Pacific Journal of
Mathematics

KOROVKIN APPROXIMATIONS IN L ,-SPACES

WILLIAM GEORGE KITTO AND DANIEL ELIOT WULBERT




FACIFIC JOURNAL CF MATHEMATICS
Vol. 63, No. 1, 1976

KOROVKIN APPROXIMATIONS IN L,-SPACES

W. KitrTo AND D. E. WULBERT

The main result is a characterization of finite Korovkin
sets for positive operators in [,. It follows that a finite set
containing a positive function is a Korovkin set in [, if and
only if it is a Korovkin set in ¢,. The methods also show:

ProrosiTION. Let X be a compact subset of R*. Let K
be a subspace of C(X) containing the constants. If K is a
Korovkin set in C(X), then K is Korovkin set in L,(X).

Several related results are also given. Fer example a
question of G. G. Lorentz about the restrictions of Korovkin
set in C(X) to a subset Y S X is answered.

Let &~ be a class of operators on a Banach space E. A subset
K C FE is an #-Korovkin set if whenever

(i) {L;} is a bounded sequence in &% and

(ii) L,k—Fk for each ke K;
we have

(iii) L,f — f for each f in E.

Let <! be the class of norm one operators on E. If FE is also
a lattice, let <" denote the positive operators on E; and, &F** =
Fr N

After Korovkin showed that {1, x, *} is an & "-Korovkin set in
C[0, 1], interest in this field has been in characterizing the Korovkin
subsets of the classic Banach spaces.

Papers by Berens and Lorentz [3], Franchetti [8, 9], Krasnosilskii
and Lifsic [13], Lorentz [14], Saskin [18], Scheffold [19], and Wulbert
[22] identified the various types of Korovkin sets in C(X) spaces.
Berens and Lorentz [3] have essentially characterized the <~'7-
Korovkin subsets of L, spaces (see §3 of this article, also see [Lorentz,
14] and [Wulbert, 22]), and Dzjadyk [7] has shown that {1, sinz,
cos x} is an ¥ *-Korovkin set in L0, 27]. (See also [James, 11],
and [Zaricka, 24].)

The results here are related to identifying & +-Korovkin subsets
of L,-spaces. A sufficient condition is presented that encompasses the
known (and the suspected) .&*-Korovkin sets. For example each
#*-Korovkin set in C[a, b] that contains constants is also an &*-
Korovkin set in L,a, b]. The main result given is a characterization
of finite &*-Korovkin sets in [,. A consequence of this characteri-
zation is that the [, spaces have the same finite #*-Korovkin sets.
That is, if K is a finite subset of both I, and l,, and K contains a
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positive sequence, then K is &*-Korovkin in [, if and only if K is
F+-Korovkin in I,. _

We use the last two sections of the paper to give short direct
generalizations of some related Korovkin theorems. For example,
a recent result by Bernau and Lacey [5] enables the removal of the
last conditions from the characterization of &**-Korovkin subsets
of L,-spaces with an easy argument.

G. G. Lorentz [14] proved that if X is a compact metric space,
and K is & *-Korovkin set in C(X) containing a constant, then for
each closed subset Y £ X, K|, is an ¥ *-Korovkin set in C(Y).
Lorentz asked if the property was true for any compact Hausdorff
space X. A counterexample is given in section two.

NoraTioN. If X is a compact Hausdorff space C(X) is the space
of continuous real functions on X. For xe€ X, &(x) is the linear funec-
tional on C(X) given by &(x)(f) = f(x). If K is a linear subspace
of C(X), we say xe€cb K, the choquet boundary of K, if the only
positive linear functional on C(X) that agrees with &(x) on K is &(x)
itself. If F is a subset of a set Y, ¥, is the characteristic function
of F. We use f|r to denote the restriction of a function f to the
domain F, and for a set of functions K, K|, = {k|;: k€ K}. The
dual of a normed space E is written E*.

As usual, ¢ denotes the space of convergent sequences with the
sup norm,

¢, = {x(?) € c: lim x(¢) = 0}, and

by = {w(?) € et [[#]], = "V 2 [a(3) [P < oo} .

The norm on [, is assumed to be ||-||, as given above. We will
frequently view these sequence spaces as spaces of continuous func-
tions on the one point compactification of the integers.

Let &2 be a class of linear operators on a normed space E. Let
K be a subset of E. A member f € FE is in the F-shadow of K if
L,f — f for each bound sequence {L,} & & such that L,k— k for
each ke K. Hence K is an &-Korovkin set if the &-shadow of K
is E. Since the <~-shadow of K is the same as the ¢-shadow of
the span of K we will often assume that K is already a linear
subspace of E.

1. #*-Korovkin sets in L,spaces. The main result of this
section is the characterization of finite &“*-Korovkin subsets of
l,spaces. The condition is sufficient in general, and provides an
accessible class of #*-Korovkin sets in L,-spaces.

We also show that an &*-Korovkin set of an .&-space containg
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three functions. The interest in this fact comes from the surprising
observation that that {1, z} is &**-Korovkin in L,[0, 1] (see §3).

Let K be a linear subspace of a normed linear lattice E. Let
feE. Two sets of vectors {u/-, {l;}, is an e-trap for f if there
is a vector ¢ such that:

1. —6+V?:151§f§6+ A:L=lui’

2. Aiu, — Vil + 2]l <e, and

3. llefl <e.

DEFINITION. K traps f if for each ¢ > 0, K contains an e-trap for f.
PRrOPOSITION 1.1. If K traps f, then f is in the & -shadow of K.

Proof. Let L, be a sequence of positive operators such that
L~k for all £k in K and ||L,|| < B. Then for k sufficiently large,

‘Z\lLk(ui)—Au,ﬂ<s, and %ng(Zi)——i\Zlifke-

We also have,

—Ly(e) + :Vl L(l) = — Ly(e) + Lk((): li>
= L«(f)
= Li(e) + Lk(é ui)

< Lue) + A Luw) -

Since,
; A Liw) = V L) + 2Lk(e);i < ¢B,
we have,
ILuf = 71| < |Luf = L) = A Lutu)|
Lol + || A Lu(wd = A
+ l/:\l U, — ff]
<2(B-+1).

We need the following known result. [Alfsen, 1, Cor. 1.5.10].
Let X be a compact Hausdorff space. Let K be a linear subspace
of C(X) that contains the constants and separates the points of X.
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LEMMA 1.2. If feC(X) and xccbK then
f(x) =inf {k(x): ke K, k= f}.

COROLLARY 1.3. Let X and K be as above. Let !t be a positive
finite, regular Borel measure on X. If the support of p is contained
in cb K, then K is an F*-Korovkin set in L,(X, 1), 1 < p < oo.

Proof. From the lemma and Dini’s theorem K traps every
continuous function. Since the < *-shadow of K is closed, and the
continuous functions are dense in L, (X, ), the corollary is proved.

COROLLARY 1.4. Let X, K, and p be as above. If ¢b K= X
then K is an T -Korovkin set in L (X, 1). In particular if X is
metrizable and K 1s Z*-Korovkin in C(X), then K is & -Korovkin
in L(X, p).

Proof. If X is metrizable the Choquet boundary of an &+-
Korovkin set is X [14]. (Also see §2.)

ExaMPLE 1.5. (a) (Dzjedyk) {1, sin x, cos x} is an & *-Korovkin
set in L,[0, 27].

(o) {1, «, «*} is an ¥ *-Korovkin set in L0, 1].

() {1, =z, v, «* ¥} is an < *-Korovkin set in L,([0, 1] x [0, 1]).

In the above corollaries the e-traps constructed are exact in the
sense that ¢ = 0. Unfortunately such e-traps cannot generally be
constructed.

ProPOSITION 1.6. If K is a finite dimensional subspace of an
infinite dimensional L, space, then there is an f € L, which cannot
be bounded above by any ke K.

Proof. Let k,, ---, k, be a basis for K, and let w = 3" |%,]|.

If k£ = f then there is a multiple of w which also bounds f.

If w has a finite range a.e., then the infinite dimensionality of
L, can be used to construct an f e L, which cannot be bounded by
w. Otherwise looking at level sets we can find a countable family
of disjoint measurable sets A(n) such that

w' = <—13-)p

o<
n

Aln)

Let
nw(x) on A(n)
0 otherwise

f(w)={
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then f e L, and cannot be bounded by w.

DEFINITION. For the remainder of this section let V' be either
¢, or [, for some 1 < p < oo,

With a series of lemmas we will prove a characterization theorem
for finite dimensional < "-Korovkin sets in V.

DEFINITION. K Z V contains essentially positive members if for
every ¢ > 0, and every integer x there is a k€ K for which

(1) k(x) =1, and
(2) lEANO<e.
(for example—if K contains a strictly positive function, K contains

essentially positive members.)

THEOREM 1.7. Let K be a finite dimensional subspace of V then:
(1) K is an F*-Korovkin set, and
(2) K contains essentially positive members
iof and only if
(8) K traps every member of V.

Proposition 1.1 proved that (3) implies (1), and it is trivial that
(3) implies (2).

Let K be a linear subspace of V.

Let

T={feV:K traps f}.
LemMMmA 1.8. T 4s a closed linear space.
Proof. Clearly K traps f, implies K traps «f, for all acR.

Suppose k traps f and g.
Since it is always true that

xNYy+z=@+2)AN WY+ 2,
it follows that

>s
>

(u, +v;) = Au+ Avs.
i=1 Jj=1

1j=1

It

T

It

Therefore if {u.}", {1.}7-. and {v;};_,, {h;}=, are e-traps for f and g, then

{ui + vj:”::]-, "',nyj—:ly "';S}
Lo+ hpi=1, oy m, e, 8]

is a 2¢-trap for f + g.
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It is also easy to see that T is closed.

Lemma 1.9. Let K be an & *-Korovkin subspace of V. Ifpe V*
1s nonnegative and p(k) = (i) for some integer i and all k in K
then p = &(1).

Proof. Suppose p is as above. Let
fG) 7+
p(f) 7=1.

Then P carries %k onto . for all ke K. Hence P is the identity
and p = &(7).

(P9 =

In particular K separates the integers.

LeMMA 1.10. Let K be a subspace of V for which cbK = {1, 2,
3, -+-}. For each integer i there is & ke K for which k(%) < k(j)
for all j + 1, and k(z) < 0.

Proof. Let K’ be the span of K and 1 in (¢). From Lemma
1.2 there is an ¢ € R and a %k in K such that

(1) EG) +a=0 for j=#1
(2) Ei) +a < —1.

Since lim;_. k() = 0, « = 0. Hence this % has the desired properties,

LeMMA 1.11. Le K be a finite dimensional F+-Korovkin set
in V. Let w(t) be a strictly positive sequence such that wk € (¢c,) for
all k in K. Then each integer i is in cb(wK).

Proof. Let p be a nonnegative sequence in [,, such that p(wk) =
w(t)k(z) for each ke K. Let ge V. Using Caratheodory’s theorem,
the Hahn-Banach theorem, and the characterization of the extreme
points of the unit ball of (¢)*, there is a finite set of integers {ux;}7-,
and nonnegative numbers {\;}7., such that,

P(f) = Mof (o) + X Nif (z;) for all fewKDgD1
where oo denotes the point at infinity.

Let

_(Mw(a)w(x): for t=wm5 =1, n
o : otherwise

q(t)
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Now Lemma 1.9 applies to ¢, and »(g9) = q(g) = g(¢). Since g was
arbitrary the lemma is proved.

LEMMA 1.12, Let K be a finite dimensional subspace of V. There
18 o sequence p such that

(1) p>0, (2) pK<Ze¢, and (3) %sV.

Proof. Let k, ---, k, be a basis for K. Let

w(e) = 3} 1k@)] -

It suffices to consider the case in which w has no zeros. It follows
that k(z)/w(x) is bounded for each ke K. Thus if there is a gee,
such that w/ge V, then

p=q/3 k]

is the desired function.
To find such a ¢ when V is an I, space, let N(¢) be the smallest
integer such that

S w@)P e, and let
J>N(e)
. 1\"? 1 , 1
= (= )< —= ).
ai) = ()" for N(W)=y<N@n+DQ
If V=c¢, let N(¢) be the smallest integer such that

sup {[w)f} <e,
F>N(e)

then let
. 1 1 . 1
=L tor N(L)=i<N( )
q(j) = — for <n2>_9< (n+1)2>

LEMMA 1.138. Let K be a finite dimensional & *-Korovkin sub-
space of V.

(a) For each integer i and each € > 0 there is a keK such that
(1) k(i) = —1, and
(2) lEAO[<1+e.

(b) If in addition each member of K is also in l, then the
norm in (2) can be taken to be the l, norm.

Proof. For Lemma 1.12 there is a positive sequence p such that
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pKZec,and 1/pe V (1/p €l,, resp.). We may also assume that ||1/p|| =
1 (|1/p]le = 1resp.). Let

. p()e J#1
w(j) = .
1 j=1
By Lemma 1.10 and Lemma 1.11 there is a k< K such that
=1 = (wk)(?) < (wk)(7) (G #1).
Thus
k(i) = —1, and k() = 1/w(j) .
LEvMMA 1.14. Let K be a subspace of V that contains essentially

positive function and which satisfies the conclusion of Lemma 13(a),
then for each i, K traps ..

Proof. Let 0 < e < 1/2. The lower sequence {l,} for the definition
of an e-trap for +,, is guaranteed by hypothesis.

Since K contains essentially positive functions for each integer
j there is a k; € K such that

(1) ki) =1, and
(2) lks A O] < /297",
Let m; e K be a function (guaranteed by hypothesis) such that
(3) m;(j) = —k;(§) N0, and
(4) gy A O] < (e/277 — my(7)) .
For j = 1 let,
w; = (ki + m)/[(k; + m;)(@)],

then there is an » for which {u;}}., ;. forms the upper sequence in
the definition of an e-trap for +;.

Proof of Theorem 1.7. The theorem is now immediate from
Lemma 1.14, Lemma 1.13 and Lemma 1.8.

THEOREM 1.15 Let K be a finite dimensional subspace of 1, that
contains a strictly positive function. Then K is Z*-Korovkin if
and only if it is an F*-Korovkin subspace of ¢,

Proof. The necessity is immediate from Theorem 1.7. The
sufficiency follows from Lemma 1.13(b), Lemma 1.14 and Lemma 1.8.
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ExamMpPLE 1.16. Let X = {1/7}2, U {0}, and let K' be a finite
dimensional subspace of C(X) that contains the constants and such
that {1/i}, & ¢bK. Let wel,.

For ke K’ let

(Tk)(i) = w(i)k(—}b__) .

Then Thkelp. Let K= {Tk:kecK'}. Then in view of Lemma 1.2, K
satisfies the conclusion of Lemma 1.13(a) (even with ¢ = 0). Hence
Lemma 1.14 implies that K is an & *-Korovkin set in /,. For example,
this shows that K = {1/* 1/4% 1/¢*} is & "-Korovkin in each [l,, by
letting w(¢) = ¢* and K' = {1, =, z?)}.

ProrosiTION 1.17. If L,(X, X, 1) contains a two-dimensional
Ft-Korovkin set, then L (X, 2, 1) is two dimensional.

Proof. We again use several lemmas. For these let K be a
two-dimensional subspace of L, = L,(X, 2, p).

LEMMA 1.18. If there exists positive functionals ¢, and 9, on
L, and a set Y of positive measure such that:

1. ©of kekK, ¢(k) =0, and ¢(k) =0 then k=0 on Y

2. for each pair of real numbers r, r, there is a ke K such
that ¢,(k) = r, and

3. dimL,l, =3,
then K is mot & -Korovkin.

Proof. For f in L, let Lf be the unique member %k of K such
that
$:(f) = (k) 1=12.
Now simply let

S(x) reg Y

PI® =11 zey.

Then P is a nontrivial positive operator which acts as the identity
on K.

LEMMA 1.19. Let g be a measuradle positive function that is
bounded and bounded away from zero. Let

K ={gk:ke K}
then K is & *-Korovkin if and only if K' is & -Korovkin.
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Proof. 1If suffices to show that if K is .&#*-Korovkin then K’
is also. Let L, be a bounded sequence of positive operators, such
that

L(K)y—F for each k' eK'.

Let
P.f = gLy(9f) .
Since
Pk——Fk forall keK,
P f)y—> g f forall felL,.
Hence

L,f— f forall felL,.

LEMMA 1.20. Let FF< X be o set of positive measure which 1s
not an atom. If K is & *-Korovkin then dim K|, = 2.

Proof. Again one easily constructs a nontrivial positive operator
that is the identity on K.

LemmA 1.21. A two-dimensional subspace H of R® that does not
contain a positive vector, has a nonnegative annihilator.

Proof. Let a = (a.a,a;) be an annihilator of H. If H does not
have a nonnegative annihilator we may assume that a,>0>a, Let
h = (hy, hy, hs) be a member in H such that k, = 0. Then a(h) =0
implies sgnh, = sgn h,. Since H also contains some vector whose
third coordinate is positive, H contains a vector with all positive
coordinates.

LEmmA 1.22. If K is & -Korovkin then thereis an F < X and
o ke K such that

1. dimL,|, =3, and

2. k is bounded, positive and bounded away from zero on F.

Proof. If X is not purely atomic the lemma follows from Lemma
1.20. If X is purely atomic the lemma follows from Lemmas 1.20
and 1.21, since if p is a nonnegative annihilator of K, Pf = f +
p(f)vF is a positive operator for any set F of finite measure.

Proof of the proposition. Suppose K is ¥ *-Korovkin. From
Lemmas 1.19 and 1.22 we may assume that there is a set F S X
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such that dim (L,|7) = 3, that K is spanned by functions %, and k,,
and that k, is identically 1 on F. From Lemma 1.20 we can find
subsets F,, F, and F, of positive finite measure such that

max k|, < mink,|p, < max k,|,, < mink,|,, a.e.

Furthermore if F'is not purely atomic we may assume that dim L, | », =
3. Hence letting ¢,f = S f(t=1,2),and Y = F, contradicts Lemma
F;

1.18. If F is purely atomic we may assume that each F, is an
atom, and then letting ¢,/ = f(F,) and Y = Ui, {F,} would also
contradict Lemma 1.18.

2. Korovkin sets in C(X). Let X be metrizable, and let K be
a subspace of C(X) that contains the constants. G. G. Lorentz [14]
showed that K is & *-Korovkin in C(X) if and only if ¢bK = X. It
follows that if Y is a closed subset of X then K|, is .&#*-Korovkin
in C(Y). Answering a question by Lorentz, we will give examples
of a compact Hausdorff space X, and an & *-Korovkin sets K< C(X)
whose restrictions to closed subsets of X fail to be Korovkin. The
examples also extend a result by E. Sheffold [19].

DEFINITION. K C C(X) is .&“-Korovkin for nets if every bounded
net of operators in & that converges strongly to the identity on K,
also converges strongly to the identity on C(X).

LEMMA 2.1. Let X be a compact Hausdorff space, K 1s £ +-
Korovkin for mets if and only if cb K = X.

Proof. This is a minor variant of known results. The sufficiency
can be obtained from the method of proof of Lemma 1 in [Wulbert,
22]. The necessity follows from the following known construction
[Lorentz, 14]. Let {U,} be a neighborhood base for a point xec X.
Suppose p is a positive measure in C(X)* such that

() = Skdy for all keK.

Let g, be a continuous function that is 1 at z and vanishes off U.,.
Let

Lf) = (= gdf + (|£d.)a -

Then
L(k)y—Fk for all %k
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but also
Laf @) — [Fd.
The following is also a variant of the proof in [Wulbert, 22].

LemMmA 2.2. Let {L,} be a bounded sequence of positive operators
on C(X) such that L,k —k for all ke K S C(X). IfY is a countably
compact subset of ¢cbK, then for each fe C(X), L, f converges uniformly
to f on Y.

COROLLARY 2.3. Let X be an open countably compact dense
subset of a compact Hausdorff space Y. Assume that Y — X contains
two points, and let

K={feCY): f constant on Y — X}.
Then K is & *-Korovkin, but not & *-Korovkin for mets.

ExampLES 2.4. (1) Let X be locally compact and countably
compact. Let Y = X be the Stone-Cech compactification of X. If
Y — X contains two points then X and Y satisfy the conditions of
the corollary.

(2) Let W be the space of ordinals less than the first uncoun-
tably ordinal. Let X =W x W, then X and Y = BX satisfy the
properties of part (1) above.

(3) Let Y be an F-space. Let G be a finite subset of Y con-
taining two points, and let X =Y — G. Then X and Y satisfy the
conditions of the corollary. (See [Gillman and Jerison, 10, p. 215].)

(4) In N denotes the integers then SN — N is an F-space.

ExamMpPLE 2.5. Let X,Y and K be as in the corollary then K is
Z*-Korovkin in C(Y), but k|y_x is not & *-Korovkin in C(Y — X).

REMARK 2.5. Let X and Y be as in the corollary and let J be
the ideal of continuous functions vanishingon ¥ — X. Letye Y — X.
Since the operator P given by

(PF)@) = f(@) + f(y)

is a positive mapping that acts as the identity on J, J is not an
*+-Korovkin set in C(Y). However it only requires minor modi-
fication to show that J is an &*-Korovkin set, although it is not
#*Korovkin for nets.

E. Sheffold [19] gave the first example of a set that was an
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ZF*-Korovkin set but not &*-Korovkin for nets. Using a different
method Sheffold showed that if Y is an F-space, and J is the ideal
of all continuous functions vanishing at a single point, then J has
the above properties.

R. M. Minkova [15] has proved a Korovkin type theorem in-
volving convergence of the higher order derivatives for functions in
C'[0, 1]. Indeed let X be an open-bounded subset of R". Let Y be
the closure of X and let C"(X) be the continuous real-valued functions
on Y, with » bounded, continuous (Frechet) derivatives on X. Let the
norm on C7"(X) be the sum of the uniform norms of the derivatives

= le + 1 e + o0 + 11"l

An operator T on C(X) is r-smooth if T(C(X))= C(X) and T
is continuous on C"(X).

PrOPOSITION 2.6. Let K be a subspace of C(X) that contains the
constants and for which ¢b K is dense in X. Let {T.,} be a bounded
sequence of positive r-smooth operators on C(X) such that

(1) {T} is uniformly bounded as operators on C"(X), and

(2) Tk—k for oll ke K,
then

(3) T.f9— f9 wuniformly for each feC(X), and for each
17=0,1,2 +-. »r—1.

Proof. This easily follows by induction from Ascoli’s theorem
since in this setting (7,7 )x) — f(x) for all xecbK (Lemma 2.2).

Minkova used a delicate estimate of Landau to bound the deriva-
tive of a function with bounds for the function and its second deriva-
tive, and proved the case of the above proposition obtained when
X is a compact interval of the line, and K is an .27"-Korovkin set.

3. Z'“-Korovkin sets in L,. Let (X, Y, 1) be a finite measure
space, and let K be a subspace of L/(X, 2, t) that contains the
constants. Let £ be the closed linear sublattice generated by K.
Since the conditional expectation operator is a contractive projection
of L, onto E, the <~**-shadow of K is contained in E. Berens and
Lorentz [3] have in fact shown that F is the .#"*-shadow of K.
Bernau and Lacey [5] have announced that every closed sublattice
of an L,-space is the range of a contractive projection. Hence the
restrictions in the Berens-Lorentz theorem can be removed.

THEOREM 3.1. Let K be a subset of L,. The & -shadow of
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K s the closed linear sublattice of L, generated by K.

Proof. Let S be the <“*-shadow of K. It is obvious that S
is closed. To show S is a lattice it suffices to show that f \V geS
when both feS and geS. Let L, be a sequence of positive con-
tractive on L, such that L,k —k for all ke K. Since f \V g dominates
both f and ¢

L(fV g) = L(f)V L(9) .
We also know that || f \VV g|| = ||L(f V ¢)|| and that
L(f)V L(g9)— f V9.

Henceif f Vg=0,limL(fVg)=fVg. Indeed, if we are working
in L,, this limit is found by inspecting the integral || L(f \V g) — f \VV g]|.
Otherwise the statement follows from the uniform convexity of L,.
Therefore if f and g are arbitrary members of S, [f ]|V |g|€ S, and

FVa+Ifivigl=( +I1F1VIgh Vg +1fIVighesS,

thus f VvV geS.

The t*-shadow of K, therefore, contains the closed lattice
generated by K. The converse statement is immediate from the
result of Bernau and Lacey mentioned before the theorem.

REMARK 3.2. Let X be a compact metric space, and let K be
a subspace of C(X) containing the constants. The lattice characteri-
zation of the “*-shadow of K does not apply. In particular the
space spanned by 1 and z is not an &“*-Korovkin set. However,
it does follow from the proof of Lemma 2.1, and Lemma 1.2. that
if K is a Korovkin set then, the closed sublattice generated by K
is all of C(X).
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