which $k(i) < k(j)$ for all $j \neq i$, and $k(i) < 0$.

Proof. Let K' be the span of K and 1 in (c). From Lemma 1.2 there is an $\alpha \in \mathbb{R}$ and a k in K such that

1. $k(j) + \alpha \geq 0$ for $j \neq i$
2. $k(i) + \alpha < -1$.

Since $\lim_{j \to \infty} k(j) = 0$, $\alpha \geq 0$. Hence this k has the desired properties.

Lemma 1.11. Let K be a finite dimensional L^+-Korovkin set in V. Let $w(i)$ be a strictly positive sequence such that $wk \in (c)_0$ for all $k \in K$. Then each integer i is in $cb(wK)$.

Proof. Let p be a nonnegative sequence in l_1, such that $p(wk) = w(i)k(i)$ for each $k \in K$. Let $g \in V$. Using Caratheodory's theorem, the Hahn-Banach theorem, and the characterization of the extreme points of the unit ball of $(c)^*$, there is a finite set of integers $\{x_j\}_{j=1}^n$ and nonnegative numbers $\{\lambda_j\}_{j=0}^n$ such that,

$$p(f) = \lambda_0 f(\infty) + \sum_{j=1}^n \lambda_j f(x_j) \text{ for all } f \in wK \oplus g \oplus 1$$

where ∞ denotes the point at infinity.

Let

$$q(t) = \begin{cases} \frac{\lambda_j w(x_j)}{w(x_j)} & \text{for } t = x_j, j = 1, \cdots, n \\ 0 & \text{otherwise} \end{cases}$$
Now Lemma 1.9 applies to \(q \), and \(p(g) = q(g) = g(i) \). Since \(g \) was arbitrary the lemma is proved.

Lemma 1.12. Let \(K \) be a finite dimensional subspace of \(V \). There is a sequence \(p \) such that

\[
\begin{align*}
(1) & \quad p > 0, \quad (2) \quad pK \subseteq c_0, \quad \text{and} \quad (3) \quad \frac{1}{p} \in V.
\end{align*}
\]

Proof. Let \(k_1, \ldots, k_n \) be a basis for \(K \). Let

\[
\begin{align*}
w(x) &= \sum_{i=1}^{n} |k_i(x)|.
\end{align*}
\]

It suffices to consider the case in which \(w \) has no zeros. It follows that \(k(x)/w(x) \) is bounded for each \(k \in K \). Thus if there is a \(q \in c_0 \) such that \(w/q \in V \), then

\[
p = q \left/ \sum_{i=1}^{n} |k_i| \right.
\]

is the desired function.

To find such a \(q \) when \(V \) is an \(l_p \) space, let \(N(\varepsilon) \) be the smallest integer such that

\[
\sum_{j > N(\varepsilon)} w(j)^p \leq \varepsilon,
\]

and let

\[
q(j) = \left(\frac{1}{n} \right)^{1/p} \quad \text{for} \quad \frac{1}{n^p} \leq j < \frac{1}{(n+1)^p}.
\]

If \(V = c_0 \), let \(N(\varepsilon) \) be the smallest integer such that

\[
\sup_{j > N(\varepsilon)} \{|w(j)|\} < \varepsilon,
\]

then let

\[
q(j) = \frac{1}{n} \quad \text{for} \quad \frac{1}{n^p} \leq j < \frac{1}{(n+1)^p}.
\]

Lemma 1.13. Let \(K \) be a finite dimensional \(\mathcal{L}^+ \)-Korovkin subspace of \(V \).

(a) For each integer \(i \) and each \(\varepsilon > 0 \) there is a \(k \in K \) such that

\[
\begin{align*}
(1) & \quad k(i) = -1, \quad \text{and} \\
(2) & \quad \|k \wedge 0\| < 1 + \varepsilon.
\end{align*}
\]

(b) If in addition each member of \(K \) is also in \(l_1 \), then the norm in (2) can be taken to be the \(l_1 \) norm.

Proof. For Lemma 1.12 there is a positive sequence \(p \) such that...
We may also assume that \(\| 1/p \| = 1 \) (\(\| 1/p \| _e = 1 \) resp.). Let

\[
w(j) = \begin{cases}
 p(j)/\varepsilon & j \neq i \\
 1 & j = i
\end{cases}
\]

By Lemma 1.10 and Lemma 1.11 there is a \(k \in K \) such that

\[-1 = (wk)(i) < (wk)(j) \quad (j \neq i).\]

Thus

\[k(i) = -1, \quad \text{and} \quad k(j) \geq 1/w(j).\]

Lemma 1.14. Let \(K \) be a subspace of \(V \) that contains essentially positive function and which satisfies the conclusion of Lemma 13(a), then for each \(i \), \(K \) traps \(\psi \{i\} \).

Proof. Let \(0 < \varepsilon < 1/2 \). The lower sequence \(\{l_i\} \) for the definition of an \(\varepsilon \)-trap for \(\psi \{i\} \) is guaranteed by hypothesis.

Since \(K \) contains essentially positive functions for each integer \(j \) there is a \(k_j \in K \) such that

1. \(k_j(i) = 1, \) and
2. \(\| k_j \wedge 0 \| < \varepsilon/2^{i+1}. \)

Let \(m_j \in K \) be a function (guaranteed by hypothesis) such that

3. \(m_j(j) = -k_j(j) \wedge 0, \) and
4. \(\| m_j \wedge 0 \| < (\varepsilon/2^{i+1} - m_j(j)). \)

For \(j \neq i \) let

\[u_j = (k_j + m_j)/[(k_j + m_j)(i)],\]

then there is an \(n \) for which \(\{u_j\}_{j=1, j \neq i}^n \) forms the upper sequence in the definition of an \(\varepsilon \)-trap for \(\psi \{i\} \).

Proof of Theorem 1.7. The theorem is now immediate from Lemma 1.14, Lemma 1.13 and Lemma 1.8.

Theorem 1.15 Let \(K \) be a finite dimensional subspace of \(l_p \) that contains a strictly positive function. Then \(K \) is \(\Xi^+ \)-Korovkin if and only if it is an \(\Xi^+ \)-Korovkin subspace of \(c_0 \).

Proof. The necessity is immediate from Theorem 1.7. The sufficiency follows from Lemma 1.13(b), Lemma 1.14 and Lemma 1.8.
EXAMPLE 1.16. Let $X = \{1/i\}_{i=1}^\infty \cup \{0\}$, and let K' be a finite dimensional subspace of $C(X)$ that contains the constants and such that $\{1/i\}_{i=1}^\infty \subseteq cbK$. Let $w \in l_p$.

For $k \in K'$ let

$$(Tk)(i) = w(i)k\left(\frac{1}{i}\right).$$

Then $Tk \in l_p$. Let $K = \{Tk: k \in K'\}$. Then in view of Lemma 1.2, K satisfies the conclusion of Lemma 1.13(a) (even with $\varepsilon = 0$). Hence Lemma 1.14 implies that K is an L^+-Korovkin set in l_p. For example, this shows that $K = \{1/i^2, 1/i^3, 1/i^4\}$ is L^+-Korovkin in each l_p, by letting $w(i) = i^2$ and $K' = \{1, x, x^2\}$.

PROPOSITION 1.17. If $L_p(X, \Sigma, \mu)$ contains a two-dimensional L^+-Korovkin set, then $L_p(X, \Sigma, \mu)$ is two dimensional.

Proof. We again use several lemmas. For these let K be a two-dimensional subspace of $L_p = L_p(X, \Sigma, \mu)$.

LEMMA 1.18. If there exists positive functionals ϕ_1 and ϕ_2 on L_p and a set Y of positive measure such that:

1. if $k \in K$, $\phi_1(k) \geq 0$, and $\phi_2(k) \geq 0$ then $k \geq 0$ on Y
2. for each pair of real numbers r_1, r_2 there is a $k \in K$ such that $\phi_i(k) = r_i$, and
3. dim $L_p|_Y \geq 3$,

then K is not L^+-Korovkin.

Proof. For f in L_p let Lf be the unique member k of K such that

$$\phi_i(f) = \phi_i(k)$$

$i = 1, 2$.

Now simply let

$$Pf(x) = \begin{cases} f(x) & x \in Y \\ (Lf)(x) & x \in Y. \end{cases}$$

Then P is a nontrivial positive operator which acts as the identity on K.

LEMMA 1.19. Let g be a measurable positive function that is bounded and bounded away from zero. Let

$$K' = \{gk: k \in K\}$$

then K is L^+-Korovkin if and only if K' is L^+-Korovkin.
Proof. If suffices to show that if K is \mathcal{L}^{+}-Korovkin then K' is also. Let L_n be a bounded sequence of positive operators, such that

$$L_n(k') \longrightarrow k' \text{ for each } k' \in K'.$$

Let

$$P_n f = g^{-1} L_n(g f).$$

Since

$$P_n k \longrightarrow k \text{ for all } k \in K,$$

$$P_n(g^{-1} f) \longrightarrow g^{-1} f \text{ for all } f \in L_p.$$

Hence

$$L_n f \longrightarrow f \text{ for all } f \in L_p.$$

Lemma 1.20. Let $F \subseteq X$ be a set of positive measure which is not an atom. If K is \mathcal{L}^{+}-Korovkin then $\dim K|_F = 2$.

Proof. Again one easily constructs a nontrivial positive operator that is the identity on K.

Lemma 1.21. A two-dimensional subspace H of \mathbb{R}^3 that does not contain a positive vector, has a nonnegative annihilator.

Proof. Let $a = (a_1, a_2, a_3)$ be an annihilator of H. If H does not have a nonnegative annihilator we may assume that $a_1 > 0 > a_2$. Let $h = (h_1, h_2, h_3)$ be a member in H such that $h_3 = 0$. Then $a(h) = 0$ implies $\text{sgn} h_1 = \text{sgn} h_2$. Since H also contains some vector whose third coordinate is positive, H contains a vector with all positive coordinates.

Lemma 1.22. If K is \mathcal{L}^{+}-Korovkin then there is an $F \subseteq X$ and a $k \in K$ such that

1. $\dim L_p|_F \geq 3$, and
2. k is bounded, positive and bounded away from zero on F.

Proof. If X is not purely atomic the lemma follows from Lemma 1.20. If X is purely atomic the lemma follows from Lemmas 1.20 and 1.21, since if p is a nonnegative annihilator of K, $P_f = f + p(f)\gamma F$ is a positive operator for any set F of finite measure.

Proof of the proposition. Suppose K is \mathcal{L}^{+}-Korovkin. From Lemmas 1.19 and 1.22 we may assume that there is a set $F \subseteq X$
such that \(\dim(L_p \restriction F) \geq 3 \), that \(K \) is spanned by functions \(k_1 \) and \(k_2 \), and that \(k_1 \) is identically 1 on \(F \). From Lemma 1.20 we can find subsets \(F_1, F_2 \) and \(F_3 \) of positive finite measure such that

\[
\max k_2 \mid_{F_1} < \min k_2 \mid_{F_3} \leq \max k_2 \mid_{F_3} < \min k_2 \mid_{F_2} \quad \text{a.e.}
\]

Furthermore if \(F \) is not purely atomic we may assume that \(\dim L_p \mid_{F_3} \geq 3 \). Hence letting \(\phi_i f = \int_{F_i} f \) (\(i = 1, 2 \)), and \(Y = F_3 \) contradicts Lemma 1.18. If \(F \) is purely atomic we may assume that each \(F_i \) is an atom, and then letting \(\phi_i f = f(F_i) \) and \(Y = \bigcup_{i=1}^{3} \{ F_i \} \) would also contradict Lemma 1.18.

2. Korovkin sets in \(C(X) \). Let \(X \) be metrizable, and let \(K \) be a subspace of \(C(X) \) that contains the constants. G. G. Lorentz [14] showed that \(K \) is \(\mathcal{L}^+ \)-Korovkin in \(C(X) \) if and only if \(\partial K = X \). It follows that if \(Y \) is a closed subset of \(X \) then \(K \mid_Y \) is \(\mathcal{L}^+ \)-Korovkin in \(C(Y) \). Answering a question by Lorentz, we will give examples of a compact Hausdorff space \(X \), and an \(\mathcal{L}^+ \)-Korovkin sets \(K \subseteq C(X) \) whose restrictions to closed subsets of \(X \) fail to be Korovkin. The examples also extend a result by E. Sheffield [19].

Definition. \(K \subseteq C(X) \) is \(\mathcal{L} \)-Korovkin for nets if every bounded net of operators in \(\mathcal{L} \) that converges strongly to the identity on \(K \), also converges strongly to the identity on \(C(X) \).

Lemma 2.1. Let \(X \) be a compact Hausdorff space, \(K \) is \(\mathcal{L}^+ \)-Korovkin for nets if and only if \(\partial K = X \).

Proof. This is a minor variant of known results. The sufficiency can be obtained from the method of proof of Lemma 1 in [Wulbert, 22]. The necessity follows from the following known construction [Lorentz, 14]. Let \(\{ U_a \} \) be a neighborhood base for a point \(x \in X \). Suppose \(\mu \) is a positive measure in \(C(X)^* \) such that

\[
k(x) = \int k d\mu \quad \text{for all} \quad k \in K.
\]

Let \(g_a \) be a continuous function that is 1 at \(x \) and vanishes off \(U_a \). Let

\[
L_a(f) = (1 - g_a)f + \left(\int f d\mu \right) g.
\]

Then

\[
L_a(k) \longrightarrow k \quad \text{for all} \quad k
\]
but also

\[(L_nf)(x) \longrightarrow \int fd_n.\]

The following is also a variant of the proof in [Wulbert, 22].

Lemma 2.2. Let \(\{L_n\} \) be a bounded sequence of positive operators on \(C(X) \) such that \(L_n k \rightarrow k \) for all \(k \in K \subseteq C(X) \). If \(Y \) is a countably compact subset of \(\text{cb}K \), then for each \(f \in C(X) \), \(L_n f \) converges uniformly to \(f \) on \(Y \).

Corollary 2.3. Let \(X \) be an open countably compact dense subset of a compact Hausdorff space \(Y \). Assume that \(Y - X \) contains two points, and let

\[K = \{ f \in C(Y) : f \text{ constant on } Y - X \}.
\]

Then \(K \) is \(L^+ \)-Korovkin, but not \(L^+ \)-Korovkin for nets.

Examples 2.4. (1) Let \(X \) be locally compact and countably compact. Let \(Y = \beta X \) be the Stone-Čech compactification of \(X \). If \(Y - X \) contains two points then \(X \) and \(Y \) satisfy the conditions of the corollary.

(2) Let \(W \) be the space of ordinals less than the first uncountably ordinal. Let \(X = W \times W \), then \(X \) and \(Y = \beta X \) satisfy the properties of part (1) above.

(3) Let \(Y \) be an \(F \)-space. Let \(G \) be a finite subset of \(Y \) containing two points, and let \(X = Y - G \). Then \(X \) and \(Y \) satisfy the conditions of the corollary. (See [Gillman and Jerison, 10, p. 215].)

(4) In \(N \) denotes the integers then \(\beta N - N \) is an \(F \)-space.

Example 2.5. Let \(X, Y \) and \(K \) be as in the corollary then \(K \) is \(L^+ \)-Korovkin in \(C(Y) \), but \(k \mid_{Y-K} \) is not \(L^+ \)-Korovkin in \(C(Y - X) \).

Remark 2.5. Let \(X \) and \(Y \) be as in the corollary and let \(J \) be the ideal of continuous functions vanishing on \(Y - X \). Let \(y \in Y - X \). Since the operator \(P \) given by

\[(Pf)(x) = f(x) + f(y)\]

is a positive mapping that acts as the identity on \(J, \) \(J \) is not an \(L^+ \)-Korovkin set in \(C(Y) \). However it only requires minor modification to show that \(J \) is an \(L^1 \)-Korovkin set, although it is not \(L^- \)-Korovkin for nets.

E. Sheffold [19] gave the first example of a set that was an
KOROVKIN APPROXIMATIONS IN \(L_p\)-SPACES

\(\mathcal{L}^1\)-Korovkin set but not \(\mathcal{L}^1\)-Korovkin for nets. Using a different method Sheffield showed that if \(Y\) is an \(F\)-space, and \(J\) is the ideal of all continuous functions vanishing at a single point, then \(J\) has the above properties.

R. M. Minkova [15] has proved a Korovkin type theorem involving convergence of the higher order derivatives for functions in \(C^r[0, 1]\). Indeed let \(X\) be an open-bounded subset of \(\mathbb{R}^n\). Let \(Y\) be the closure of \(X\) and let \(C'(X)\) be the continuous real-valued functions on \(Y\), with \(r\) bounded, continuous (Frechet) derivatives on \(X\). Let the norm on \(C^r(X)\) be the sum of the uniform norms of the derivatives

\[
\|f\| = \|f\|_\infty + \|f'\|_\infty + \cdots + \|f^{(r)}\|_\infty.
\]

An operator \(T\) on \(C(X)\) is \(r\)-smooth if \(T(C^r(X)) \subseteq C^r(X)\) and \(T\) is continuous on \(C^r(X)\).

Proposition 2.6. Let \(K\) be a subspace of \(C(X)\) that contains the constants and for which \(\text{cb} K\) is dense in \(X\). Let \(\{T_i\}\) be a bounded sequence of positive \(r\)-smooth operators on \(C(X)\) such that

1. \(\{T_i\}\) is uniformly bounded as operators on \(C^r(X)\), and
2. \(T_i k \to k\) for all \(k \in K\),

then

3. \(T_i f^{(j)} \to f^{(j)}\) uniformly for each \(f \in C^r(X)\), and for each \(j = 0, 1, 2, \cdots, r - 1\).

Proof. This easily follows by induction from Ascoli's theorem since in this setting \((T_i f)(x) \to f(x)\) for all \(x \in \text{cb} K\) (Lemma 2.2).

Minkova used a delicate estimate of Landau to bound the derivative of a function with bounds for the function and its second derivative, and proved the case of the above proposition obtained when \(X\) is a compact interval of the line, and \(K\) is an \(\mathcal{L}^1\)-Korovkin set.

3. \(\mathcal{L}^{1,+}\)-Korovkin sets in \(L_p\). Let \((X, \Sigma, \mu)\) be a finite measure space, and let \(K\) be a subspace of \(L_r(X, \Sigma, \mu)\) that contains the constants. Let \(E\) be the closed linear sublattice generated by \(K\). Since the conditional expectation operator is a contractive projection of \(L_r\) onto \(E\), the \(\mathcal{L}^{1,+}\)-shadow of \(K\) is contained in \(E\). Berens and Lorentz [3] have in fact shown that \(E\) is the \(\mathcal{L}^{1,+}\)-shadow of \(K\). Bernau and Lacey [5] have announced that every closed sublattice of an \(L_p\)-space is the range of a contractive projection. Hence the restrictions in the Berens-Lorentz theorem can be removed.

Theorem 3.1. Let \(K\) be a subset of \(L_p\). The \(\mathcal{L}^{1,+}\)-shadow of
K is the closed linear sublattice of L_p generated by K.

Proof. Let S be the $\mathcal{L}^{1,+}$-shadow of K. It is obvious that S is closed. To show S is a lattice it suffices to show that $f \vee g \in S$ when both $f \in S$ and $g \in S$. Let L_i be a sequence of positive contractive on L_p such that $L_i k \to k$ for all $k \in K$. Since $f \vee g$ dominates both f and g

$$L_i(f \vee g) \geq L_i(f) \vee L_i(g).$$

We also know that $\|f \vee g\| \geq \|L_i(f \vee g)\|$ and that

$$L_i(f) \vee L_i(g) \to f \vee g.$$

Hence if $f \vee g \geq 0$, $\lim L_i(f \vee g) = f \vee g$. Indeed, if we are working in L_1, this limit is found by inspecting the integral $\|L_i(f \vee g) - f \vee g\|$. Otherwise the statement follows from the uniform convexity of L_p. Therefore if f and g are arbitrary members of S, $|f| \vee |g| \in S$, and

$$f \vee g + |f| \vee |g| = (f + |f| \vee |g|) \vee (g + |f| \vee |g|) \in S,$$

thus $f \vee g \in S$.

The $\mathcal{L}^{1,+}$-shadow of K, therefore, contains the closed lattice generated by K. The converse statement is immediate from the result of Bernau and Lacey mentioned before the theorem.

REMARK 3.2. Let X be a compact metric space, and let K be a subspace of $C(X)$ containing the constants. The lattice characterization of the $\mathcal{L}^{1,+}$-shadow of K does not apply. In particular the space spanned by 1 and x is not an $\mathcal{L}^{1,+}$-Korovkin set. However, it does follow from the proof of Lemma 2.1, and Lemma 1.2. that if K is a Korovkin set then, the closed sublattice generated by K is all of $C(X)$.

REFERENCES

Received July 11, 1973 and in revised form July 15, 1974. This research was supported by the National Science Foundation.

UNIVERSITY OF WASHINGTON
AND
UNIVERSITY OF CALIFORNIA, SAN DIEGO
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralph Artino, Gevrey classes and hypoelliptic boundary value problems.</td>
<td>1</td>
</tr>
<tr>
<td>B. Aupetit, Caractérisation spectrale des algèbres de Banach commutatives.</td>
<td>23</td>
</tr>
<tr>
<td>Leon Bernstein, Fundamental units and cycles in the period of real quadratic number fields. I</td>
<td>37</td>
</tr>
<tr>
<td>Leon Bernstein, Fundamental units and cycles in the period of real quadratic number fields. II</td>
<td>63</td>
</tr>
<tr>
<td>Robert F. Brown, Fixed points of automorphisms of compact Lie groups.</td>
<td>79</td>
</tr>
<tr>
<td>Thomas Ashland Chapman, Concordances of noncompact Hilbert cube manifolds.</td>
<td>89</td>
</tr>
<tr>
<td>William C. Connett, V and Alan Schwartz, Weak type multipliers for Hankel transforms.</td>
<td>125</td>
</tr>
<tr>
<td>John Wayne Davenport, Multipliers on a Banach algebra with a bounded approximate identity.</td>
<td>131</td>
</tr>
<tr>
<td>Gustave Adam Efroymson, Substitution in Nash functions.</td>
<td>137</td>
</tr>
<tr>
<td>John Sollion Hsia, Representations by spinor genera.</td>
<td>147</td>
</tr>
<tr>
<td>Eric P. Kronstadt, Interpolating sequences for functions satisfying a Lipschitz condition.</td>
<td>169</td>
</tr>
<tr>
<td>Gary Douglas Jones and Samuel Murray Rankin, III, Oscillation properties of certain self-adjoint differential equations of the fourth order.</td>
<td>179</td>
</tr>
<tr>
<td>Takaši Kusano and Hiroshi Onose, Nonoscillation theorems for differential equations with deviating argument.</td>
<td>185</td>
</tr>
<tr>
<td>David C. Lantz, Preservation of local properties and chain conditions in commutative group rings.</td>
<td>193</td>
</tr>
<tr>
<td>Charles W. Neville, Banach spaces with a restricted Hahn-Banach extension property.</td>
<td>201</td>
</tr>
<tr>
<td>Norman Oler, Spaces of discrete subsets of a locally compact group.</td>
<td>213</td>
</tr>
<tr>
<td>Robert Olin, Functional relationships between a subnormal operator and its minimal normal extension.</td>
<td>221</td>
</tr>
<tr>
<td>Thomas Thornton Read, Bounds and quantitative comparison theorems for nonoscillatory second order differential equations.</td>
<td>231</td>
</tr>
<tr>
<td>Robert Horace Redfield, Archimedean and basic elements in completely distributive lattice-ordered groups.</td>
<td>247</td>
</tr>
<tr>
<td>Jeffery William Sanders, Weighted Sidon sets.</td>
<td>255</td>
</tr>
<tr>
<td>Aaron R. Todd, Continuous linear images of pseudo-complete linear topological spaces.</td>
<td>281</td>
</tr>
<tr>
<td>J. Jerry Uhl, Jr., Norm attaining operators on $L^1[0, 1]$ and the Radon-Nikodým property.</td>
<td>293</td>
</tr>
<tr>
<td>William Jennings Wickless, Abelian groups in which every endomorphism is a left multiplication.</td>
<td>301</td>
</tr>
</tbody>
</table>